
Received March 13, 2019, accepted April 3, 2019, date of publication April 11, 2019, date of current version April 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910327

A Community-Based Fault Isolation Approach for
Effective Simultaneous Localization of Faults
ABUBAKAR ZAKARI 1,2, SAI PECK LEE1, AND IBRAHIM ABAKER TARGIO HASHEM3
1Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
2Department of Computer Science, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Nigeria
3School of Computing and IT, Taylor’s University, Subang Jaya 47500, Malaysia

Corresponding authors: Abubakar Zakari (abubakar.zakari@yahoo.com), Ibrahim Abaker Targio Hashem
(ibrahimabaker.targiohashem@taylors.edu.my), and Sai Peck Lee (saipeck@um.edu.my)

This work was supported by the research project FP001-2016 under the Fundamental Research Grant Scheme provided by the Ministry of
Higher Education, Malaysia.

ABSTRACT During program testing, software programs may be discovered to contain multiple faults.
Multiple faults in a program may reduce the effectiveness of the existing fault localization techniques due
to the complex relationship between faults and failures in the presence of multiple faults. In an ideal case,
faults are isolated into fault-focused clusters, each targeting a single fault for developers to localize them
simultaneously in parallel. However, the relationship between faults and failures is not easily identified and
depends solely on the accuracy of clustering, as such, existing clustering algorithms are not able to isolate
failed tests to their causative faults effectively which hinder localization effectiveness. This paper proposes
a new approach that makes use of a divisive network community clustering algorithm to isolate faults into
separate fault-focused communities that target a single fault each. A community weighting and selection
mechanism that aids in prioritizing highly important fault-focused communities to the available developers
to debug the faults simultaneously in parallel is also proposed. The approach is evaluated on eight subject
programs ranging from medium-sized to large-sized programs (tcas, replace, gzip, sed, flex, grep, make, and
ant). Overall, 540 multiple-fault versions of these programs were generated with 2–5 faulty versions. The
experimental results have demonstrated that the proposed approach performs significantly better in terms of
localization effectiveness in comparison with two other parallel debugging approaches for locating multiple
faults in parallel.

INDEX TERMS Complex network, multiple faults, fault localization, fault isolation, program debugging,
parallel debugging.

I. INTRODUCTION
Software debugging is a costly and time-consuming activity.
A software may often contain faults after deployment regard-
less of the effort put into its development. The bigger and
more sophisticated a software, the higher the likelihood of the
software containing faults [1].When a failure is observed dur-
ing program testing, the program is said to have contained one
or more faults. Therefore, software developers are obliged to
locate and fix the faults by identifying the exact location of
the faults that caused the failure. This process is generally
known as fault localization, which is a tedious and expensive
process [2], [3]. Many studies made a single-fault assump-
tion when a program fails which may not hold in practice,
because program failures are or might be triggered by many

The associate editor coordinating the review of this manuscript and
approving it for publication was Basit Shahzad.

faults. However, identifying tests executions that failed due
to the same fault is difficult. Hence, understanding the due-to
relationship between failures and their corresponding faults
is quite difficult [4].

Various studies have utilized the parallel debugging
approach to isolate faults into different clusters for more
effective localization of multiple faults [5]–[8]. Parallel
debugging approach utilizes clustering algorithms to create
fault-focused clusters that may target single fault each. How-
ever, isolating different faults into separate clusters is a very
challenging task [1]. In order to isolate faults into differ-
ent fault-focused clusters in parallel debugging approach,
tests execution are mostly clustered based on their execu-
tion profile similarity [5]–[7]. However, as suggested by
Liu et al. [9] and Gao and Wong [1], this representation
is problematic because faults can be triggered in many dif-
ferent ways. Hence, a cluster may contain more than one

50012
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6488-0666


A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

fault caused by different failures which can reduce the local-
ization effectiveness of a fault localization technique [1],
[5], [6], [8], [10], [11].

Moreover, some obvious challenges during clustering
include the know-how to accurately depict a failed test case
or to properly measure the variations between two failed test
cases based on the distance metric used, and also to conduct
clustering based on a suitable clustering algorithm. There-
fore, choosing the right clustering algorithm is vital because
various solutions to these challenges have different effect to
clustering results (accuracy) which will directly affect fault
localization effectiveness [6], [12], [13]. In addition, in view
of the problem of clustering accuracy on fault isolation in
parallel debugging approach when localizing multiple faults
simultaneously, a new approach to isolate faults is needed
to improve the creation of viable fault-focused clusters that
target single faults to improve localization effectiveness on
multiple-fault programs.

In this paper, we propose a new approach that makes
use of a divisive network community clustering algorithm
to perform clustering (Section III.D). Although the cluster-
ing algorithm used in this paper is a well-known clustering
algorithm and has been utilized in the studies of graph the-
ory [14], [15], to the best of our knowledge, this algorithm
has not been used in the field of software fault localization.
Based on this algorithm, a developer is tasked to find the
least connected statements in a programmodeled network and
then remove the edges between them (connection between
statements). Hence, communities are created by continuously
removing the edges from the program network based on
statements edge-betweenness distance. For any statement in
a network, edge-betweenness is defined as the number of
shortest paths between pairs of statements that run along
it. This process is done repeatedly until the program net-
work is naturally divided into smaller and smaller compo-
nents composed of densely connected statements that form
communities. We name these communities as fault-focused
communities.

We further introduce a community weighting and selec-
tion mechanism to aid in prioritizing highly important fault-
focused communities to the available developers to debug the
faults simultaneously in parallel. Lastly, this work builds on
top of our previous work [16], where we proposed a fault
localization technique based on complex network theory.
Hence, we utilize the same technique in this study for fault
localization. Community clustering algorithms have proven
to be useful in understanding complex data relationships for
community detection in the domain of software engineer-
ing [17], physics [18], and social networks [14], [15]. Hence,
based on the existing knowledge in the literature that the more
densely connected nodes are in a network, the more prone
they are to be related to the same variable or information [17],
[18]. In extension to this study, we postulated that the more
densely connected program statements are in the program
network, the more prone they are to be related to the same
failure or fault.

The proposed approach is evaluated on eight subject pro-
grams ranging from medium-sized to large-sized programs
(tcas, replace, gzip, sed, flex, grep, make, and ant). Overall,
540 multiple-fault versions of these programs were generated
with 2, 3, 4, and 5 faulty versions (Section IV), respec-
tively. Furthermore, a cross-comparison between the pro-
posed approach and two other parallel debugging approaches
is conducted in Section V [1], [5]. The experimental results
strongly demonstrate that the proposed approach outperforms
the two parallel debugging approaches in terms of localiza-
tion effectiveness. In this paper, we apply these terminolo-
gies interchangeably, where program statements are nodes;
executions or connections between program statements are
represented as edges, while clusters are represented as com-
munities.

The major contribution of this paper is as follows:

• A new approach is proposed that makes use of a divisive
network community algorithm for clustering to aid in
the isolation of faulty program statements caused by
different faults into separate fault-focused communities
(clusters), each targeting a single fault.

• A novel community weighting and selection mechanism
is introduced to aid in identifying and prioritizing highly
important fault-focused communities to available devel-
opers to debug the faults simultaneously in parallel.

• An empirical study to evaluate the proposed approach,
showing the effectiveness of the approach using
eight subject programs ranging from medium-sized to
large-sized programs (tcas, replace, gzip, sed, flex, grep,
make, and ant) with 2, 3, 4, and 5 faulty versions.
The empirical result shows that the proposed approach
performs better in terms of localization effectiveness
in comparison with the two other parallel debugging
approaches.

The remaining parts of the paper are organized into differ-
ent sections. Section II highlights the related work. Section III
presents the proposed approach in detail. Section IV gives
the experimental setup. Section V discusses the result and
discussion. Section VI presents the threat to validity. Finally,
the study is concluded in Section VII.

II. RELATED WORK
In this section, some of the relatedwork on parallel debugging
are highlighted.

In the last two decades, researchers in the software fault
localization domain have proposed various approaches and
techniques to aid in isolating faults to support in debug-
ging multiple faults in parallel. In an earlier study by
Podgurski et al. [19], the idea of clustering failed tests exe-
cutions based on a behavioral model on multiple fault sub-
jects was explored. The authors grouped tests execution
profiles to correlate failure causes and to isolate failures
that are caused by different faults. In another study by
Dickinson et al. [20], a control flow-based clustering tech-
nique was utilized to cluster tests executions based on their

VOLUME 7, 2019 50013



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

failure causes. Liu and Han [21] grouped together execu-
tions due to the same fault using R-proximity. This prox-
imity regards two failed executions as identical if the two
executions suggest the same fault location. The work by
Huang et al. [22] performed an empirical study on the per-
formance of two different types of clustering techniques,
namely k-means clustering and hierarchical clustering on six
fault localization techniques to analyze their effectiveness.
The result showed that k-means clustering had the best per-
formance in isolating faults. On the same note, few other
studies have utilized k-means clustering for the same pur-
pose [23], [24].

