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ABSTRACT Backup datacenters provide massive data storage and access services, and their failure may
result in huge economic losses. So their location selection requires low damage risk and high evacuation
capability simultaneously. But previous works on backup datacenter placement have not jointly considered
these two factors from the viewpoint of traffic engineering and might result in the unnecessary loss in case of
disaster. In this paper, with the global view of network resources in the software defined network scenarios,
we propose a new disaster-and-evacuation-aware backup datacenter placement strategy. To reduce backup
loss risk and apply rapid post-disaster evacuation, we jointly consider expected disaster loss and evacuation
latency and formulate a new disaster-and-evacuation-aware facility location problem (NP-hard) which is
multi-objective. To obtain the solution according to the disaster situation assessment, we propose a disaster-
and-evacuation-aware multi-objective optimization algorithm. We optimize multiple objectives owning
different coefficients in different disaster situations. We introduce location-output-capability, backup-
evacuation-latency, Pareto-recommendation-degree, and node-damage-loss to guide solution searching.
We prune the external set according to fitness-deviation-ratio to improve convergence speed and computation
efficiency of the algorithm. Through extensive simulations, we demonstrate that our algorithm is efficient
and promising with less expected disaster loss and higher evacuation capability simultaneously.

INDEX TERMS Disaster-and-evacuation-aware facility location, multi-objective optimization, expected
disaster loss, evacuation capability.

I. INTRODUCTION
More and more geographically distributed datacenters are
mega-centers of computing and storage resources and becom-
ing increasingly important components to support various
wide spreading cloud computing services [1], [2]. In order to
obtain sufficient data redundancy and provide safe and reli-
able storage for critical information and applications, we need
to leverage periodic data backup in some specified backup
datacenters [3]. Consisting of such massive high-value data,
backup datacenters are facing more and more potential large
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scale disasters (e.g., weapons of mass destruction (WMD)
attacks, earthquakes, hurricanes, etc.) and their failure may
result in huge economic loss [4], [5]. For instance, the Tohoku
earthquake and tsunami in 2011 caused many companies to
file bankruptcy due to critical backup data loss in enterprise
datacenters [3]; in 2012, cascading failures caused by Hurri-
cane Sandy damaged some backup datacenters in the North-
eastern US [6]. Therefore, to prevent data damage in case of
disaster, backup datacenter location selection problem is of
great significance [7], and the disaster tolerance capability
should be fully considered.

From the viewpoint of disaster tolerance, disaster risk and
evacuation capability are two important issues that need to be
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carefully considered in backup datacenter location selection.
The disaster risk is usually evaluated by expected disaster
loss [7], [8]. Given a set of geographically distributed dat-
acenters as candidate locations, we present risk analysis to
estimate how much, in terms of cost or penalty, the cloud
datacenter network might lose probabilistically in case of
a possible disaster. Therefore, a reasonable strategy should
deploy backup datacenters in the zones of least expected
disaster loss to reduce potential damage in case of disaster.
On the other hand, when disaster(s) occurs, the evacuation
activity should transfer the data as soon as possible from the
endangered datacenters in disaster zones to other datacenters
in safe zones within evacuation deadline (e.g., before the
depletion of uninterruptible power supplies). But unfortu-
nately, there is still no effective evaluation metric to predict
post-disaster evacuation capability for datacenters from the
viewpoint of traffic engineering in face of disasters that may
occur at any time. In this paper, we use evacuation latency to
denote the time needed to evacuate all the data from disaster
zones to safe zones. For the same amount of endangered data,
lower latency means more efficient evacuation activity. So we
use the evacuation latency to evaluate evacuation capability,
and aim to guarantee low latency for endangered backup
datacenters to evacuate bulk data once disaster(s) occurs.
Therefore, in order to obtain reliable disaster-resistant backup
datacenter placement strategy, we should jointly consider
disaster risk distribution and evacuation latency. It is worth
noting that when faced with different disaster situations,
the impact and importance of these two factors may change
significantly. In the case of frequent disasters, we should
mainly focus on disaster risk distribution to reduce expected
disaster loss in emergency backup activity [7], [8]. But in
the case of severe disasters with low probability of occur-
rence, we should paymore attentions to improving evacuation
capability. And we should also take into account that lower
evacuation latency in location selection of backup datacen-
ters will also help to reduce backup time and backup cost
in regular backup activity [3], [9]. Therefore, we should
adopt optimization correspondingly to deal with multiple
objectives owning different coefficients in different disaster
situations.

For properly optimizing the backup datacenter place-
ment strategy in the large-scale cloud datacenter network,
we still need a new network paradigm supporting global
view of network resources. Fortunately, the Software Defined
Network (SDN) matches our requirement well. SDN is
becoming the leading technology behind many traffic engi-
neering solutions both for backbone network and datacenter
network [10], [11]. In our earlier works about traffic engi-
neering for disaster backup and evacuation [6], [9], [12],
we leverage SDN to construct powerful control environment
for network resource management based on centralized vis-
ibility including global network information (e.g., network
resource limitations or dynamically changing the network
status) and global application information (e.g., quality of
service requirements). In this paper, we still choose the

SDN scenarios as backup datacenter placement research
environment.

