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ABSTRACT In this paper, we are concerned with the stability analysis of stochastic systems switched
by the ergodic semi-Markovian process. The sufficient conditions for almost sure exponential stability are
derived by using the method of multiple Lyapunov functions and the ergodic property of the semi-Markov
process. Particularly, our results generalize and improve some published results in the literature. An example
is presented to illustrate the effectiveness of the obtained results.

INDEX TERMS Almost sure exponential stability, semi-Markov process, ergodic property, stationary
distribution, multiple Lyapunov functions.

I. INTRODUCTION
Markovian jump systems are the special cases of hybrid sys-
tems, in which the switching signals are modeled as Markov
processes. In recent years, the problem of stability analysis
forMarkovian jump systems has receivedmuch attention, and
lots of meaningful results have been obtained, we refer the
reader to [1]–[17].

In various stability concepts, the almost sure exponen-
tial stability heavily relies on the sample path properties of
switching signals. In [6], the sufficient conditions of almost
sure exponential stability for Markovian jump systems were
deduced from the ones of the moment exponential stability.
In [8], [15], the sufficient conditions of almost sure expo-
nential stability for Markovian jump stochastic systems were
directly obtained from the sample path property of systems.

If it is further assumed that the sojourn time of each visiting
state obeys the same exponential distribution, the occur-
rence number of switching can be regard as Poisson process.
In [18], the sufficient conditions of almost sure exponential
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stability of hybrid systems switched by Poisson process were
obtained.

It should be noted thatMarkov process and Poisson process
have the same restriction that the transition rates between two
successive switchings are constants. However, many practical
systems, such as tolerant control systems (see [19]), the tran-
sition rates are time-varying, the switching signals of these
systems can not be modeled as Markov process or Poisson
process.

The semi-Markov process (see [20], [21]) is the
generalization of Markov process and Poisson process.
In semi-Markov process, the sojourn times can obey arbitrary
distributions, and the transition rates between two succes-
sive switchings are time-varying. Many research results on
stability analysis of semi-Markovian jump systems (hybrid
systems switched by semi-Markov process) have been
obtained. In [22]–[24], the sojourn times were assumed
to follow the Phase-type distributions and the stochastic
stability of semi-Markovian jump systems has been stud-
ied. In [25], [26], the sojourn times were assumed to fol-
low the Weibull distributions and the transition rates were
assumed to be bounded, then the robust stochastic stability of
semi-Markovian jump systems has been studied. [27] studied
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the moment stability in the wide sense of semi-Markovian
jump systems in the deterministic case. [28] considered
the effect of stochastic noise on the stochastic stability of
semi-Markovian jump systems. However, as we know, there
are few result on the almost sure exponential stability for
semi-Markovian jump stochastic systems.

Motivated by foregoing discussion, in this paper, we shall
obtain the sufficient conditions of almost sure exponential
stability for semi-Marokvian jump stochastic systems. The
main contributions are summarized as follows:

1. The sufficient conditions of almost sure exponential
stability for hybrid systems have been provided in some
published papers (see [8], [15], [18]), but their sufficient con-
ditions depend on the selected Lyapunov functions, and the
expression forms of these sufficient conditions are different.
Our results will give the unified form of sufficient condi-
tions of almost sure exponential stability for hybrid systems
switched by Markov process or Poisson process.

2. The switching process in this paper is semi-Markov
process, which is the generalization of Markov process
and Poisson process. By utilizing the ergodic property of
semi-Markov process and the stochastic analysis methods,
the sufficient conditions of almost sure exponential stability
for semi-Markovian jump stochastic systems will be first
obtained in this paper.

The remainder of this paper is organized as follows:
Section II describes some preliminaries. In Section III,
we obtain the sufficient conditions of almost sure exponen-
tial stability for semi-Markovian jump stochastic systems
via inequalities based on stationary distribution and aver-
age sojourn times of semi-Markov process. In Section IV.
An example is presented to illustrate the effectiveness of our
results. Finally, the paper is concluded in Section V.
Notation. Throughout this paper, Rn and Rn×m denote,

respectively, the n-dimensional Euclidean space and the set
of n × m real matrices. R+ denotes the interval [0,∞), | · |
denotes the absolute value inR and the Euclidean norm inRn.
If A is a vector or matrix, its transpose is denoted by AT .