A study by Briand et al. [25] used the C4.5 decision tree
algorithm which is a machine learning technique to classify
test cases into different partitions. Failed test cases in the same
partition are regarded to have a high probability of failing
due to the same fault. Hence, each partition is handled by
developers to simultaneously localize the faults effectively.
In the study by Liblit et al. [26], the authors proposed an
algorithm to isolate faults in programs with multiple faults.
The algorithm identifies predicates that are correlated with
specific singular faults and isolate them in order to pri-
oritize debugging effort and localize faults simultaneously.
An approach named Hierarchy-Debug [27] was proposed
to localize latent faults. The approach uses a hierarchical
clustering algorithm to cluster predicates to support in local-
izing multiple faults. The result shows that the approach
can aid developers in grouping predicates caused by multi-
ple faults to localize them simultaneously. Jones et al. [5]
presented two techniques for clustering failures (clustering
based on execution profile and clustering based on fault
localization results). The clustering techniques are aimed to
partition failed tests executions into separate clusters that are
targeting a different fault each. Hence, each cluster will be
given to a single developer to locate the faults simultane-
ously in parallel. However, the authors postulated that the
identified number of clusters predicts the number of faults
in a program. In another study [23], a technique to calculate
the complexity of identified clusters before distributing the
work to the respective debuggers was proposed. After clus-
tering, the technique calculates the weight of each cluster to
determine the effort needed to debug the cluster for a more
effective debugging task distribution. In the study byWei and
Han [28], a parameter-based combination approach (PBC)
was proposed to aid in localizing multiple faults simultane-
ously. A bisection method was utilized for clustering failed
tests executions to formulate fault-focused clusters while
a crosstab-based fault localization technique was used for
localization. Furthermore, a machine-learning fault localiza-
tion technique based on RBF (radial basis function) neural
network was proposed byWong et al. [7]. This technique iso-
lates faults using a clustering technique based on a behavioral
model to cluster tests executions. The generated clusters are
presumed to target a single fault each. These clusters are
given to developers to debug the faults simultaneously in
parallel. A recent study in [1] proposed a novel technique for

localizing multiple faults in parallel. The authors proposed an
improved k-medoids clustering algorithm to aid in the effec-
tive identification of the relationship between failed test cases
and their corresponding faults. The study concluded that their
proposed technique performs better in terms of efficiency and
effectiveness in comparison to other techniques.

Looking at these studies, failed test cases are often clus-
tered to generate fault-focused clusters. However, taking into
account all tests execution for clustering failure is something
worth considering. Due to the fact that in the presence of
multiple faults, faulty statements are often executed by passed
tests execution [29], [30]. In this study, a program network
N is modeled using both passed and failed tests execution
to capture the entire program execution behavior. Using this
information, we compute the network community clustering
algorithm as described in Section III.D to identify natural
community divisions. The readers should be reminded that
the program networks in this study are not real-world net-
works, rather they are artificial networks depicting the over-
all tests execution behavior. However, based on a previous
study [15], the utilized community detection algorithmworks
well on networks of both types. Each of these communities
will be given to a separate developer to debug the faults in
parallel. This is based on our postulation that each community
contains a single fault. In the next section, our approach will
be highlighted in detail.

III. THE APPROACH
In this section, we first revisit our previous work in
Section III.A. Then, the tests representations in the exist-
ing works and our work are described in Section III.B and
Section III.C. The divisive network community clustering
algorithm is outlined in Section III.D. A discussion on how
to calculate the shortest-path betweenness of a statement
is outline in Section III.D.1. We further describe in detail
the community (cluster) weighting and selection process
which will help in selecting and prioritizing identified fault-
focused communities for effective simultaneous localization
in Section III.D.2. The general framework of our approach
is highlighted in Section III.E. Lastly, a running example is
given to illustrate the proposed approach in Section III.F.

A. REVISITING OUR PREVIOUS WORK
In order to fully appreciate the work in this paper, we need
to revisit our previous work in [16]. We proposed a new
fault localization technique based on complex network theory
named FLCN. The technique aids in the effective localization
of faults in both single-fault and multiple-fault programs. For
a given program spectra of passed and failed tests execution
for a software program under test, an undirected/unweighted
networkN is modeled to capture the entire program execution
behavior with statements represented as nodes and the execu-
tion between the statements as edges irrespective of whether
they are executed by passed or failed test cases. The tech-
nique takes into account two factors which are: statements
behavioral abnormalities and the distance between program

50014 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

statements to quantify the suspiciousness value of a given
statement. The result of our work has shown a significant
improvement in terms of effectiveness in the localization of
faults simultaneously in a single diagnosis rank list.

However, we observed that despite this success, in some
cases, more debugging iterations are needed to locate all the
faults in a multiple-fault program which will further reduce
the efficacy of the technique and also increase the time-to-
delivery of the software. Therefore we have two options:
1). Resort to using the one-bug-at-a-time debugging approach
(OBA). 2). Use the parallel debugging approach. We under-
stand that using the OBA approach will further increase the
time-to-delivery of the software product and will not accom-
modate the simultaneous localization of the faults. This is
because, OBA debugging approach is the process whereby
a developer finds the first fault, fix it, and then re-test the
program iteratively to see if the program is failure-free or
not. Hence, for each iteration, one fault is neutralized. That
is the reason why the parallel debugging approach is con-
sidered. In this work, we use the latter to extend our work
by parallelizing the debugging task to generate fault-focused
communities using the clustering algorithm in Section III.D
to aid in the simultaneous localization of faults and also to
facilitate the process in producing a failure-free program.

B. TEST REPRESENTATIONS IN EXISTING WORKS
To localize multiple faults simultaneously in parallel, pro-
gram spectra is primarily used in this process. Program spec-
tra refers to the runtime profile of program statements in
correspondence to the test cases that execute them. In other
words, the test results (passed/failed) and test coverage infor-
mation form the program spectra. In the existing works, failed
test cases are often used to generate the fault-focused clusters
that target a single fault each [1], [5], [6]. Each of these fault-
focused clusters of failed test cases will be combined with all
passed test cases to localize the faults simultaneously in par-
allel. Hence, for the given failed tests, to understand the due-
to relationship or the know-how (as explained in Section 1)
between them, various representations are used. One of the
most prominent is the grouping of failed tests execution based
on the similarity of their execution profiles which is used in
some multiple fault localization studies [9], [22], [23], [31].
Other representations used a more advanced technique in
clustering failed tests due to the same faults. The study by
Gao and Wong [1] uses a distance metric named Kendall tau
distance in its revised form to measure the due-to relationship
between failed tests with an approach that simultaneously
estimates the number of clusters. The latter representation
has shown to be better than the former. In this paper, we use
neither of these representations (Section III.C).

C. TEST REPRESENTATION IN OUR WORK
In contrast with the test representations highlighted in Section
III.B, the program spectra in our work is transformed to a
network N as discussed in Section III.A. In almost all the
existing studies, failed tests execution are specifically isolated

and clustered to generate the fault-focused clusters. However,
in this work, the networkN is the representation of all the pro-
gram execution profile of both passed and failed tests execu-
tion. Hence, our approach does not perform clustering on tests
execution rather it performs clustering on program statements
in the network that is modeled based on the tests execution
profile. Therefore, the due-to relationship between program
statements is measured to create fault-focused communities
instead of between failed test cases in the existing works
(Section III.B). As further discussed in Section III.D, the pro-
gram statements that are more densely connected together
are considered to be more likely to be in the same commu-
nity (cluster), in extension, more likely to be caused by the
same faults. Therefore, in computing the due-to relationship
between the program statements, edge-betweenness distance
is calculated between program statements where edge is
the connection between program statements. The higher the
edge-betweenness value between statements, the less likely
they are to be in the same community.

D. COMMUNITY CLUSTERING ALGORITHM
To cluster failures in the fault localization domain, various
clustering algorithms were utilized in recent years [1], [5],
[6], [13]. These studies mainly use program tests execution
profile to isolate faults into distinct clusters with tests exe-
cution profile similarity often used to justify failure group-
ings. Hence, distance metrics such as Euclidean distance,
Jaccard distance, and Hamming distance are often used to
compute the test-to-test distance to determine the cluster a
given test will fall into [5], [7], [22]. However, recent studies
have shown that the use of this representation is problematic
and is not an effective way to isolate failed tests based on
their causative faults [1], [9]. In contrast, for our approach
(following the tests representation in Section III.C), instead
of using the traditional distance metrics (Euclidean distance,
Jaccard distance, Hamming distance) which is somewhat less
effective for measuring the due-to relationship between tests,
edge-betweenness based distance is used by our divisive net-
work community clustering algorithm tomeasure the distance
between program statements (nodes) executions. Network
community clustering algorithms fall into two classes which
are agglomerative and divisive [32]. Algorithms are classified
based on whether they concentrate on addition or removal of
edges to a network or out of a network.

In this paper, we use the latter (divisive) clustering method
to isolate faults into different communities. Based on this
method, a developer is tasked to find the least connected
statements in a faulty program network and then remove
the edges between them. If this process is done repeatedly,
the program network will naturally be divided into smaller
and smaller groups composed of densely connected state-
ments. These smaller groups can be considered as the network
communities when the process is halted. This is based on the
knowledge that the more densely connected nodes are in a
network, the more prone they are to be related to the same
variable or information [17], [18]. In extension to this study,

VOLUME 7, 2019 50015



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

we postulated that the more densely connected program state-
ments are in the program network, the more prone they are
to be related to the same failure or fault. Our approach to
community identification in this paper basically follows these
lines. We use the algorithm proposed by Girvan and Newman
for community detection [14], [15].