II. RELATED WORKS
A. DISASTER-RESISTANT DATECENTR PALCEMENT
For disaster-resistant datacenter placement, some new
mechanisms have been proposed, mainly including resource
allocation for backup storage [13], shared location with least
backup datacenters [10], content placement and manage-
ment to provide high disaster survivability with less expected
loss [7], minimum failure probability [14], high content con-
nectivity and lower resource consumption [15], backup path
selection and content replica placement for disaster surviv-
ability [16], [17], minimum expected data loss with limited
primary-to-backup distance [18]–[20].

In [13], Bianco et al. discuss resource allocation algorithms
to support remote backup storage and live virtual machines
migration. They present algorithms trading-off the minimiza-
tion of the maximum number of hops between every virtual
machine and its backup disk, and the minimization of the
overload caused by site failures on backup sites chosen to host
virtual machines after migration. In [10], Couto et al. propose
a strategy to place datacenters in geographically distributed
areas avoiding simultaneous failure of backup and primary
servers. They try to reduce the amount of required backup
datacenters by using virtualization. [7], [14] and [15] study
placement and management of contents and their replicas
among multiple datacenters considering disaster risks. In [7],
Ferdousi et al. propose a disaster-aware datacenter placement
and content management strategy to mitigate disaster loss by
avoiding placement of contents and their replicas in given
disaster vulnerable locations. In [14], Ma et al. consider the
placement of datacenters and contents for datacenter failure
probability minimization against a region failure. In [15],
Li et al. define k-node (edge) content connectivity to measure
reachability of content from any point of a network after
disaster failures and apply it to optical datacenter networks.
In [16], Habib et al. consider content placement, routing,
and protection of paths and content together. This objective
tends to place a content in those datacenters closer to its
popular region, which can reduce resource usage by primary
and backup paths while routing connection requests. But
to simplify the model, they have not considered the con-
straints on storage and computing capacity of datacenters.
In [17], Zhou et al. note that appropriate virtual machine
placement could save considerable amount of time and net-
work resources in failure recovery mode. They aim at reduc-
ing the lost time and the network resource consumption when
the k-fault-tolerance requirement must be satisfied, to reduce
network resource consumption in addition to enhancing cloud
service reliability. However, these researches above focus on
a single criterion, and none of them has jointly considered
disaster risk distribution and evacuation capability for backup
datacenter placement in different disaster situations. When
determining backup datacenter location, the ignorance of
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evacuation capability might result in huge backup data loss
in case of disaster.

Some works involve multi-objective function with
expected data loss and evacuation capability [18]–[20]. How-
ever, there are still some challenges. When determining
the location of primary-backup pairs, they limit primary-to-
backup distance to facilitate the transmission by manpower
or vehicles. They have not considered available network
transmission capability which is essential or even preferred
way of data evacuation in case of disasters [6], [21]. And it’s
worth noting that closer physical location between primary-
backup pair does not always mean more efficient post-
disaster evacuation, especially for multiple geographically
distributed datacenters [6], [9], [12]. In addition, they lever-
age primary-to-backup distance as evacuation capability con-
straint, without optimizing it according to different disaster
situations. And therefore, the obtained solution may not be
the most desired one with less expected data loss and higher
evacuation capability simultaneously.

B. OUR SOLUTIONS
Multi-objective optimization in evolutionary algorithms
usually uses population-based approach to find Pareto
optimal solutions. The majority of existing works to deal
network problems use the concept of dominance during
selection [22]–[24]. In this paper, we leveragemulti-objective
optimization to obtain disaster-and-evacuation-aware backup
datacenter placement solution applicable for disaster-and-
evacuation-aware scenarios. Our contributions can be
summarized as follows:
• We propose new evaluation metric jointly considering
expected disaster loss and evacuation capability for
backup datacenter placement in SDN, and as far as
we know, this is the first work to proactively optimize
post-disaster data evacuation capability from the view-
point of traffic engineering in disaster-aware backup
datacenter placement phase.

• We add expected disaster loss and evacuation capa-
bility into facility location problem, and propose a
new Disaster-and-Evacuation-Aware Facility Location
(DEA-FL) problem which is NP-hard.

• We design a Disaster-and-Evacuation-Aware Multi-
Objective Optimization (DEA-MO) algorithm, which
sets unique pheromone and heuristic information for
every backup datacenter, and introduces location-
output-capability, backup-evacuation-latency, Pareto-
recommendation-degree and node-damage-loss to guide
solution searching. We optimize multiple disaster
backup objectives owning different coefficients in differ-
ent disaster situations. This algorithm is applicable for
practical networks of large-scale.

• By extensive simulations we demonstrate that our algo-
rithm achieves good performance in terms of reducing
total expected disaster loss and implementing more effi-
cient data evacuation in case of disaster compared with
the state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section III,
we give an overview of disaster-and-evacuation-aware
backup datacenter placement, and formulate the DEA-FL
problem. In Section IV, we design DEA-MO algorithm to
solve the DEA-FL problem. In Section V, we evaluate the
performance of our solution through extensive simulations.
At last, we draw our conclusion in Section VI.