II. PRELIMINARIES
Let (�,F,P) be a complete probability space. In this section,
we first give the formal definition of semi-Markov process
and some related notions.
Definition 2.1: (see [29]) Let N be a positive integer and

I = {1, 2, · · · ,N } be a state space. A stochastic process
{(rk , tk )}k≥0 taking values in I×R+ and satisfying 0 = t0 ≤
t1 ≤ t2 ≤ · · · is called a Markov renewal process, if

P(rk+1 = i, tk+1 − tk ≤ t|rk , · · · , r0, tk , · · · t0)

= P(rk+1 = i, tk+1 − tk ≤ t|rk )

= P(r1 = i, t1 − t0 ≤ t|r0) (1)

holds for any i ∈ I, t ≥ 0 and integer k ≥ 0.
Thus, {rk , k ≥ 0} is a homogeneous Markov chain and its

transition probabilities can be described as

pij := P(rk+1 = j|rk = i), ∀k ≥ 0, (2)

for any i, j ∈ I. Then the transition probability matrix of
{rk , k ≥ 0} is given by

P = (pij)N×N . (3)

For each i ∈ I, let τi be the sojourn time of each visiting
state i ∈ I, and the distribution function of τi is given by

Fi(t) = P(τi ≤ t) = P(tk+1 − tk ≤ t|rk = i), ∀k ≥ 0.

(4)

A continuous-time stochastic process {r(t), t ≥ 0}, which
is called semi-Markov process (see Eq.16.3 of [21]), can be
defined as:

r(t) = rk , tk ≤ t < tk+1, k = 0, 1, 2, · · · , (5)

in which {rk , k ≥ 0} is called the embedded Markov chain of
{r(t), t ≥ 0}.
Remark 2.2: By the above statement, the probability struc-

ture of semi-Markov process {r(t), t ≥ 0} can be character-
ized by two notions: the transition probability matrix P of its
embedded Markov chain and the distribution functions Fi(t)
of sojourn time of each visiting state i ∈ I.
In this paper, we assume that the embedded Markov chain
{rk , k ≥ 0} is ergodic and its stationary distribution is denoted
by π̃ = (π̃1, π̃2, · · · , π̃N ). The stationary distribution of
semi-Markov process {r(t), t ≥ 0}, π = (π1, π2, · · · , πN ),
is related to the stationary distribution of {rk , k ≥ 0}, π̃ ,
by (see Eq. 16.10 of [21])

πi =
π̃iE(τi)∑
j∈I π̃jE(τj)

, i ∈ I. (6)

By the strong law of large numbers (see Eq. 16.13 and
Eq. 16.14 of [21] ), we have

lim
t→∞

5i(t)
Ni(t)

= E(τi), a.s., (7)

and

lim
t→∞

Ni(t)
N (t)

= π̃i, a.s.. (8)

This paper is concerned with the following hybrid system:

dx(t) = f (x(t), t, r(t))dt + g(x(t), t, r(t))dB(t), (9)

x(0) = x0,

in which, {r(t), t ≥ 0} is a switching process. We assume
that almost every sample path of r(t) is right continuous step
function with a finite number of simple jumps on a finite
time interval. B(t) is a d-dimensional Brownian motion. f :
Rn
× R+ × I → Rn and g : Rn

× R+ × I → Rn×d .
Both f and g satisfy the Lipschitz condition and the linear
growth condition. Obviously, these conditions can ensure that
system (9) has a unique solution (the proof is similar to
Theorem 3.13 of [7], so we omit it), we denote this solution
by x(t; x0) on t ≥ 0, or x(t) for simplicity. We assume that
f (0, t, i) ≡ 0, g(0, t, i) ≡ 0 for all i ∈ I, which implies that
system (9) admits a trivial solution x(t; 0) ≡ 0.
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The purpose of this paper is to give the unified form of
sufficient conditions for almost sure exponential stability of
hybrid system (9). We first give the formal definition of such
stability as follow:
Definition 2.3: The trivial solution of system (9), or sim-

ply, system (9) is said to be almost surely exponentially stable,
if for any x0 ∈ Rn,

lim sup
t→∞

1
t
ln |x(t; x0)| < 0, a.s.. (10)