We generate communities by continuously removing edges
(connection between program statements) from the mod-
eled program network based on their betweenness centrality
score value. Program statement betweenness is defined as
a measure of statements centrality and influence in a net-
work [33]. The betweenness centrality measures statement
influence based on information flow from a statement to
other statements in a network, particularly where the infor-
mation flow in the network follows the shortest available
paths. Hence, to identify the statements in a network that
are mostly between other statements, the betweenness cen-
trality is generalized to network edges as edge-betweenness.
Edge-betweenness of an edge is defined as the number of
the shortest paths between statements that run along it. For
statements that have more than one shortest paths, all the
paths will be given equal weight so that the total weight
of all paths is unified. In a scenario where a network has
communities or clusters that are loosely connected by inter-
group edges as shown in Figure 2, the shortest paths between
these communities must move along these few edges. There-
fore, edges connecting communities will normally have high
edge-betweenness score value. The community structure of
the network can be revealed in distinct groups by removing
these edges.

The algorithm used in this study for community detection
in its general form is stated in detail as follows:

Algorithm 1 Girvan Newman Algorithm
Input: Undirected and unweighted program network
N (n, e)
Output: List of identified communities
1: Calculate the betweenness of all edges in the network
2: Identify and remove the edges that has the highest
betweenness score
3: Recalculate betweenness for all the remaining edges
affected by the removal
4: Repeat from step 2 until no edges remain
5: End

We calculate the betweenness of the networks using
Newman fast algorithm [34]. This algorithm calculates the
betweenness for all edges e in a network of n nodes in
best-case time O(en) as claimed in [15]. The betweenness of
edges that are affected by the removal of the edge in step 2
will be recalculated. Therefore, this algorithm calculates the
betweenness score of each edge starting from statement in
N until the betweenness score is computed from each and
every statement in N . Henceforth, the betweenness scores of
the edges from each and every statement will be added up and
divided by 2 to get the final edge-betweenness scores of all the

FIGURE 1. Calculation of shortest-path betweenness.

edges in N . To get a better result, the recalculation step of the
algorithm is the most vital step. Therefore, the recalculation
step is very crucial in detecting good communities in the
program network N .

1) SHORTEST-PATH BETWEENNESS
In this study, to calculate the shortest path between pro-
gram statements in a program modeled network N , it can
be done using breadth-first search in time O(e) with O(n2)
statements pairs [34], [35]. Breadth-first search can find the
shortest paths from a statement mi to all other statements in
time O(e) where e represents the edge between statements.
Figure 1 shows an example of a shortest path ‘‘tree’’ for a
simple network. Figure 1a shows a simple network that illus-
trate how breadth-first search find the shortest paths between
statements in time O(e). The number of shortest paths from
statementma to itself is weight wa = 1 as an initial condition.
For any other statements that are directly next to ma, in this
case, mb and me, they will be given equal weight as ma.
In the case of mf, the number of shortest paths from ma to
mf is the number of shortest path from ma to mb plus the
number of shortest path from ma to me. Therefore, mf will
carry the weight of 2 as wf = 2. In other words, because ma
has multiple paths to mf and each path holds a weight of 1.
Therefore, the weight of mf will be the weight of ma to mb
plus the weight of ma to me which equals to a total weight of
wf = 2 for mf.
However, the number of shortest paths from ma and mb

is the same as the number of shortest paths from ma to mg,
because we have to go through the predecessor mb in a single
direction. Next, to know the number of shortest paths from
ma to md (the lowest statement) we will sum up the number
of shortest paths from ma to mg and the number of shortest
paths from ma and mf. So, md will carry the weight of 3
(wd = 3). We can now use the shortest path of the statements
to calculate the betweenness for each edge in the network.
Figure 1b shows the betweenness score of each edge in the
network. We first start with the edges that are farthest from
the initial statement (ma) which is the lowest edge. Then,
we work upwards assigning a score to each edge that is 1 plus
the sum of the scores on the edge or edges immediately
below it. When we have go through all edges in the network,

50016 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

the resulting scores of the edges are the betweenness score
for the paths from ma(the betweenness scores of the edges
are to be calculated from all the remaining statements as
well). This process will be repeated for all statements, and the
betweenness scores of all edge will be added up and divided
by 2. With this, the final edge-betweenness scores for the
shortest paths between all statements will be obtained.

The breadth-first search and the process of calculating the
betweenness of all edges in the network both takes worst-case
time O(e). With n statements total, therefore the whole cal-
culation is done in best-case time O(en) [15]. In an earlier
definition of node betweenness [33], if node has multiple
shortest paths (i.e. mf in Figure 1), all paths leading to the
node will be given equal weights summing to 1. For instance,
if there are two shortest paths, each paths will be given the
weight of 1

2 .
Looking at Figure 1a, to conduct a breadth-first search

starting from ma, the following steps will be performed:
1) The initial Statement ma will be assigned a distance

da = 0 and a weight wa = 1.
2) For any statement mi that is next to ma, a distance di =

da+ 1 = 1, and a weight wi = wa = 1 will be given to
it.

3) Next, for each statement mj next to the statement mi,
the following three things are conducted:
• If mj is not assigned any distance, a distance dj =
di + 1 will be assigned and a weight wj = wi will
be assigned.

• Moreover, if a distance has already been assigned
to mj as dj = di + 1, then, the weight of the
statement will be rise bywi which iswj← wj+wi.

• Ifmj has already been assigned a distance and dj <

di + 1, nothing will be done.
4) Lastly, repeat from step 3 until no statements left that

have assigned distances but whose neighbors do not
have assigned distance.

Furthermore, the weight of a statement mi indicates the
number of different paths from the root statement ma to
mi. Therefore, these weights are exactly what we want to
calculate the edge-betweenness where for two statements mi
and mj that are connected, with mj farther than mi from the
root statement ma, then the shortest paths from mj through mi
to the root statement ma will be given by wi/wj. To further
calculate the edge-betweenness from all the shortest paths
starting from ma as shown in Figure 1b, the following steps
will be carried out:

1) Calculate the shortest paths starting from statementma,
to every other statement using the breath-first search in
time O(e).

2) Find the lowest statement mj (i.e. statement at the bot-
tom of the program network N )

3) For each given statementmi next to statementmj, assign
a score to the edge from mi to mj of wi/wj.

4) Next, start from the edges that are far away from the
root statement ma (statements edges that are at the

bottom of the diagram in Figure 1) moving upward.
For the edge of mi to mj, with mj being far away from
ma than mi, a score that adds 1 to the sum of the
neighboring edges immediately below it will be assign
(i.e. edges below it that share common statements).
At last, the score will be add up by the weight wi/wj.

5) Lastly, repeat step 3 and step 4 until ma is reached.
Using these steps, we are able to calculate the edge-

betweenness of all edges in the program network in best-case
time O(en). This calculation will be repeated for each edge
removed from the program network N . Given we have e
amount of edges where e = {e1, e2, e3,. . . , en}. The whole
community structure algorithm based on the shortest path
betweenness will run in worst-case time O(e2n) or O(n)3.
We experience that, unlike networks with stronger commu-
nity structures in other research domains [15], [36], a network
modeled based on tests execution profile (program spectra)
have less community density (mostly sparse). Therefore,
the time O(en) it takes to generate fault-focused communities
is relatively longer but have less effect in the quality of
communities created for fault localization.

2) COMMUNITY WEIGHTING AND SELECTION
In practice, when a program fails, a developer does not
normally know the number of faults that caused the fail-
ure. In extension, when identifying network communities
(clusters), the developer probably do not know how many
communities the algorithm is going to generate depending
solely on network to network modularity [15]. Therefore,
there is no reason for the identified communities to be roughly
of the same size. For the above practical scenario where the
developer does not know the exact number of faults and
the exact number of communities or their sizes, localizing
those faults might be a bit tricky. Therefore, we introduce
a community weighting and selection mechanism to aid in
prioritizing highly important communities to the available
developers to debug the faults simultaneously in parallel.
In this work, we name these communities as fault-focused
communities which target a single fault each.

For a given community C in a network N , a weight will
be assigned to each community based on the total number
of statements n a given community contains. Equation 1 will
calculate the weight of a single community in network N .

C =
n∑
j=1

mj (1)

where C represents a community, n represents the total num-
ber of statements in that community, and m represents a
statement. Therefore, the number of communities can be
represented as C = {c1, c2, c3,. . . , cn} in a given program
network N .
Furthermore, the weight of all the communities inN will be

computed. Suppose there is a network N with three identified
communities as shown in Figure 2 where the first community
has 7 statements, the second community has 6 statements,

VOLUME 7, 2019 50017



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

FIGURE 2. Network with group of communities and their weights.

and the third community has 4 statements. Therefore, if a
given community has a higher weight with greater number
of statements in comparison with other communities in N ,
that community will be ranked at the top of the commu-
nity ranking list followed by subsequent communities. All
communities will be generated in descending order based on
the weights they carried and will be given to developers to
debug the faults simultaneously in parallel starting with the
community with the highest weight. The main reason why
developers start with the community with the highest weight
is that, we have postulated that communities with a high
number of statements to be more susceptible to contain the
faulty program statements.