III. PROBLEM FORMULATIONS
The facility location problem with an input for m
backup datacenters to place in n candidate locations, is
NP-hard [25], [26]. As shown in Section I, expected disaster
loss and evacuation capability are two key parameters in the
backup datacenter placement process. To minimize expected
disaster loss and improve evacuation capability, we should
add them into facility location problem and therefore obtain
a new DEA-FL problem. As a special case of facility location
problem, the DEA-FL problem is also NP-hard.

In the disaster-and-evacuation-aware backup datacenter
placement process, we propose analysis on expected disaster
loss in a given network with a set of candidate locations to
estimate howmuch a network operator might lose probabilis-
tically in case of a possible disaster and define it as expected
disaster loss. Risk maps of disasters can be obtained and
matched with the physical topology of a network to determine
its possible risky zones [8], [27]. For instance, according to
the information on possible locations of different major facil-
ities from various public sources in [7], we generate a simple
risk map for attacks on datacenter nodes in a US-Backbone
topology by considering possible attacks in Fig. 1 to help us to
develop and test disaster-aware backup datacenter placement.
Besides, for post-disaster evacuation, we also consider the
evacuation capability in term of evacuation latency between
endangered backup datacenters and the application datacen-
ters within their functioning ranges. From the viewpoint of
traffic engineering, even though network traffic is dynamic,
lower evacuation latency is always beneficial to shorten evac-
uation time of bulk backup data among datacenters. After
the determination of backup datacenter location, we compute
the latency value from backup datacenters to their applica-
tion datacenters by the transmission strategy proposed in our
earlier works [6], [9], [12] considering the scenarios of both
regular backup and emergency backup.

We consider DEA-FL problems on a network with a sym-
metric directed graph G = (V ,E), where V is the set of
nodes, and E is the set of physical links between nodes.
We denote the link from node u to node v as (u, v).
We use DC = {dc1, dc2, . . . , dcn} to denote the set

of application datacenters with various contents to backup.
It is worth noting that in the cloud datacenter network,
some datacenter nodes always play dual roles as application
datacenter and backup datacenter [3], [9], [12]. Therefore,
we can consider any application datacenter node as candidate
location for backup datacenter placement. We use BD =
(bd1, bd2, . . . , bdm) to denote the set of backup datacenters
that should be placed in the network G. We assume that
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FIGURE 1. Simple risk map for attacks on datacenters in US-Backbone
topology.

backup datacenter bdi has a maximum backup load capacity
C(bdi) and the total amount of backup contents in the applica-
tion datacenter nodes (here we call them backup loads) within
the functioning range of bdi cannot exceed this limit. θ (bdi) is
used to denote the set of all the application datacenters within
the functioning range of the individual backup datacenter bdi.
Because the datacenter nodes are always geographically dis-
tributed, they usually fall into different disaster areas. Then
the whole network G is divided into m clusters: θ (bd1),
θ (bd2), . . ., θ (bdm). The clusters should satisfy the following
constraints:

θ (bdi) 6= φ, ∀bdi ∈ BD (1)

∪
m
i=1θ (bdi) = DC (2)

θ (bdi) ∩ θ (bdj) = φ, i 6= j, ∀bdi, bdj ∈ BD (3)

Using (1), we ensure that every bdi plays the role of backup
datacenter. Using (2), we ensure that the set of backup data-
centers cover all application datacenters. Using (3), we ensure
that every application datacenter belongs to only one backup
datacenter.

We use dcj ∈ θ (bdi) to represent that the application
datacenter node dcj ∈ DC is within the functioning range of
bdi. We use bl(dcj) to represent the backup load of dcj , and
use bl(bdi) =

∑
dcj∈θ (bdi)

bl(dcj) to represent the total backup

load of bdi. In a partition cluster we should make sure that:

bl(bdi) ≤ C(bdi), ∀bdi ∈ BD (4)

Using (4), we ensure that the backup loads given by the
application datacenter nodes within the functioning range of
bdi should not exceed bd ′i s backup load capacity.

To prevent data damage in case of disaster, we add expected
disaster loss and evacuation capability to backup datacenter
location selection process. From the viewpoint of expected
disaster loss, we aim to deploy backup datacenters in least risk
zones to avoid data damage as much as possible. We define

lossavg as average expected disaster loss of backup data-
centers and lossbdi as expected disaster loss of bdi in the
following:

lossavg =
1
m

∑
bdi∈BD

lossbdi (5)

lossbdi =
∑

dcj∈θ (bdi)

bl(dcj) ·
∑
v∈V

(
xbdiv · Pv

)
, ∀bdi ∈ BD

(6)

Pv =


1 if

∑
s∈S

Psv ≥ 1∑
s∈S

Psv otherwise
, ∀v ∈ V (7)

Psv =
intensitys
dist(v, s)