Let C2,1(Rn
× R+ × I;R+) be the set of nonnegative

functions V (x, t, i) : Rn
× R+ × I → R+, which are

continuously twice differentiable in x and once in t . If V ∈
C2,1(Rn

×R+×I;R+), for each i ∈ I, we define the opera-
tors LV : Rn

×R+×{i} → R andHV : Rn
×R+×{i} → R

as

LV (x, t, i) = Vt (x, t, i)+ Vx(x, t, i)f (x, t, i)

+
1
2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)] (11)

and

HV (x, t, i) = Vx(x, t, i)g(x, t, i), (12)

where

Vt (x, t, i) =
∂V (x, t, i)

∂t
,

Vx(x, t, i) = (
∂V (x, t, i)
∂x1

, · · · ,
∂V (x, t, i)
∂xn

),

and

Vxx(x, t, i) = (
∂2V (x, t, i)
∂xk∂xl

)n×n. (13)

With these notions, for each i ∈ I, the Itô formula (see Chap 4
of [30]) can be written as

dV (x, t, i) = LV (x, t, i)dt +HV (x, t, i)dB(t). (14)

III. MAIN RESULTS
In this section, we first give the sufficient conditions of almost
sure exponential stability for semi-Markovian jump system,
and then we will give some corollaries to illustrate that our
research results are the generalization and improvement of
some published results.
Theorem 3.1: Assume that there exist a function V ∈

C2,1(Rn
×R+×I;R+), and constants c > 0, p > 0, γi ≥ 0,

µi > 0, λi ∈ R, such that for any i, j ∈ I,

c|x|p ≤ V (x, t, i), (15)

V (x, t, j) ≤ µiV (x, t, i), (16)

LV (x, t, i)− γi|HV (x, t, i)|

+

[
1
2
γ 2
i +

lnµi
E(τi)

]
V (x, t, i)≤λiV (x, t, i), (17)

Then

lim sup
t→∞

1
t
ln(|x(t; x0)|) ≤

1
p

∑
i∈I

πiλi, a.s. (18)

for all x0 ∈ Rn. In particular, if∑
i∈I

πiλi < 0, (19)

then system (9) switched by semi-Markov process with sta-
tionary distribution π is almost surely exponentially stable.

Proof: It is clear that assertion (10) holds when x0 = 0
since in this case the solution x(t; 0) ≡ 0. Fixed any
initial value x0 6= 0, the solution x(t) will never reach
zero with probability one (the detailed proof is similar to
Lemma 2.1 of [15], so we omit). For each i ∈ I, applying
the Itô formula to lnV (x(t), t, i) to obtain

d[lnV (x(t), t, i)] =
[
LV (x(t), t, i)
V (x(t), t, i)

−
1
2
|HV (x(t), t, i)|2

V 2(x(t), t, i)

]
dt

+
HV (x(t), t, i)
V (x(t), t, i)

dB(t), (20)

thus, for any t ∈ [tk , tk+1), k ≥ 0, we have

lnV (x(t), t, r(t)) = lnV (x(tk ), tk , r(tk ))

+

∫ t

tk

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt

+

∫ t

tk

HV (x(t), t, r(t))
V (x(t), t, r(t))

dB(t). (21)

Similarly, for any k ≥ 1, we have

lnV (x(tk ), tk , r(tk−1)) = lnV (x(tk−1), tk−1, r(tk−1))

+

∫ tk

tk−1

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt

+

∫ tk

tk−1

HV (x(t), t, r(t))
V (x(t), t, r(t))

dB(t).

(22)

The condition (16) implies that for any k ≥ 1,

lnV (x(tk ), tk , r(tk )) ≤ lnµr(tk−1) + lnV (x(tk ), tk , r(tk−1)),

(23)

which together with (22) implies that for any t ∈ [tk , tk+1),
k ≥ 1,

lnV (x(t), t, r(t)) ≤ lnµr(tk−1) + lnV (x(tk−1), tk−1, r(tk−1))

+

∫ t

tk−1

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt

+

∫ t

tk−1

HV (x(t), t, r(t))
V (x(t), t, r(t))

dB(t). (24)
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Iterating the above procedure, we have that for any
t ∈ [tk , tk+1), k ≥ 1,

lnV (x(t), t, r(t)) ≤ lnV (x0, 0, r0)+
k−1∑
l=0

lnµr(tl )

+

∫ t

0

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt

+

∫ t

0

HV (x(t), t, r(t))
V (x(t), t, r(t))

dB(t). (25)