E. THE COMMUNITY-BASED FAULT ISOLATION
APPROACH
In this section, we present the detail steps of the proposed
community-based fault isolation approach. Figure 3 demon-
strates the overall process of the approach, with a much detail
of the process given as follows:
Step 1: Program tests execution profile: The first phase of

the approach focuses on program execution and
collecting the tests execution profile. The faulty
program P under test will be executed with its cor-
responding available test cases t to generate the
tests execution profile (program spectra). Test case
executions are classified into passed and failed cat-
egories depending on whether the output deviates
from the expected output or not. Therefore, if a test
case produces an expected output, the test case has
passed. Otherwise, the test case has failed.

Step 2: Network modeling: In this phase, the network N is
modeled. The execution profile (program spectra)
of both passed and failed test cases obtained from
the initial phase will be used as an input to gener-
ate the network N that captures the entire program
executable behavior [16], [37].

TABLE 1. A program with tests execution.

Step 3: Community (cluster) detection: The network com-
munity clustering algorithm in Section III.D will be
computed at this stage. Statements that are densely
connected with each other will be isolated into
distinct fault-focused communities by taking into
account the statements edge-betweenness distance
as discussed in Section III.D.1. Therefore, the num-
ber of existing communities in a given network will
be known by the developer.

Step 4: Community (cluster) weighting and selection: After
knowing the number of communities in N , a devel-
oper needs to know where to start the debugging
task which can be tricky especially if there are
many available communities. Furthermore, not all
the communitiesmight contain faulty program state-
ments. Therefore, the number of communities can
possibly be larger than the number of faults or
vice versa. In this stage, the community weighting
and selection mechanism in Section III.D.2 will be
used to identify and rank the most fault-prone com-
munities with high possibility of containing faulty
statements. The fault-focused communities will be
generated in descending order based on the weights
they hold for developers to work with and localize
the faults simultaneously in parallel.

Step 5: Fault localization: The fault localization technique
based on complex network theory will be used for
fault localization [16]. Ultimately, faults will be
found and neutralized by each developer. The pro-
gram will be retested again to see if the debugging
is successful.

F. A RUNNING EXAMPLE
Consider a running program sample in Table 1 for discussing
how our approach will work for fault localization. The pro-
gram has eight statements and is executed with five test cases.
Statements m2 and m5 are both faulty with two failed test
cases (t2 and t3) and three passed test cases (t1, t4, and t5),
respectively.

50018 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

FIGURE 3. General framework of the proposed approach.

TABLE 2. Final edge-betweenness score for each edge in the network.

In the next step, the network N will be modeled so as
to capture the entire program executable behavior on both
passed and failed tests execution [16]. For the first test case t1,
there is an edge fromm1 tom2,m2 tom3,m3 tom4,m4 tom6.
For the second test case t2, we add additional edge from m3
to m8. For the third test case t3, an edge is added from m4 to
m5, and from m5 to m8. Test case t4 will be ignored, because
it has the same execution profile with t3. Therefore, all the
resulting edges will be redundant. For t5, an edge from m5 to
m6, is added. Therefore, step 1 and step 2 are completed.

Moving to step 3, the divisive network community detec-
tion algorithm in Section III.D will be computed to identify
fault-focused communities that target single fault each by tak-
ing into account the statements’ edge-betweenness distances
as discussed in Section III.D.1. Moreover, Figure 4 show the
calculation of shortest path betweenness of all edges from
all the program statements in the program network N of the
program in Table 1. The figure also shows the process and
results of calculating the breadth-first search and the process
of calculating the betweenness scores of all edges from all
the seven executable statements that the network contains.
As stated earlier in Section III.D and III.D.1, all these cal-
culations will be repeated from each and every statement
in N . For clarification, looking at Figure 4, the program
network is divided into seven sub-networks, each network
shows the betweenness score calculation for each edge from
each statement in N . Therefore, the betweenness scores of
all edges from all the statements in the respective networks
will be added up and divided by 2 to get the final edge-
betweenness score of an edge in N . From Figure 4, the
betweenness scores of the edge from statement m3 to m4 in
all calculations of each statement in N can be added up as
2.16 + 2.16 + 2.16 + 3.33 + 1.5 + 1.5 + 0.83 = 13.64.
Therefore, the total score will be divided by 2 to get the final

FIGURE 4. Calculation of shortest-path betweenness.

edge-betweenness score as (6.82) of that edge. The same is
applied to all the remaining edges.

Table 2 highlights the final edge-betweenness score for all
edges in the Figure 4 by adding up the betweenness score of
individual edges from all statements in N and dividing the
total score by 2. We identified that edge of m2 to m3 has the
highest edge-betweenness score as 4.99+4.99+2+2+2+
2 + 2 = 19.98. Hence, the final edge-betweenness score of
the edge will be (19.98/2= 9.99). Therefore, the edge will be
removed to create two fault-focused communities which are
C1 = {m1 and m2} and C2 = {m3, m4, m5, m6, and m8}.
Next, based on our community weighting and selected

process in step 4, the second community C2 will be ranked
at the top of the community ranking list because it has the
highest number of statements. Therefore, each of these com-
munities will contains single fault where community one (C1)
has faulty statement m2 and community two (C2) has faulty
statementm5. Lastly, the fault localization technique based on
complex network theory in [16] will be used for localizing the
faults in each fault-focused community.

VOLUME 7, 2019 50019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 3. Experimental subject programs.

IV. EXPERIMENTAL SETUP
In this section, we highlight the subject programs and
data collection process for our experimental process in
Section IV.A. The evaluation metrics utilized are also pre-
sented in Section IV.B. Additionally, the approaches used for
cross-comparison are introduced in Section IV.C.

A. SUBJECT PROGRAMS AND DATA COLLECTION
In our experiments, eight subject programs are used to eval-
uate the effectiveness of the proposed approach, which are
tcas, replace, gzip, sed, flex, grep, make, and ant as high-
lighted in Table 3. These programs were also used in previous
studies for fault localization [1], [38]–[41]. The programs
are written in C (tcas, replace, gzip, sed, flex, grep, and
make), and Java (ant) languages. All the programs were
downloaded from the software infrastructure repository (SIR)
site (https://sir.csc.ncsu.edu/content/sir.php) [42]. In addition
to the existing faulty versions of the programs in Table 3,
more faulty versions were created using mutation-based fault
injection technique [1], [29], [43]. Existing studies have
shown that mutation-based faults can be useful to represent
real faults and provide reliable results in program debugging
experiments [44], [45].

In this study, more faults are generated using two classes
of mutant which are, 1). Arithmetic replacement, increment
and decrement of data variables or assignment operator by
another operator from the same class, and rational/logical
error. 2). Decision negation in an if or while statement.
Therefore, multiple-fault versions were generated with 2,
3, 4, and 5 faults for each program. This method of

multiple faults generation has been utilized by various stud-
ies [1], [6], [7], [22], [46]. Therefore, 25 distinct faulty
versions with 2, 3, 4, and 5 faults for the programs were
created. Overall, 540 multiple-fault versions were used for
this experiment.

All the executions were done on a PC with 2.13 GHz Intel
Core 2 Duo CPU and 8 GB physical memory. To compile
the programs and obtain the code coverage information for
each of the test cases, we used GCC compiler for the former
and Gcov for the latter. Test execution output for each faulty
version was compared with the output of its corresponding
fault-free version provided by SIR [42]. However, if the
output of the faulty version differs from its corresponding
fault-free version, then the test case is labeled as a failed test.
It will be labeled as passed test otherwise. The approach as
well as the fault localization process has been implemented
and run in the Cystoscope platform [16].

B. EVALUATION METRIC
The effectiveness of a software fault localization technique is
normally evaluated by the percentage of statements that need
to be examined (or not examined) to find the fault. This means
that a developer will examine all the program executable
statements from top to bottom according to the ranking
list generated by the fault localization technique. However,
to evaluate the localization of multiple faults simultaneously
using the parallel debugging approach, the following metrics
are used in this study.

1) AVERAGE NUMBER OF STATEMENTS TO BE EXAMINED
Using this metric, the average number of statements that
developers need to examine to find all the faults in a subject
program with multiple faults will be computed [47]. Suppose
we have a program with n faulty versions where X (i) and
Y (i) are the numbers of statements that need to be examined
to locate all the faults in the i th multiple-faulty version by
two debugging approaches X and Y , respectively. Hence,
approach X is more effective than approach Y if approach
X requires a developer to examine less amount of statements
than approach Y to find all faults in the faulty versions as
shown in Equation 2.∑n

i=1 X (i)
n

<

∑n
i=1 Y (i)
n

(2)

2) TOTAL DEVELOPER EXPENSE (TDE)
To evaluate the localization of multiple faults using parallel
debugging approach, we use a metric named EXAM Score.
EXAM Score is defined as the percentage of program state-
ments a developer must examine to find a fault. This metric
helps in knowing the effort a single developer would spend
on finding a single program fault. This metric is computed by
the following equation:

EXAMScore =
rank of fault

Number of executable statements
× 100%

(3)

50020 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

Therefore, for each fault-focused community given to a
developer, the effort a developer spent in finding the fault
can be measured. The original EXAM Score as presented
in Equation 3 is extended to a metric named total devel-
oper expense (TDE) to evaluate the localization of multiple
faults using the parallel debugging approach [5]. Therefore,
the effort a developer spent in finding a fault for each fault-
focused community can be measured. Hence, to calculate the
TDE to find all faults in a program using parallel debugging,
Equation 4 will be utilized.