, ∀v ∈ V , ∀s ∈ S (8)∑
v∈V

xbdiv = 1, ∀bdi ∈ BD (9)

Here the Psv denotes the probability that node v is damaged
by the disaster s. The xbdiv ∈ {0, 1} denotes whether bdi is
placed in v. The Psv is directly proportional to the intensity of
disaster s (denoted as intensitys), and inversely proportional
to the distance from v to the center of s (denoted as dist(v, s)).
The Pv =

∑
s∈S

Psv means the sum of damage probability on v

by all disasters. We limit its value to no more than 1 by (7).
Once under the threat of disaster, massive data in backup

datacenters, including application data and historical backup
data, should be evacuated as soon as possible. Considering
compatibility and availability of backup data in bdi, it is a
good choice to take θ (bdi) as evacuation destinations in case
of disaster. We focus on latencies among backup datacen-
ters and the application datacenters within their functioning
ranges. In (10), we define average evacuation latency as
latenavg to evaluate evacuation capability of backup datacen-
ters in case of disaster:

latenavg =
1
m

∑
bdi∈BD

timebdi (10)

Here the timebdi represents the evacuation time from bdi to
the application datacenters within its functioning range. In the
unpredictable situation of network traffic, lower latenavg
expresses higher evacuation capability.

To jointly minimize the expected disaster loss and maxi-
mize evacuation capability, we can formulate the optimiza-
tion objective of DEA-FL problem as follows:

minimize(lossavg, latenavg) (11)

As shown in (11), we aim to simultaneously minimize
the average expected disaster loss and average evacuation
latency. However, the DEA-FL problem is NP-hard that
cannot be solved in polynomial time. Owing to computa-
tional impracticality of exact algorithms to produce solu-
tions for practical networks of large scale, we consider
Multi-Objective Optimization algorithm based on ant colony
optimization (ACO) [28] to improve time efficiency and
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obtain optimal or near-optimal solution within acceptable
computing time in the following sections.

IV. ALGORITHM DESIGN
ACO metaheuristic is inspired by operating principles of
ants. Its central mechanism is to probabilistically construct
solutions using a parameterized probability model, which is
indicated by the pheromone trails. In the context of ACO,
the solution component is usually associated with pheromone
trail. Artificial ants probabilistically add the solution compo-
nent to the partial solution until they generate a completely
feasible solution. During these iterations, the pheromone
values are dynamically updated based on the information
derived from some high quality solutions to force the search
to concentrate on regions containing high quality solutions
in the solution space. It is a powerful algorithm to solve NP
problems in the field of computing intelligence [28]. Here
we design DEA-MO algorithm based on ACO to solve the
DEA-FL problem.

To find the solution for backup datacenter location,
we initially place every backup datacenter in a random dat-
acenter node, respectively. To jointly minimize the expected
disaster loss and maximize evacuation capability, we intro-
duce location-output-capability, backup-evacuation-latency,
Pareto-recommendation-degree and node-damage-loss to
adjust the location selection searching for solution. By using
external set, we can realize information sharing among differ-
ent non-dominated solutions and guide the evolution of new
solution.

A. PHEROMONE AND HEURISTIC INFORMATION
In previous works such as [22], if there are multiple non-
dominated solutions in the external set after the algorithm
is finished, they will randomly choose one as optimal solu-
tion. However, the randomly selected solution might not be
the most suitable one for specific disaster situation (e.g.,
in face of frequent disasters, or infrequent but severe disas-
ters). Therefore, in DEA-MO, to deal withmultiple objectives
owning different coefficients in different disaster situations,
we leverage factors ω1 and ω2 to express the importance of
the parameters for expected disaster loss and evacuation capa-
bility, respectively. In the following paragraphs, we assign
related parameters with ω1, ω2 ∈ [0, 1] and ω1 + ω2 = 1.
Solution sl is represented by a m × n adjacency matrix.
If sl[i][j] = 1, backup datacenter bdi is placed in the location
dcj, otherwise not. To obtain higher efficiency of location
searching, we set unique pheromone and heuristic informa-
tion for every bdi. We define two normalized values p

′

v and
cap

′

v as follows:

P
′

v =
Pv

1
n

∑
v∈DC

Pv
(12)

cap
′

v =

∑
u∈Adj(v)

cap(v, u)

1
n

∑
v∈DC

∑
u∈Adj(v)

cap(v, u)
(13)

Here the adj(v) is the set of nodes connecting directly
to node v. the cap(v, u) denotes the available capacity of
link (v, u). We define the location-output-capability of v as∑
u∈adj(v)

cap(v, u), which means the sum of available capacity

in all links from v to Adj(v). In DEA-MO, we set the initial

pheromone intensity as τ iv(t0) =

(
cap
′

v

)ω2
1+
(
P′v
)ω1 .