For any k ≥ 1, it is easy to know that

k−1∑
l=0

lnµr(tl ) =
k−1∑
l=0

∑
i∈I

lnµiI (r(tl) = i)

=

∑
i∈I

lnµi
k−1∑
l=0

I (r(tl) = i)

=

∑
i∈I

Ni(tk−1) lnµi, (26)

which together with (25) implies that for any t ≥ 0,

lnV (x(t), t, r(t)) ≤
∑
i∈I

[
Ni(t)− I (r(t) = i)

]
lnµi

+ lnV (x0, 0, r0)+
∫ t

0

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt+M (t),

(27)

in which

M (t) =
∫ t

0

HV (x(t), t, r(t))
V (x(t), t, r(t))

dB(t), (28)

is a continuous local martingale vanishing at t = 0, and its
quadratic variation is given by

〈M (t),M (t)〉 =
∫ t

0

|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))
dt. (29)

Setting ε ∈ (0, 1), by comprehensively utilizing the expo-
nential martingale inequality and the Borel-Cantelli lemma
(see [15]), there exists an integer K0, such that for
all m > K0,

M (t) ≤
2
ε
lnm+

ε

2
〈M (t),M (t)〉

=
2
ε
lnm+

∫ t

0

ε

2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))
dt, a.s.

holds for all 0 ≤ t ≤ m. Substituting the above inequality
into (27) implies that for any 0 ≤ t ≤ m,

lnV (x(t), t, r(t)) ≤
∑
i∈I

[
Ni(t)− I (r(t) = i)

]
lnµi

+ lnV (x0, 0, r0)+
∫ t

0

[
LV (x(t), t, r(t))
V (x(t), t, r(t))

−
1− ε
2
|HV (x(t), t, r(t))|2

V 2(x(t), t, r(t))

]
dt

+
2
ε
lnm, a.s.. (30)

For each i ∈ I, there exists a constant γi ≥ 0, such that

LV (x(t), t, i)
V (x(t), t, i)

−
1− ε
2
|HV (x(t), t, i)|2

V 2(x(t), t, i)

≤
LV (x(t), t, i)
V (x(t), t, i)

− (1− ε)γi
|HV (x(t), t, i)|
V (x(t), t, i)

+
1− ε
2

γ 2
i

=
LV (x(t), t, i)
V (x(t), t, i)

− (1− ε)γi
|HV (x(t), t, i)|
V (x(t), t, i)

+
(1− ε)2

2
γ 2
i +

ε(1− ε)
2

γ 2
i , (31)

which together with the condition (17) implies that for any
i ∈ I,

LV (x(t), t, i)
V (x(t), t, i)

−
1− ε
2
|HV (x(t), t, i)|2

V 2(x(t), t, i)

< λi −
lnµi
E(τi)

+
ε(1− ε)

2
γ 2
i , (32)

substituting above inequality into (30) implies that for any
0 ≤ t ≤ m,

lnV (x(t), t, r(t))

≤

∑
i∈I

[
Ni(t)− I (r(t) = i)

]
lnµi + lnV (x0, 0, r0)

+

∫ t

0

[
λr(t) −

lnµr(t)
E(τr(t))

+
ε(1− ε)

2
γ 2
r(t)

]
dt

+
2
ε
lnm

= lnV (x0, 0, r0)+
∑
i∈I

[
Ni(t)− I (r(t) = i)

]
lnµi

+

∑
i∈I

[
λi −

lnµi
E(τi)

+
ε(1− ε)

2
γ 2
i

]
5i(t)

+
2
ε
lnm, a.s.. (33)
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Consequently, if m − 1 ≤ t ≤ m and m > K0, there is
probability 1 that

1
t
lnV (x(t), t, r(t))

≤
1

m− 1

(
lnV (x0, 0, r0)+

2
ε
lnm

)
+

1
t

∑
i∈I

[
Ni(t)− I (r(t) = i)

]
lnµi

+
1
t

∑
i∈I

[
λi −

lnµi
E(τi)

+
ε(1− ε)

2
γ 2
i

]
5i(t). (34)

By (6), (7) and (8), it is easy to show that for any i ∈ I,

lim
t→∞

5i(t)
t
= lim

t→∞

5i(t)
Ni(t)

Ni(t)
N (t)∑

j∈I
5j(t)
Nj(t)

Nj(t)
N (t)

=
π̃iE(τi)∑
j∈I π̃jE(τj)