TDE =
p∑
i=1

q∑
j=1

EXAM Score(i, j) (4)

where p be the number of debugging iterations, q be the
number of fault-focused communities (clusters) generated
in each debugging iteration, and EXAM Score (i, j) is the
percentage of program statements that is needed to be exam-
ined to locate the faults for jth fault-focused community in
ith debugging iteration. For example, suppose we have a
program version with four faults and 200 program statements.
Let’s say that the proposed approach needs two debugging
iterations to locate all the faults. For the first debugging
iteration, two fault-focused communities are generated for
developers to check for the faults. For the first cluster, 5 state-
ments need to be examined to locate the fault (which will be
5/200∗100 = 2.5), while 12 statements have to be examined
in the second cluster to find another fault (which will be
12/200∗100 = 6). In the second debugging iteration, two
more fault-focused communities are generated. For the first
cluster, the developer needs to examine 6 statements to locate
the faults (which will be 6/200∗100 = 3), while 7 statements
have to be examined in the second cluster (which will be
7/200∗100 = 3.5). In totality, the TDE score to locate all
the five faults will be 2.5 + 6 + 3 + 3.5 = 15. For a
fault localization technique utilizing the parallel debugging
approach onmultiple-fault subject programs, its effectiveness
can be computed using TDE. If technique X has a lesser TDE
score than technique Y , then technique X is considered more
effective than technique Y .

3) WILCOXON SIGNED-RANK TEST
Wilcoxon signed-rank test which is also known as
Mann-Whitney U test is an alternative option to other existing
hypothesis tests such as z-test and paired student’s t-test
particularly when a normal distribution of a given population
cannot be assumed [47], [48]. Wilcoxon signed-rank test is
also utilized to give a comparison with a solid statistical
basis between different techniques in terms of effectiveness.
After computing the number of statements that a developer
needs to examine on all approaches, an evaluation will be
conducted on the one-tailed alternative hypothesis that the
baseline approaches used for cross-comparison require the
examination of an equal or greater number of statements than
the proposed approach.

Hence, the null hypothesis, in this case, specifies that
the baseline approaches require to examine fewer statements
than the proposed approach. The null hypothesis is stated as
follows:

H0: The number of statements examined by the base-
line approaches to locate all faults in a multiple-fault pro-
gram ≤ the number of statements examined by the proposed
approach.

Therefore, if H0 is rejected, the alternative hypothesis is
accepted. The alternative hypothesis implies that the pro-
posed approach will require the examination of fewer state-
ments than the baseline approaches which indicates that the
proposed approach is more effective.

4) EFFICIENCY
Measuring the efficiency of a given parallel debugging
approach particularly in terms of the number of debug-
ging iterations a given approach has to utilize to neutralize
all faults is very important. In this study, we evaluate the
approaches based on the average number of debugging itera-
tions that are needed to locate all the faults in a given faulty
program [1]. Therefore, for two debugging approaches X and
Y , if X required fewer debugging iterations to locate all the
faults than Y , then one can say that X debugging approach is
more efficient than Y debugging approach.

C. APPROACHES FOR CROSS-COMPARISON
We compare the proposed approach with two other parallel
debugging approaches. The first approach uses the same
parallel debugging process as used by Jones et al. [5]. Hence-
forth, we refer to the first approach as P1. P1 applies a
k-means clustering algorithm to cluster failed tests execu-
tions, it then uses the Euclidian distance metric to measure
the distance between failed tests as use in [22]. Additionally,
P1 cluster failed tests based on their execution profile simi-
larities which have been highlighted to be problematic [9].

On the other hand, the second approach used for cross-
comparison isMSeer [1].MSeer uses an improved k-medoids
clustering algorithm to perform tests clustering and a revised
Kendall tau distance to measure the distance between failed
tests. Both approaches use the test representations discussed
in Section III.B, while for the proposed approach, we use the
representation in Section III.C. For P1, suspiciousness rank-
ings are generated using Ochiai similarity coefficient-based
technique, a fault localization technique that has shown to be
very effective [49], while MSeer uses Crosstab fault localiza-
tion technique [50]. Some of the major differences between
the proposed approach and the approaches used for compari-
son are:
• P1 uses a k-means clustering algorithm to isolate tests
based on their causative faults and MSeer uses an
advanced approach that simultaneously estimates the
number of clusters. MSeer uses an improved k-medoids
clustering algorithm for failed tests clustering. In this
paper, we proposed the use of a divisive network com-
munity clustering algorithm to isolate statements based

VOLUME 7, 2019 50021



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 4. Average number of statements examined (best case).

TABLE 5. Average number of statements examined (worst case).

on their causative faults into separate communities
(Section III.D).

• P1 uses Euclidian distance metric to measuring failed
tests distance, while MSeer uses a revised Kendall
tau distance metric. The proposed approach used an
edge-betweenness distance to measure statement-to-
statement distance.

V. RESULTS AND DISCUSSION
In this section, the results and discussion are presented. The
results of our cross-comparison with other parallel debug-
ging approaches (as highlighted in Section IV.C) are also
detailed and discussed. The evaluation is based on the average
number of statements examined, the TDE score, Wilcoxon
Signed-rank test, and Efficiency.

A. CROSS-COMPARISON WITH P1
For all our experiments, we presume that for the best case
effectiveness, the faulty statement is at the very top of the
suspicious statements ranking list; and for the worst case
effectiveness, the faulty statement is at the very end of the
ranking list. Table 4 and Table 5 present the average number
of statements that need to be examined by both the proposed
approach and P1 with respect to the best and worst cases. The
average number of statements examined by the approaches
are based on 25 versions of a given program each containing
x amount of faults (x = 2, 3, 4, and 5). We observed that
the average number of statements examined by the proposed
approach on 2-fault faulty versions of flex is 9.08 in the best
case, and 62.18 in the worst case. On the other hand, for P1,
the best case is 35.23, and the worst case is 161.08. For the

50022 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

FIGURE 5. TDE score-based comparison between the proposed approach and P1 on gzip, sed, and flex (2-fault versions). (a) best case
of it gzip 2-fault versions. (b) worst case of it gzip 2-fault versions. (c) best case of it sed 2-fault versions. (d) worst case of it sed
2-fault versions. (e) best case of it flex 2-fault versions. (f) worst case of it flex 2-fault versions.

3-fault faulty versions of tcas, the average number of state-
ments to be examined by the proposed approach is 11.04 in
the best case and 22.33 in the worst case. With respect to P1,

the average number of statements to be examined in the same
faulty versions (tcas, 3-fault) to locate all faults is 22.07 in
the best case, and 28.49 in the worst case. From both tables

VOLUME 7, 2019 50023



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 6. The confidence with which it can be claimed that the proposed approach is more effective than P1 (best case).

TABLE 7. The confidence with which it can be claimed that the proposed approach is more effective than P1 (worst case).

(Table 4 and Table 5), we observed that, regardless of whether
the best case or worst case considered, the proposed approach
is always the most effective in comparison with P1. The
proposed approach has shown to be generally more effective
than P1, however, it is not surprising due to P1 obvious
limitations where it cluster failed tests execution based on
their execution profile similarities. With tests representation
and the distance metric that the approach utilized (P1), less
effective localization inferencing is expected. But it is worth
re-emphasizing that our approach is by far the most effective
in comparison with P1.

We now present the evaluation of our approachwith respect
to TDE score. In Figure 5, the 2-fault versions of gzip, sed,
and flex in best and worst cases are presented. The y-axis
represents the percentage (%) of faulty versions located by
a developer while the x-axis represents the percentage of
code (total expense) examined. Looking at part (a) and (b) of
Figure 5, we find out that on the gzip program, by examining
less than 7.5% of the program code, the proposed approach
can locate all the faulty versions in the best case, and 70% in
the worst case. In contrast, by examining the same amount of
code, P1 can only locate 88% of faults in the best case, and
40% in the worst case. In part (c) and (d), the effectiveness
score of sed 2-fault faulty versions are presented. The curves
show that by examining less than 10% of the program code,
the developer can locate all the faulty versions in the best
case with the proposed approach, while P1 can locate 75% of
the faulty versions. In the worst case, by examining the same
amount of code, 85% of the faulty versions can be located
using the proposed approach, and 35% with P1.

Consistently, looking at part (e) and (f) of Figure 5 (flex
program), the proposed approach is still the most effective.
However, it is worth highlighting that in some cases, the TDE
score differences between the two techniques is not much. For
example, with respect to flex program part (e) in the best
case, the TDE score differences is 2.5% whereby using the
proposed approach all the faulty versions can be located by
examining less than 10% of the code and using P1, all the

faulty versions can be located by examining 12.5% of the
program code. Looking at Figure 5, the story is the same
as in Table 4 and Table 5 where the proposed approach
consistently surpasses P1 in locating faults effectively. For
the rest of the program faulty versions (3-fault, 4-fault,
5-fault), even though their curves are not visually represented,
the conclusion applies to the versions as well.