After the tth iteration, we put additional pheromones on the
nodes used by the best current solution cur_place and non-
dominated solutions in external set. The update of pheromone
for bdi placement on node v is as follows:

τ iv(t + 1) = (1− ρ)τ iv(t)+1τv(t) (14)

1τv(t) = λ1χ (t)+ λ2δ(t) (15)

x i,vcur =

{
1 if bdi is placed on node v in cur_place
0 otherwise

(17)

yi,ves =

{
1 if bdi is placed on node v in external set
0 otherwise

(19)

The ρ represents evaporating parameter to control the
evaporating speed of pheromone. The λ1 and λ2 express the
influence of cur_place and external set on the increment of
pheromone intensity respectively in the (t+1)th iteration. The
bl(bdi) expresses the total backup loads in bdi. We use it to
divide the location-output-capability to estimate the backup-
evacuation-latency of bdi. The bl(bdi) · Pv denotes node-
damage-loss of v. We define the node-damage-loss as an
expected value, which means multiplying backup loads in
bdi with the sum of damage probability on v by all disasters
in S. We prefer to choose the node with less node-damage-
loss which means less expected disaster loss. It is worth
noting that the value of backup-evacuation-latency and node-
damage-loss might be different in (16) and (18), as shown at
the top of the next page.

The µ1 and µ2 adjust the value of backup-evacuation-
latency and node-damage-loss to express their influences on
the increment of pheromone intensity. We define (1 + sn)
as the Pareto-recommendation-degree. The sn represents the
number of non-dominated solutions which place bdi on v in
external set.

The heuristic information on v for bdi placement depends
on location-output-capability and total disaster risk. And
then, we can obtain heuristic information ηiv(t + 1) for bdi
placement as follows:

ηiv(t + 1) = κ.

( ∑
u∈Adj(v)

cap(v, u)

)ω2
1+ (Pv)ω1

(20)

Here the parameter κ is used to adjust the value of
heuristic information ηiv(t + 1). We prefer to choose the
node with larger location-output-capability and smaller total
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χ (t) =
x i,vcur

µ1 ·

bl(bdi)/ ∑
u∈Adj(v)

cap(v, u)

ω1 + µ2 · (bl(bdi) · Pv)ω2

(16)

δ(t) =
yi,ves · (1+ sn)

µ1 ·

bl(bdi)/ ∑
u∈Adj(v)

cap(v, u)

ω1 + µ2 · (bl(bdi) · Pv)ω2

(18)

damage probability because the former will provide more
available bandwidth in post-disaster evacuation and the
latter guarantees low probability of being destroyed by
disasters.

B. TRANSITION PROBABILITY
In DEA-MO, while constructing a solution, an ant selects
some node v to place bdi. The choice of v depends on
pheromone intensity τ iv(t + 1) and heuristic information
ηiv(t + 1). Here we choose nodes using the roulette wheel
selection procedure of evolutionary computation. The tran-
sition probability to v for bdi placement is:

Riv(t + 1) =
(τ iv(t + 1))φ · (ηiv(t + 1))ϕ∑

w∈CN
(τ iw(t + 1))φ · (ηiw(t + 1))ϕ

(21)

The parameters φ and ϕ express the influence of
pheromone and heuristic factors in transition probability
respectively, and CN denotes the candidate node set can be
used to host backup datacenters under the current network
status.

C. FITNESS EVALUATION
The optimization process of multiple objectives may con-
flict with each other. Therefore, to obtain non-dominated
solution, we need to evaluate solutions with different fitness
functions according to different objectives respectively as
follows.

fitnessloss(sl) =
1

1+
(
lossavg

)ω1 (22)

fitnesslaten(sl) =
1(

latenavg
)ω2 (23)

fitnessloss(sl) is the fitness function related to expected dis-
aster loss and its value is inversely proportional to the average
expected disaster loss of backup datacenters. fitnesslaten(sl)
is the fitness function related to evacuation capability and
its value is inversely proportional to the average evacuation
latency of backup datacenters.

According to fitness values, we will eliminate dominated
solutions and reserve non-dominated solutions in external set.
For example, with two solutions sli and slj, sli dominates slj

if sli ≺ slj, and otherwise slj dominates sli. If they do not
dominate each other, they both will be added to external set.
We define sli ≺ slj as follows.(

fitnessloss(sli) > fitnessloss(slj)
)
and(

fitnesslaten(sli) ≥ fitnessloss(slj)
)

or(
fitnessloss(sli) ≥ fitnessloss(slj)

)
and(

fitnesslaten(sli) > fitnessloss(slj)
)

(24)

D. EXTERNAL SET UPDATE
We use external set to store non-dominated solutions and
coordinate different objectives. After every iteration, we com-
pare fitness function values of solutions according to (22)
and (23), select the non-dominated solution to be cur_place.
If there are multiple non-dominated solutions, we select one
as cur_place randomly and add all non-dominated solutions
into external set. Then we compare newly added solutions
with original solutions in external set, and eliminate domi-
nated solution(s) if any.