= πi, a.s., (35)

and

lim
t→∞

Ni(t)
t
= lim

t→∞

Ni(t)
5i(t)

5i(t)
t

=
π̃i∑

j∈I π̃jE(τj)
=

πi

E(τi)
, a.s.. (36)

Substituting the above two inequalities into (34), we obtain

lim sup
t→∞

1
t
lnV (x(t), t, r(t))

≤

∑
i∈I

πi

[
λi +

ε(1− ε)
2

γ 2
i

]
, a.s.. (37)

Letting ε→ 0, by condition (15), we finally get the required
assertion (18), Thus, we complete the proof of this theorem.
Remark 3.2: 1. If there exists a common Lyapunov func-

tion V (x, t), such that V (x, t) = V (x, t, i) = V (x, t, j) for all
i, j ∈ I, then we can take value µi = 1 in condition (16) for
all i ∈ I.
2. The condition (17) can be used to describe the stability

degrees subsystems. For each i ∈ I, if λi− lnµi
E(τi)

< 0, the i-th
subsystem is almost surely exponentially stable.

3. The condition (19) implies that the stationary distribu-
tion of semi-Markov process plays a very important role to
guarantee the stability of the whole system.
Theorem 3.3: Suppose that there exist a function V ∈

C2,1(Rn
×R+×I;R+), and constants c > 0, p > 0, µi > 0,

αi ∈ R, βi ≥ 0, i ∈ I, such that the conditions (15), (16) and
the following inequalities

LV (x, t, i) ≤ αiV (x, t, i), (38)

|HV (x, t, i)|2 ≥ βiV 2(x, t, i), (39)

are satisfied. Then

lim sup
t→∞

1
t
ln(|x(t; x0)|)≤

1
p

∑
i∈I

πi

[
(αi − 0.5βi)+

lnµi
E(τi)

]
a.s.

(40)

for all x0 ∈ Rn. In particular, if∑
i∈I

πi

[
(αi − 0.5βi)+

lnµi
E(τi)

]
< 0, (41)

then system (9) switched by semi-Markov process with sta-
tionary distribution π is almost surely exponentially stable.
Proof. For any i ∈ I, by (38) and (39), we have

LV (x, t, i)− γi|HV (x, t, i)| +
[
1
2
γ 2
i +

lnµi
E(τi)

]
V (x, t, i)

≤

[
αi − γi

√
βi +

1
2
γ 2
i +

lnµi
E(τi)

]
V (x, t, i). (42)

Let γi =
√
βi and λi = αi −

1
2βi +

lnµi
E(τi)

. Thus, (42)
and (41) can guarantee that the conditions (17) and (19) of
Theorem 3.1 are satisfied respectively. Thus the assertion of
this theorem follows from the conclusion of Theorem 3.1.

Next, we consider the deterministic case of system (9) with
g(x(t), t, r(t)) ≡ 0 of the form:

dx(t) = f (x(t), r(t))dt, (43)

x(0) = x0.

For any V ∈ C1(Rn
× {i};R+), i ∈ I, (11) and (12) reduce

to

LV (x, i) = Vx(x, i)f (x, i) (44)

and

HV (x, i) = 0, (45)

respectively.
Corollary 3.4: (see Corollary 1 of [31]) Assume that there

exist constants c > 0, µi > 1, and αi ∈ R, i ∈ I such that the
conditions (15), (16), and the following inequality

Vx(x, i)f (x, i) ≤ αiV (x, i), (46)

are satisfied. Then

lim sup
t→∞

1
t
ln(|x(t; x0)|) ≤

∑
i∈I

πi

[
αi +

lnµi
E(τi)

]
, a.s.. (47)

In particular, if ∑
i∈I

πi

[
αi +

lnµi
E(τi)

]
< 0, (48)

then system (43) switched by semi-Markov process with
stationary distributionπ is almost surely exponentially stable.
Proof. For any i ∈ I, by combining (44), (45) and the
condition (46), we have

LV (x, i)− γi|HV (x, i)| +
[
1
2
γ 2
i +

lnµi
E(τi)

]
V (x, i)

≤

[
αi +

1
2
γ 2
i +

lnµi
E(τi)

]
V (x, i). (49)

Let γi = 0 and λi = αi +
lnµi
E(τi)

, (49) and (48) can guarantee
that the conditions (17) and (19) of Theorem 3.1 are satisfied,
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thus the assertion of this corollary follows from the conclu-
sion of Theorem 3.1.