Having looked at the results in terms of the average num-
ber of statements examined and TDE score, Table 6 and
Table 7 give the effectiveness comparisons of the best and
worst cases using the Wilcoxon signed-rank test. The tables
give the confidence of which the alternative hypothesis
can be accepted (that the proposed approach requires the
examination of fewer statements than the compared baseline
approach). For example, it can be said with 99.46% (best
case) and 99.62% (worst case) confidence that the proposed
approach is more effective than P1 on 5-fault versions of gzip.
For gzip, sed, flex, make, and grep programs, the confidence
to accept the alternative hypothesis is higher than 96% in both
best andworst cases across all faulty versions (2-fault, 3-fault,
4-fault, and 5-fault).

However, for tcas and replace programs across all the
faulty versions on the best andworst cases scenarios, the alter-
native hypothesis is accepted with a confidence level of
higher than 90% in most cases with a few exceptions having
confidence level as low as 47.37% (in the worst case of tcas
program 4-fault versions). The scenarios with low confidence
level are where the difference between the proposed approach
and P1 in terms of statements examined to locate all the faulty
versions by each approach is very small. In totality, the result
shows that the proposed approach performs better than P1 in
both best and worst cases.

B. CROSS-COMPARISON WITH MSeer AND P1
With respect to 25 versions of five programs (gzip, flex,
grep, make, and ant) containing x amount of faults (x = 3),
Table 8 gives the average number of statements examined
by the proposed approach, MSeer, and P1 to produce a

50024 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 8. Average number of statements examined using the proposed approach, MSeer, and P1 (3-fault versions).

failure-free program. For instance, the average number of
statements examined by the proposed approach on grep is
450.39 in the best case, and 888.89 in the worst case. On the
other hand, MSeer is 492.93 in the best case, 948.47 in the
worst case. For P1, the best case is 512.15, and the worst case
is 1901.77. Hence, with respect to the result on the 3-fault
faulty versions of these programs, we made a significant
observation. We observed that in all but the best case of flex,
the proposed approach is more effective than MSeer in all
programs faulty versions.

In all, the proposed approach is more effective because it
examines fewer statements than MSeer and P1 in most cases.
The difference between the proposed approach and MSeer is
highly significant in some cases, for example, in the best case
of gzip. In all cases, P1 is less effective, and the difference
in comparison with other approaches is very significant. For
instance, we observe that the average number of statements to
be examined in the best case of flex is 30.18 for the proposed
approach, and 110.03 for P1 in the best case. This clearly indi-
cates that the proposed approach is more effective than P1.
Another significant point worth noting is that in some cases,
the effectiveness differences between the proposed approach
and MSeer is insignificant. For example, in the worst case
of flex where the proposed approach on average examined
101.40 statements in the worst case, and MSeer examined
111.40 in the worst case. Another significant observation is
that in some cases, MSeer performs better than the proposed
approach. For example, in the best case of flex where the
proposed approach on average examined 30.18 statements in
the best case, and MSeer examined 23.30 in the best case.
Therefore, by examining lesser number of statements of flex
than the proposed approach in the best case scenario, MSeer
is the most effective in the scenario.

Next, we present the result of the cross comparison
between the proposed approach, MSeer, and P1 with respect
to TDE score of all faulty versions. Figure 6 presents the
3-fault versions of gzip, grep, and make in the best case and
worst case. For instance, in part (a) and part (b), by examining
less than 10% of the program code, the proposed approach
can locate 100% of the faulty versions in the best case and

60% in the worst case. MSeer (the second best approach)
can only locate 92% in the best case and 42% in the worst
case when examining the same program code. For P1 (the
third best), by examining the same amount of program code
(less than 10%), is 80% (best case), and 35% (worst case).
In part (c) and (d) (grep 3-fault versions), the curves show
that by examining less than 20% of the code, 85% of the
faulty versions are located by the proposed approach in the
best case and 35% in the worst case. For MSeer and P1, these
percentages are 90% and 70% in the best case, and 20% and
10% in the worst case, respectively. Moreover, the curves
in part (e) and (f) shows that by examining less than 10%
of the code, 55% of the faulty versions are located by the
proposed approach in the best case and 15% in the worst case,
respectively. For MSeer and P1 is 45% and 30% in the best
case, and 5% and 10% in the worst case, respectively. The
results in Figure 5 and Figure 6 suggest that the proposed
approach is convincingly the most effective in comparison
to the best and worst cases of the comparative approaches
(MSeer and P1).

Based on the results in Table 8 and Figure 6, the proposed
approach emerges to be the most effective in comparison to
MSeer and P1. Hence, with respect to the third evaluation
metric, Table 9 gives the effectiveness comparison of the
proposed approach in terms of the Wilcoxon signed-rank
test on the 3-fault versions of gzip, flex, grep, make,and ant
programs. If the null hypothesis is accepted, the confidence
level will be given as 00.00%. The cell with a black back-
ground in Table 9 is the cell where the null hypothesis is
accepted.

For instance, for the best and worst cases of P1 on all pro-
grams, the confidence level to accept the alternative hypoth-
esis is higher than 98%. Furthermore, for MSeer, the con-
fidence to accept the alternative hypothesis is greater than
90% in most cases. However, for the best case of flex on
MSeer, the null hypothesis is accepted, meaning that MSeer
examined a fewer number of statements than the proposed
approach which makes it more effective in this scenario.
Therefore, because MSeer examined fewer statements than
the proposed approach in the best case of flex, the null

VOLUME 7, 2019 50025



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

FIGURE 6. TDE score-based comparison between the proposed approach with P1 and MSeer on gzip, grep, and make (3-fault
versions). (a) best case of it gzip 3-fault versions. (b) worst case of it gzip 3-fault versions. (c) best case of it grep 3-fault versions.
(d) worst case of it grep 3-fault versions. (e) best case of it make 3-fault versions. (f) worst case of it make 3-fault versions.

50026 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 9. The Confidence with which it can be claimed that the proposed
approach is more effective than MSeer and P1 (best & worst case) (3-fault
versions).

hypothesis is accepted and the confidence level is given as
00.00% in Table 9.

C. DISTANCE METRICS
Distance metrics play a critical and important role to achieve
a good tests clustering result, which measures the distance
between failed tests or program statements (in the pro-
posed approach context). In this section, the three distance
metrics used by the proposed approach and the remaining
two approaches (MSeer and P1) were investigated. For the
proposed approach, the edge-betweenness distance is used,
MSeer used the revised Kendall tau distance, and P1 used
the Euclidian distance metric. The effectiveness of these
approaches using these distance metrics were compared.
In Table 10, the average number of statements examined
on 25 versions with 5-fault for gzip, grep, flex, make, and
ant are highlighted. Using the proposed approach, the aver-
age number of statements examined for flex is 95.83 (best
case) and 186.99 (worst case). For MSeer and P1, they are
104.67 and 230.06 (best cases), and 195.80 and 322.15 (worst
cases), respectively. However, it was observed that in some
cases, MSeer examined fewer statements. For example, in the
best case of grep is 612.11 for the proposed approach and
598.80 forMSeer. Even though the difference is slightly small
in some case between the proposed approach and MSeer,
the result clearly shows that the edge-betweenness distance
used by the proposed approach is more effective.

D. EFFICIENCY OF THE DEBUGGING APPROACHES
BASED ON THE NUMBER OF DEBUGGING ITERATIONS
Table 11 presents the average number of debugging iterations
needed by the proposed approach, MSeer, and P1 to neutral-
ize all faults in their respective faulty versions. The result in
the table is with respect to 25 versions of gzip, flex, grep,
make, and ant programs containing x amount of faults (x =
2, 3, 4, and 5), respectively.

From the table (Table 11), we observed that the average
number of debugging iterations required by the proposed
approach is generally smaller than that required by MSeer
and P1 except for few exceptions. For example, in flex 2 fault
versions, grep 5 fault versions, and ant 5 fault versions.

In these scenario, the average number of debugging itera-
tions for MSeer is smaller in comparison to the proposed
approach. Generally, the result in terms of efficiency shows
that the proposed approach is more efficient in comparison
with MSeer and P1, hence, more effective.

We observed that, in most cases, the proposed approach
only need one debugging iteration to neutralize all faults in a
given faulty version due to the nature of the approach. There-
fore, in some scenarios where a developer checked 50% of the
fault-focused communities generated for a single debugging
iteration in our proposed approach without neutralizing all
the know faults, the program has to be retested to the second
debugging iteration to neutralize the remaining faults. This
can be curtailed with the introduction of community estima-
tion step in the network community clustering algorithm so
as to be able to neutralize all the faults in a single debugging
iteration.

E. RESULT SUMMARY
In totality, the following observations were made:

• Overall, based on the average number of statements
examined by both the proposed approach and P1 in
Table 4 and Table 5, the proposed approach is the
most effective where in most cases, fewer statements
were examined to locate all the faulty versions than P1.
For instance, it was observed that the average number
of statements examined by the proposed approach on
2-fault faulty versions of flex is 9.08 (best case), and
62.18 (worst case). On the other hand, for P-Ochiai, it is
35.23 (best case), and 161.08 (worst case). Additionally,
the proposed approach is still the most effective in terms
of TDE score. However, it is worth highlighting that in
some cases, the TDE score difference between the two
approaches is not much. For example, with respect to
flex program part (e) in the best case (Figure 5), using the
proposed approach, all the faulty versions can be located
by examining less than 10% of the code, and using P1,
all the faulty versions can be located by examining less
than 12.5% of the program code.