It is noteworthy that the number of solutions in exter-
nal set increases with the increase of iteration number.
In [22], they have not limited the capacity of external set,
but simply remove the dominated solutions. However, too
many elements (although all are non-dominated solutions)
in the external set will result in slower convergence speed
and lower computation efficiency. Therefore, we limit the
capacity of external set and design new pruning strategy to
remove redundant non-dominated solution(s) if necessary.
We use the maximum number of non-dominated solutions
that can be accommodated to denote the maximum capacity
CapES of external set ES, and eliminate some solution(s) if
the number of solutions exceeds CapES in ES. We sort all
the solutions according to our newly defined metric called
fitness-deviation-ratio (FDR) as follows:

FDR(sl)

=

√(
FDloss(sl)

avgfitnessloss(ES)

)2

+

(
FDlaten(sl)

avgfitnesslaten(ES)

)2

(25)
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FDloss(sl)

=


0

if fitnessloss(sl) ≥ avgfitnessloss(ES)

avgfitnessloss(ES)− fitnessloss(sl)
otherwise

(26)

FDlaten(sl)

=


0

if fitnesslaten(sl) ≥ avgfitnesslaten(ES)

avgfitnesslaten(ES)− fitnesslaten(sl)
otherwise

(27)

avgfitnessloss(ES)

=
1

CapES

∑
sl∈ES

fitnessloss(sl) (28)

avgfitnesslaten(ES)

=
1

CapES

∑
sl∈ES

fitnesslaten(sl) (29)

For a solution sl, we use
(

FDloss(sl)
avgfitnessloss(ES)

)
and(

FDlaten(sl)
avgfitnesslaten(ES)

)
to represent loss-deviation-ratio and

latency-deviation-ratio, respectively. We use FDloss(sl) and
FDlaten(sl) to denote the fitness deviation of sl relative to
the average fitness value in ES from the aspects of expected
disaster loss and evacuation latency, respectively. We use
avgfitnessloss(ES) and avgfitnesslaten(ES) to denote the aver-
age value of fitnessloss() and fitnesslaten() respectively for
all non-dominated solutions in ES. To jointly reduce the
expected disaster loss and improve evacuation capability,
we would like to control lossavg and latenavg as small as
possible simultaneously. The solution with larger FDR value
certainly owns larger lossavg or larger latenavg than the
average fitness value in ES. Therefore, when the number
of solutions in ES exceeds CapES , we will eliminate the
solution(s) with the largest FDR value until the solution
number not exceeds CapES . In the next section, we will
verify the effectiveness of pruning strategy for the redun-
dant non-dominated solution. In the following experiments,
if there lie several non-dominated solutions in ES, we will
choose the one with minimum FDR value as solution for
comparison. If there are multiple solutions with the same
minimum FDR value, we select one randomly.

E. PSEUDO CODE OF DEA-MO
The pseudo code of DEA-MO algorithm is as follows:

In DEA-MO, we set the number of ants as num. For the
placement of every backup datacenter, at most num solu-
tions are generated, so the time complexity of DEA-MO is
approximately O(n · m · num). Through extensive simula-
tions, we get reasonable values of simulation parameters.
Eventually, we set φ = 0.8, ϕ = 0.5, ρ = 0.25, λ1 =
3, λ2 = 7 on the basis of experience.

Algorithm 1 DEA-MO Algorithm
Input: G = (V ,E); DC = {dc1, dc2, . . . , dcn}; BD =
{bd1, bd2, . . . , bdm}; probability distribution map of disas-
ter events
Output: backup datacenter placement solution
1. Set parameters, initialize pheromone and transition

probability, etc.
2. while termination condition not met do
3. for num ants do
4. Initialize available location set ALS = DC
5. for every bdi do
6. Calculate heuristic information by (20)
7. Select its location v from ALS using the

roulette wheel selection procedure
according to (21)

8. Remove v from ALS
9. end for
10. for every dcj do
11. Find the shortest path to every backup

datacenter
12. Assign it to the nearest backup datacenter

bdi
13. Compute backup load of bdi
14. if bdi exceeds its backup load capacity do
15. Assign dcj to the next nearest backup

datacenter
16. end if
17. end for
18. Obtain non-dominated solution(s) in current

population by (24), and select cur_place
19. for every non-dominated solution in current

population do
20. if it is not dominated by the solutions in

external set do
21. Add it into external set
22. Eliminate solution(s) dominated by it

from external set
23. end if
24. end for
25. if the number of solutions exceeds CapES in

external set do
26. repeat
27. Eliminate the solution with largest FDR

value by (25)
28. until the number of solutions not exceeds

CapES
29. end if
30. Update pheromone by (14)
31. end for
32. end while

V. PERFORMANCE EVALUATION
A. ENVIRONMENT AND CONFIGURATION
We implement algorithms in a DELLOPTIPLEX 9020 server
with 8 Intel(R) Core(TM) i7-4790 3.60 GHz CPUs and 8 GB
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RAM.We perform experiments over the US-Backbone topol-
ogy [29]. As in Fig. 2, it has 24 application datacenter nodes
and we will place a certain number of backup datacenters. For
convenient display, we only mark the distance between data-
center nodes. Due to limited network resources, some nodes
may play dual roles as application datacenter and backup dat-
acenter. Every datacenter is connected with high-bandwidth
links. We set the available bandwidth uniformly distributed
on each link within [500, 1000] (Gbps).