For each i ∈ I, if the sojourn time τi of semi-Markov
process follows exponential distribution with a parameter
θi > 0, that is for x ≥ 0, P(τi ≤ x) = 1 − e−

x
θi ,

then E(τi) = θi and the corresponding semi-Markov process
reduces to Markov process. We can obtain the following
two corollaries to provide the sufficient conditions of almost
sure exponential stability of stochastic system (9) switched
by Markov process, which are the classical results in some
published papers.
Corollary 3.5: (Theorem 2.2 of [15]) Suppose that there

exist a common Lyapunov function V ∈ C2,1(Rn
×R+;R+),

and constants c > 0, p > 0, βi ≥ 0, αi ∈ R, i ∈ I, such
that the conditions (15), (38) and (39) of Theorem 3.3 are
satisfied. Then,

lim sup
t→∞

1
t
ln(|x(t; x0)|) ≤

1
p

∑
i∈I

πi(αi − 0.5βi), a.s. (50)

for all x0 ∈ Rn. In particular, if∑
i∈I

πi(αi − 0.5βi) < 0, (51)

then system (9) switched by Markov process with stationary
distribution π is almost surely exponentially stable.

Proof: By item 1 of Remark 3.2, the conditions (40) and
(41) of Theorem 3.3 reduce to (50) and (51), thus the assertion
of this corollary follows from the conclusion of Theorem 3.3.
Corollary 3.6: (Theorem 3.3 of [8]) For each i ∈ I, there

are constants α̃i, ρi and σi such that the following inequalities

xT f (x, t, i) ≤ α̃i|x|2, (52)

|g(x, t, i)| ≤ ρi|x|, (53)

|xT g(x, t, i)| ≥ σi|x|2, (54)

are satisfied for all (x, t) ∈ Rn
× R+. Then

lim sup
t→∞

1
t
ln(|x(t; x0)|)

≤
1
p

∑
i∈I

πi (̃αi + 0.5ρ2i − σ
2
i ), a.s. (55)

for all x0 ∈ Rn. In particular, if∑
i∈I

πi (̃αi + 0.5ρ2i − σ
2
i ) < 0, (56)

then system (9) switched by Markov process with stationary
distribution π is almost surely exponentially stable.

Proof: We choose the common Lyapunov function
V (x) = V (x, t, i) = |x|2 for all i ∈ I, which means that
µi = 1 for all i ∈ I in the condition (16) of Theorem 3.1.
Substituting (52), (53) and (54) into (11) and (12), it is
obtained that

LV (x, t, i) = 2xT f (x, t, i)+ |g(x, t, i)|2 ≤ (2α̃i + ρ2i )V (x),

(57)

and

|HV (x, t, i)|2 = 4|xT g(x, t, i)|2 ≥ 4σ 2
i V

2(x). (58)

Let αi = 2α̃i + ρ2i and βi = 4σ 2
i , the above two inequalities

can guarantee that the conditions (38) and (39) of Theo-
rem 3.3 are satisfied. Thus, (55) and (56) can guarantee
that (40) and (41) of Theorem 3.3 are satisfied. The assertion
of this corollary follows from Theorem 3.3 immediately.

If we further assume that there exists a positive number λ,
such that for any k ≥ 0,

P(tk+1 − tk ≥ x) = e−λx , (59)

then E(τi) = 1
λ
for every i ∈ I, and the occurrence switching

numberN (t) of {r(t), t ≥ 0} can be regard as Poisson process
with exponent λ. We denote δλ for the set of all such kind
of switching processes obeying Poisson distribution with the
exponent λ. In the following, we consider the corresponding
switched stochastic linear system with the following form:

dx(t) = A(r(t))x(t)dt + G(r(t))x(t)dB(t), (60)

x(0) = x0,

in which, {r(t), t ≥ 0} is the switching process belongs to δλ.
Corollary 3.7: (see Theorem 1 of [18]) Suppose that there

exist positive-definite matrices Pi and constants µi > 0,
γi ≥ 0 such that for all i, j ∈ I, the following inequalities

ATi Pi + PiAi + G
T
i PiGi − γi(G

T
i Pi + PiGi)

+
1
2
γ 2
i Pi + λ lnµiPi < 0, (61)

Pj ≤ µiPi, j 6= i, (62)

are satisfied. Then the stochastic linear system (60) is almost
surely exponentially stable for all switching process belong-
ing to δλ.