• Furthermore, with respect to the 3-fault faulty versions
of flex, we observed that, in all but the best case of
flex, the proposed approach is more effective, however,
MSeer on average can locate all the faulty versions by
examining only 23.30 statements (best case), and 30.18
(best case) using the proposed approach. Another signif-
icant point worth noting is that in some cases, the effec-
tiveness difference between the proposed approach and
MSeer is insignificant. For example, in the worst case of
flex where the proposed approach on average examined
101.40 statements (worst case), and MSeer examined
111.40 (worst case).

• In all program faulty versions of gzip and grep
(Figure 6), the proposed approach is convincingly the
most effective in the best and worst cases in comparison
with MSeer and P1 approaches. For instance, in part

VOLUME 7, 2019 50027



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

TABLE 10. Average number of statements examined using the proposed approach, MSeer, and P1 (5-Fault versions).

TABLE 11. Average number of debugging iterations.

(a) and part (b) of gzip, by examining less than 10%
of the program code, the proposed approach can locate
all the faulty versions in the best case and 60% (worst
case). MSeer (the second best approach) can only locate
92% (best case) and 42% (worst case). For P1 (the third
best), it is 80% (best case) and 35% (worst case) to locate
the faulty versions. Therefore, the proposed approach
performs better than MSeer and P1.

• With respect to the evaluation in terms of efficiency,
we observed that the average number of debugging iter-
ations required by the proposed approach is generally
smaller than that required by MSeer and P1 (Table 11).

For instance, in flex 3 fault versions, the average debug-
ging iterations needed for MSeer and P1 to locate all
faults are 1.53 and 1.80, respectively. However, for the
proposed approach is 1.44 which makes it more effi-
cient in this scenario. In some few exceptions such
as in flex 2 fault versions, grep 5 fault versions, and
ant 5 fault versions, the average number of debugging
iterations for MSeer is smaller in comparison to the
proposed approach. Generally, the result in terms of
efficiency shows that the proposed approach is more
efficient in comparison with MSeer and P1, hence, more
effective.

50028 VOLUME 7, 2019



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

VI. THREAT TO VALIDITY
There are a number of threats to validity of the proposed
approach and its associated results which include but are not
limited to the following.

The main threat to external validity is the generalizability
of the experimental results. It is generally known that tcas
and replace programs are relatively smaller in size. Even
though the UNIX utility programs used (gzip, sed, flex, make
and grep) are considerably larger programs, they are still
not very large due to the current diversity of existing soft-
ware (in size and complexity). Therefore, more diverse (in
terms of language) larger-sized industrial programs should be
further used to validate the proposed approach. Henceforth,
we cannot generalize these results to other subject programs.
Furthermore, mutation-based fault injection techniques were
used for multiple-fault versions generations. Even though this
technique was ascertained in simulating real faults behavior,
yet more experiments would be needed on multiple faults
subject programs containing real faults [3].

Another threat to validity may be caused by the proposed
community weighting and selectionmechanism. Even though
the proposed community weighting and selection mechanism
aids in ranking the highly suspicious communities in most
cases, some communities that contain faults often reside in
the lowest community rank list which may or will cause a
long time to produce a failure-free program. Hence, this threat
needs to bemitigated. The threat to construct validity refers to
whether or not the experiment measures what it was intended
to measure. Moreover, the basic threat to construct validity
is the utilization of four metrics namely, the average num-
ber of statements examined, total developer expense (TDE),
Wilcoxon Signed-rank test, and efficiency. However, these
metrics have been used in previous studies adopting parallel
debugging approach [1], [5], [6], so the threat is reasonably
mitigated.

VII. CONCLUSION
In this paper, we have proposed an approach that makes
used of a divisive network community clustering algorithm
to isolate faults into fault-focused communities targeting a
single fault each. Based on this algorithm, a developer is
tasked to find the least similar connected statements in a
faulty program modeled network and then remove the edges
between them (connection between statements). Hence, com-
munities are created by continuously removing the edges
from the modeled program network based on the statements
edge-betweenness distance. This process is done repeatedly
until the program network is naturally divided into smaller
and smaller groups composed of densely connected state-
ments that form communities. A novel community weighting
and selection mechanism was further introduced to aid in
prioritizing highly important fault-focused communities to
the available developers to debug the faults simultaneously
in parallel.

The approach was evaluated on eight subject pro-
grams ranging from medium-sized to large-sized programs

(tcas, replace, gzip, sed, flex, grep, make,and ant). Overall,
540 multiple-fault versions of these programs were generated
with 2, 3, 4, and 5 faulty versions. The result of the experi-
ments showed that the proposed approach outperforms two
other parallel debugging approaches in terms of localization
effectiveness. For future work, to help solidify and generalize
our results, further work on more diverse (in terms of lan-
guage) and larger-sized industrial programs with a varying
number of real faults will be conducted. Hence, more work
will be done to improve the divisive network community
clustering algorithm by adding a community estimation step
to limit the number of communities produced which will
improve accuracy to reduce the time to produce a failure-free
program.

APPENDIX
Additional information can be found at this link (https://bit.
ly/2IcYgBm)

Acknowledgment
This work was supported by the research project FP001-2016
under the Fundamental Research Grant Scheme provided by
the Ministry of Higher Education, Malaysia.

REFERENCES
[1] R. Gao and W. E. Wong, ‘‘MSeer—An advanced technique for locat-

ing multiple bugs in parallel,’’ IEEE Trans. Softw. Eng., vol. 45, no. 3,
pp. 301–318, Mar. 2019.

[2] H. Cleve and A. Zeller, ‘‘Locating causes of program failures,’’ in Proc.
27th Int. Conf. Softw. Eng. (ICSE), 2005, pp. 342–351.

[3] S. Pearson et al., ‘‘Evaluating and improving fault localization,’’ in Proc.
39th Int. Conf. Softw. Eng., May 2017, pp. 609–620.

[4] N. DiGiuseppe and J. A. Jones, ‘‘Software behavior and failure clustering:
An empirical study of fault causality,’’ in Proc. IEEE 5th Int. Conf. Softw.
Test., Verification Validation, Apr. 2012, pp. 191–200.

[5] J. A. Jones, J. F. Bowring, and M. J. Harrold, ‘‘Debugging in parallel,’’ in
Proc. Int. Symp. Softw. Test. Anal., 2007, pp. 16–26.

[6] W. Högerle, F. Steimann, and M. Frenkel, ‘‘More debugging in parallel,’’
in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng., Nov. 2014, pp. 133–143.

[7] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham, ‘‘Effec-
tive software fault localization using an RBF neural network,’’ IEEE Trans.
Rel., vol. 61, no. 1, pp. 149–169, Mar. 2012.

[8] D. Jeffrey, N. Gupta, and R. Gupta, ‘‘Effective and efficient localization of
multiple faults using value replacement,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2009, pp. 221–230.

[9] C. Liu, X. Zhang, and J. Han, ‘‘A systematic study of failure proximity,’’
IEEE Trans. Softw. Eng., vol. 34, no. 6, pp. 826–843, Nov. 2008.

[10] B. Liu, S. Nejati, L. Braind, and T. Bruckmann, ‘‘Localizing multiple faults
in simulink models,’’ in Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol.,
Reeng. (SANER), Mar. 2016, pp. 141–156.

[11] X. Sun, X. Peng, B. Li, B. Li, and W. Wen, ‘‘IPSETFUL: An iterative
process of selecting test cases for effective fault localization by exploring
concept lattice of program spectra,’’ Frontiers Comput. Sci., vol. 10, no. 5,
pp. 812–831, 2016.

[12] N. DiGiuseppe and J. A. Jones, ‘‘Concept-based failure clustering,’’ in
Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012, pp. 1–29.

[13] Y. Wang, R. Gao, Z. Chen, W. E. Wong, and B. Luo, ‘‘WAS: A weighted
attribute-based strategy for cluster test selection,’’ J. Syst. Softw., vol. 98,
pp. 44–58, Dec. 2014.

[14] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Apr. 2002.

[15] M. E. J. Newman and M. Girvan, ‘‘Finding and evaluating community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, Feb. 2004, Art. no. 026113.

VOLUME 7, 2019 50029



A. Zakari et al.: Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults

[16] A. Zakari, S. P. Lee, and C. Y. Chong, ‘‘Simultaneous localization of
software faults based on complex network theory,’’ IEEE Access, vol. 6,
pp. 23990–24002, 2018.

[17] L. Šubelj and M. Bajec, ‘‘Community structure of complex software
systems: Analysis and applications,’’ Phys. A, Stat. Mech. Appl., vol. 390,
no. 16, pp. 2968–2975, 2011.

[18] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast unfold-
ing of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, 2008, Art. no. P10008.

[19] A. Podgurski et al., ‘‘Automated support for classifying software failure
reports,’’ in Proc. 25th Int. Conf. Softw. Eng., May 2003, pp. 465–475.

[20] W. Dickinson, D. Leon, and A. Podgurski, ‘‘Finding failures by cluster
analysis of execution profiles,’’ in Proc. 23rd Int. Conf. Softw. Eng., 2001,
pp. 339–348.