FIGURE 2. US-Backbone topology denoted with distance value.

From the viewpoint of disaster backup location, we con-
sider disaster risk distribution on nodes. Similar to previous
work [7], we consider the increasing disaster risk, such as
WMD attacks, earthquakes, hurricanes [27]. To evaluate per-
formance of these algorithms, we consider possible locations
of disaster events according to risk map in Fig. 1, set the
value of four risks as 0.25 respectively, and then generate
10 disaster instances. In every instance, we select 7 different
datacenter nodes as the locations to place disaster events.
Here we apply a pseudo random selection rule [30]. We gen-
erate a random number q ∈ [0, 1]. If q ≤ q0, we will choose
the first 7 datacenter nodes with the largest total disaster
risks. Otherwise, we choose 7 locations using roulette wheel
selection procedure according to total disaster risks in every
location. We set q0 = 0.7 on the basis of experience. For
every disaster instance, we model disaster events on datacen-
ter nodes as in Fig. 3. We repeat performance evaluation with
an independent run for every disaster instance, and report the
average results for comparison among different algorithms.

To evaluate damages by disaster events, we consider not
only primary disaster damages but also correlated effects [7].
Based on information in [31] and considering large-scale
disaster and multiple correlated effects, we assume a fail-
ure span of 1000 kilometers around the targeted areas.
The probabilities of failure on nearby datacenter nodes are
estimated with reasonable assumptions (between 0 and 1)
based on their distances from the target’s epicenter. For exam-
ple, in the case of disaster event s1 (shown with correspond-
ing disaster zone), node 3 is estimated to be damaged with
probability 1, and node 4 and node 7 have estimated damage

FIGURE 3. US-Backbone topology denoted with possible disaster events.

probabilities of 0.2 and 0.05, respectively (decreasing with
the distance).

We compare DEA-MOwith some representive algorithms.
First, we choose the average distance limiting with Branch-
and-Bound (ADL-BB) algorithm and the maximum dis-
tance limiting with Branch-and-Bound (MDL-BB) algorithm
in [18]. To ensure rapid evacuation in case of disasters, they
consider geographical distance between primary-backup pair
instead of available network transmission capability. To eval-
uate evacuation capability over the US-Backbone topology
denoted with possible disaster zones, we need to calcu-
late evacuation latency with network parameters. Therefore,
as in [3], we leverage hop number to represent the geograph-
ical distance in ADL-BB and MDL-BB. In the following
experiments, we set the average hop number constraint as
3 for ADL-BB, and set the maximum hop number constraint
as 5 for MDL-BB. For convenience of performance com-
parison, we modify the backup storage capacity setting and
ensure that every backup datacenter can receive backup data
frommultiple application datacenters if it has enough storage
capacity. Second, we choose the disaster-aware datacenter
placement (DADP) algorithm [7] and the TwoStep-ILP algo-
rithm [3]. DADP mitigates disaster loss by avoiding place-
ment in given disaster vulnerable locations with the objective
to minimize failure risk. But it has not considered evacua-
tion capability in case of disasters. TwoStep-ILP minimizes
total hop number between all the application datacenters and
their backup datacenters in one-to-one mutual backup model.
But it has not considered disaster risk distribution to reduce
expected disaster loss. In experiments, we leverage its first
integer linear programming to determine backup datacenter
locations.

ForDEA-MO,we can dynamically assess different disaster
situations and observe the influence of coefficients on solu-
tions by changing values ofω1 andω2.With largerω1, wewill
focus on the expected disaster loss and therefore obtain higher
data integrity. With larger ω2, we will pay more attentions
to evacuation capability of backup datacenters. In that case,
DEA-MO prefers to choose the nodes with higher transmis-
sion capacity to cover application datacenters, not the ones
with low disaster risk but lie in out-of-the-way locations. Such
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choices will surely reduce the data integrity factor, especially
as the increase of backup datacenter number. In practice,
we can dynamically set values of ω1 and ω2, and search
solutions according to different disaster-resistant scenarios.
Especially in the backup activity faced with frequent dis-
asters, we can increase the value of ω1 to reduce expected
disaster loss. Of course, backup datacenter placement strategy
based on such parameter setting might lead to longer backup
time and higher backup cost in regular backup activity. If ω2
plays a more significant role, DEA-MOwill perform better in
reducing evacuation latency. In regular backup activity faced
with infrequent disasters, we can increase the value of ω2
to reduce backup time. Furthermore, we can also optimize
backup cost effectively if the evacuation latency is replaced
by unit cost in the solution searching process.

In the following experiments, we observe algorithm per-
formance with increase of backup datacenter number and
backup load amount, respectively. In the former case, we set
the total backup load amount as 1.5 PB, set the amount of
backup data in every application datacenters ranging from
50 TB to 100 TB, set the maximum load capacity in every
backup datacenter ranging from 100 TB to 500 TB, and set the
backup datacenter number ranging from 5 to 10. In the latter
case, we set the total backup datacenter number as 8, set the
total backup load amount ranging from 0.5 PB to 3 PB, adjust
the amount of backup data in every application datacenter and
the maximum load capacity in every backup datacenter with
increase of total backup load amount.