Proof:We construct the multiple Lyapunov functions as
V (x(t), i) = xT (t)Pix(t), i ∈ I. it is obtained that for any
i ∈ I,

LV (x, i) = xT (ATi Pi + PiAi + G
T
i PiGi)x, (63)

and

HV (x, i) = xT (GTi Pi + PiGi)x, (64)

which together with the condition (61) implies that for any
i ∈ I,

LV (x, i)−γi|HV (x, i)|+
[
1
2
γ 2
i +

lnµi
E(τi)

]
V (x, i)<0, (65)

which implies that the condition (19) of Theorem 3.1 is satis-
fied for arbitrary stationary distribution π . Thus the assertion
of this corollary follows from Theorem 3.1 immediately.
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IV. AN EXAMPLE
In this section, we shall present an example to demonstrate
the results derived in this paper.
Example: Consider the following semi-Markovian jump

system:

dx(t) = f (x(t), r(t))dt + b(r(t))x(t)dB(t), (66)

where B(t) is a one dimensional Brownian motion, {r(t), t ≥
0} is a semi-Markov process taking values in the state space
I = {1, 2}, and

f (x, 1) =
−x
| sin x|

, b(1) = 1,

f (x, 2) = x, b(2) = 1.

Then system (66) can be regard as the result of the following
two subsystems

dx(t) =
−x(t)
| sin x(t)|

dt + x(t)dB(t) (67)

and

dx(t) = x(t)dt + x(t)dB(t) (68)

switching form one to the other according to the transition of
the semi-Markov process {r(t), t ≥ 0}.

Choosing the common Lyapunov function V (x, 1) =
V (x, 2) = 1

2x
2, it impliesµ1 = µ2 = 1. A simple calculation

shows that

LV (x, 1) =
−x2

| sin x|
+
x2

2
, HV (x, 1) = x2,

and

LV (x, 2) =
3x2

2
, HV (x, 2) = x2.

By choosing γ1 = γ2 = 0, we get that

LV (x, 1)− γ1|HV (x, 1)| +
1
2
γ 2
1 V (x, 1) ≤ −

x2

2
,

LV (x, 2)− γ2|HV (x, 2)| +
1
2
γ 2
2 V (x, 2) ≤

3
2
x2,

it means that we can take values λ1 = −1 and λ2 = 3. Since
λ1 < 0, the subsystem (67) is almost surely exponentially
stable. The simulation result of the state trajectory of subsys-
tem (67) is shown in Fig.1.

On the other hand, the subsystem (68) has the explicit
solution of the form

x(t) = ±et+B(t),

it is obviously that

lim
t→∞

ln
|x(t)|
t
= 1, a.s.,

thus, subsystem (68) is not almost surely exponential stable,
the simulation result of the state trajectory of subsystem (68)
is shown in Fig.2.

Next, we will setup the proper stationary distribution of
semi-Markov process such that the whole system (66) is

FIGURE 1. Computer simulation of the path of x(t) for the subsystem (67).

FIGURE 2. Computer simulation of the path of x(t) for the subsystem (68).

FIGURE 3. Computer simulation of the paths of r (t) and x(t) for the
whole system (66).

almost surely exponentially stable. Let the transition prob-
ability matrix

P =
(
0.9 0.1
0.4 0.6

)
,

and let τ1 ∼ Weibull(1, 2) and τ2 ∼ Weibull(1, 2), which
implies that the stationary distribution of {r(t), t ≥ 0} is
π = ( 45 ,

1
5 ). This stationary distribution can guarantee that

the condition (19) of Theorem 3.1 is satisfied, thus whole
system (66) is almost surely exponentially stable. The sim-
ulation result of the state trajectory of the whole system is
shown in Fig.3.
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V. CONCLUSION
In this paper, we studied the almost sure exponential
stability of semi-Markovian jump stochastic systems. By a
novel approach based on the stochastic analysis method
and the ergodic property of semi-Markov process, the suf-
ficient conditions described by inequalities based on the
stationary distribution of semi-Markov process are obtained.
In particular, our results generalize some classical results
in [8], [15], [18]. Finally, an example is given to illustrate the
effectiveness of the obtained results.
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