[21] C. Liu and J. Han, ‘‘Failure proximity: A fault localization-based
approach,’’ in Proc. 14th ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2006, pp. 46–56.

[22] Y. Huang, J. Wu, Y. Feng, Z. Chen, and Z. Zhao, ‘‘An empirical study on
clustering for isolating bugs in fault localization,’’ in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops (ISSREW), Nov. 2013, pp. 138–143.

[23] M. Srivastav, Y. Singh, C. Gupta, and D. S. Chauhan, ‘‘Complexity estima-
tion approach for debugging in parallel,’’ in Proc. 2nd Int. Conf. Comput.
Res. Develop., May 2010, pp. 223–227.

[24] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, ‘‘Statistical
debugging: Simultaneous identification of multiple bugs,’’ in Proc. 23rd
Int. Conf. Mach. Learn., 2006, pp. 1105–1112.

[25] L. C. Briand, Y. Labiche, and X. Liu, ‘‘Using machine learning to support
debugging with tarantula,’’ in Proc. 18th IEEE Int. Symp. Softw. Rel.
(ISSRE), Nov. 2007, pp. 137–146.

[26] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, ‘‘Scal-
able statistical bug isolation,’’ ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 15–26, 2005.

[27] S. Parsa, M. Vahidi-Asl, and M. Asadi-Aghbolaghi, ‘‘Hierarchy-debug:
A scalable statistical technique for fault localization,’’ Softw. Qual. J.,
vol. 22, no. 3, pp. 427–466, 2014.

[28] Z. Wei and B. Han, ‘‘Multiple-bug oriented fault localization: A
parameter-based combination approach,’’ in Proc. IEEE 7th Int. Conf.
Softw. Secur. Rel.-Companion (SERE-C), Jun. 2013, pp. 125–130.

[29] N. DiGiuseppe and J. A. Jones, ‘‘Fault density, fault types, and
spectra-based fault localization,’’ Empirical Softw. Eng., vol. 20, no. 4,
pp. 928–967, 2015.

[30] X. Xue and A. S. Namin, ‘‘How significant is the effect of fault interactions
on coverage-based fault localizations?’’ in Proc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas., Oct. 2013, pp. 113–122.

[31] J. Lee, J. Kim, and E. Lee, ‘‘Enhanced fault localization by weighting
test cases with multiple faults,’’ in Proc. Int. Conf. Softw. Eng. Res. Pract.
(SERP), 2016, pp. 1–116.

[32] J. Scott, Social Network Analysis: A Handbook, 2nd ed. London, U.K.:
Sage, 2000.

[33] L. C. Freeman, ‘‘A set of measures of centrality based on betweenness,’’
Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[34] M. E. Newman, ‘‘Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 64, no. 1, 2001, Art. no. 016132.

[35] C. E. Leiserson, R. C. Rivest, C. Stein, and T. H. Cormen, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2001.

[36] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford, U.K.: Oxford Univ.
Press, 2003.

[37] L.-Z. Zhu, B.-B. Yin, and K.-Y. Cai, ‘‘Software fault localization based on
centrality measures,’’ in Proc. IEEE 35th Annu. Comput. Softw. Appl. Conf.
Workshops (COMPSACW), Jul. 2011, pp. 37–42.

[38] N. DiGiuseppe and J. A. Jones, ‘‘On the influence of multiple faults on
coverage-based fault localization,’’ in Proc. Int. Symp. Softw. Test. Anal.,
2011, pp. 210–220.

[39] Z. You, Z. Qin, and Z. Zheng, ‘‘Statistical fault localization using execution
sequence,’’ in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), Jul. 2012,
pp. 889–905.

[40] T.-D. B. Le, F. Thung, and D. Lo, ‘‘Theory and practice, do they match?
A case with spectrum-based fault localization,’’ in Proc. 29th IEEE Int.
Conf. Softw. Maintenance (ICSM), Sep. 2013, pp. 380–383.

[41] X. Xia, L. Gong, T. Le, D. Lo, L. Jiang, and H. Zhang, ‘‘Diversity
maximization speedup for localizing faults in single-fault and multi-fault
programs,’’ Autom. Softw. Eng., vol. 23, no. 1, pp. 43–75, 2016.

[42] H. Do, S. Elbaum, and G. Rothermel, ‘‘Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,’’
Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[43] Y. Zheng, Z. Wang, X. Fan, X. Chen, and Z. Yang, ‘‘Localizing multiple
software faults based on evolution algorithm,’’ J. Syst. Softw., vol. 139,
pp. 107–123, May 2018.

[44] J. H. Andrews, L. C. Briand, and Y. Labiche, ‘‘Is mutation an appropriate
tool for testing experiments?’’ in Proc. 27th Int. Conf. Softw. Eng., 2005,
pp. 402–411.

[45] J. H. Andrews, L. C. Briand, Y. Labiche, andA. S. Namin, ‘‘Usingmutation
analysis for assessing and comparing testing coverage criteria,’’ IEEE
Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, Aug. 2006.

[46] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, ‘‘Simultaneous debugging
of software faults,’’ J. Syst. Softw., vol. 84, no. 4, pp. 573–586, 2011.

[47] W. E. Wong, V. Debroy, R. Gao, and Y. Li, ‘‘The DStar Method for
Effective Software Fault Localization,’’ IEEE Trans. Rel., vol. 63, no. 1,
pp. 290–308, Mar. 2014.

[48] R. L. Ott andM. T. Longnecker, An Introduction to Statistical Methods and
Data Analysis. Toronto, ON, Canada: Nelson Education, 2015.

[49] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, ‘‘On the accuracy of
spectrum-based fault localization,’’ in Proc. Test., Acad. Ind. Conf. Pract.
Res. Techn. (MUTATION), Sep. 2007, pp. 89–98.

[50] W. E. Wong, V. Debroy, and D. Xu, ‘‘Towards better fault localization:
A crosstab-based statistical approach,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 3, pp. 378–396, May 2012.

ABUBAKAR ZAKARI received the master’s
degree in computer networks fromMiddlesex Uni-
versity, London, in 2014. He is currently pursuing
the Ph.D. degree with the Software Engineering
Department, University of Malaya, Malaysia. He
is currently a Lecturer with the Kano University
of Science and Technology, Wudil, Nigeria. His
current research interests include software test-
ing, software fault localization, dynamic software
update, and graph theory.

SAI PECK LEE received the master’s degree from
the University of Malaya, the Diplôme d’Études
Approfondies (D.E.A.) degree from the Université
Pierre et Marie Curie (Paris VI), and the Ph.D.
degree from Université Panthéon-Sorbonne (Paris
I), all in computer science. She is currently a Pro-
fessor with the Faculty of Computer Science and
Information Technology, University of Malaya.
She has published an academic book, a few book
chapters, andmore than 100 papers in various local

and international conferences and journals. Her current research interests
include software engineering include object-oriented techniques and CASE
tools, software reuse, software fault localization, requirements engineering,
application and persistence frameworks, software traceability, and clustering.
She has been an active Member in the reviewer committees and programme
committees of several local and international conferences. She is currently
in several Experts Referee Panels, both locally and internationally.

IBRAHIM ABAKER TARGIO HASHEM received
the master’s degree in computer science from the
University of Wales, Newport, and the Doctor
of Philosophy (Ph.D.) degree in computer sci-
ence from the University of Malaya. He received
professional certificates from CISCO (CCNP,
CCNA, and CCNA Security) and APMG Group
(PRINCE2 Foundation, ITIL v3 Foundation, and
OBASHI Foundation). He is currently a Lecturer
with the Department of Computing and IT, Tay-

lor’s University, Selangor, Malaysia. He has published a number of research
articles in refereed international journals and magazines. His numerous
research articles are very famous and among the most downloaded in top
journals. His research interests include big data, cloud computing, distributed
computing, software debagging, and machine learning. He is an active
Member of the Mobile Cloud Computing Center, Malaysia.

50030 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	THE APPROACH
	REVISITING OUR PREVIOUS WORK
	TEST REPRESENTATIONS IN EXISTING WORKS
	TEST REPRESENTATION IN OUR WORK
	COMMUNITY CLUSTERING ALGORITHM
	SHORTEST-PATH BETWEENNESS
	COMMUNITY WEIGHTING AND SELECTION

	THE COMMUNITY-BASED FAULT ISOLATION APPROACH
	A RUNNING EXAMPLE

	EXPERIMENTAL SETUP
	SUBJECT PROGRAMS AND DATA COLLECTION
	EVALUATION METRIC
	AVERAGE NUMBER OF STATEMENTS TO BE EXAMINED
	TOTAL DEVELOPER EXPENSE (TDE)
	WILCOXON SIGNED-RANK TEST
	EFFICIENCY

	APPROACHES FOR CROSS-COMPARISON

	RESULTS AND DISCUSSION
	CROSS-COMPARISON WITH P1
	CROSS-COMPARISON WITH MSeer AND P1
	DISTANCE METRICS
	EFFICIENCY OF THE DEBUGGING APPROACHES BASED ON THE NUMBER OF DEBUGGING ITERATIONS
	RESULT SUMMARY

	THREAT TO VALIDITY
	CONCLUSION
	REFERENCES
	Biographies
	ABUBAKAR ZAKARI
	SAI PECK LEE
	IBRAHIM ABAKER TARGIO HASHEM