B. SIMULATION RESULTS
1) COMPARISON OF ALGORITHM EFFECTIVENESS
To improve convergence speed and computation efficiency,
we limit the capacity of external set and remove redundant
non-dominated solution(s) if necessary. To evaluate algo-
rithm effectiveness, we should focus on the uniformity of
solution distribution to see whether all solutions are equally
spaced from one another. Therefore, we choose Spacing
(SP) [32] as evaluation criteria. SP refers to the variance of
the distance from every solution to its closest neighbor. We
compute SP as follows:

SP =

√√√√ 1
|Pt| − 1

|Pt|∑
i=1

(d − di)2 (30)

di = min
j
{

∣∣∣∣∣ f i1 − f
j
1

f max
1 − f min

1

∣∣∣∣∣
+

∣∣∣∣∣ f i2 − f
j
2

f max
2 − f min

2

∣∣∣∣∣}, i, j = 1, 2, . . . , |Pt|, i 6= j (31)

Here we use |Pt| to denote the obtained Pareto front,
||c to denote the cardinality. We use f ik and f jk (k = 1, 2)
to represent the value of the kth objective in the ith and
jth solution, use f max

k and f min
k (k = 1, 2) to represent the

maximum value and the minimum value of the kth objective,
respectively. We use d to denote the average value of all di.
Obviously, a good solution set should have SP value close

to 0. For comparison, we implement the DEA-MO without
capacity limitation of external set (denoted as DEA-MO-NL).
For DADP and TwoStep-ILP, it’s meaningless to compare
SP value because neither of them jointly considers expected
disaster loss and evacuation capability.

Table 1 shows SP performance comparison with increase
of backup datacenter number. We can see that ADL-BB and
MDL-BB performs better thanDEA-MO-NL benefiting from
their distance limitation constraints to obtainmore evenly dis-
tributed evacuation latency value. Especially for MDL-BB,
limiting the maximum distance results in more gentle fluctu-
ation of evacuation capability. DEA-MO outperforms other
algorithmswith amore uniform solution distribution, because
we keep eliminating the solution(s) with the largest FDR
when the number of solutions exceeds CapES .
TABLE 1. Comparison of SP performance with increase of backup
datacenter number.

Table 2 shows SP performance comparison with increase
of backup load amount. The comparison results are similar to
those in Table 1, showing good optimization effects for two
objectives simultaneously in DEA-MO.

2) COMPARISON OF DATA INTEGRITY
It is found in experiments that the value of total damage
risk faced by backup datacenters in some algorithms is rel-
atively small (even be less than 0.1 in some cases). Similar
to previous works [18]–[20], we aim to display and compare
data availability and then introduce data integrity factor (DIF)
as follows:

DIF = 1−

∑
bdi∈BD

( ∑
dcj∈θ (bdi)

bl(dcj) ·
∑
v∈V

(
xbdiv · Pv

))
∑

bdi∈BD

∑
dcj∈θ (bdi)

bl(dcj)

(32)

48204 VOLUME 7, 2019



X. Li et al.: Disaster-and-Evacuation-Aware Backup Datacenter Placement Based on Multi-Objective Optimization

TABLE 2. Comparison of SP performance with increase of backup load
amount.

Here we useDIF as the data integrity factor of backup dat-
acenters. Since backup datacenters of different data amounts
might be faced with different disaster risks, we use weighted
average value to measure data integrity with a global view.

In Fig. 4 and Fig. 5, we illustrate the comparison of
DIF with increase of backup datacenter number and backup
load amount, respectively. Different from other algorithms,
TwoStep-ILP leverages one-to-one mutual backup model for
all datacenter nodes, and therefore its backup datacenter num-
ber is fixed as 24 in the US-Backbone topology. In Fig. 4,
we set the total backup load amount as 1.5 PB, implement
TwoStep-ILP separately for 10 times and finally obtain its
average value of DIF as 0.72 which means much lower data
integrity than that of other algorithms. In Fig. 5, the DIF of
TwoStep-ILP ranges from about 0.70 to 0.73 with increase
of backup load amount. DADP focuses on reducing expected
disaster loss and keeps the DIF value steadily above that of
other algorithms. But the ignorance of evacuation capability
would lead to its poor performance in terms of evacuation
latency in case of disaster. In Fig. 4 and Fig. 5, DEA-MO
slightly outperformsADL-BB andMDL-BB, benefiting from
its disaster-aware unique pheromone and heuristic informa-
tion for the location selection of every bdi.

3) COMPARISON OF AVERAGE EVACUATION LATENCY
As mentioned in Section III, we use average evacuation
latency latenavg to evaluate evacuation capability of backup
datacenters in case of disaster. To jointly reduce the expected
disaster loss and improve evacuation capability, we would
like to control DIF as large as possible and latenavg as small
as possible. For the convenience of comparison, we compute
the evacuation latency from every backup datacenter to its

FIGURE 4. Comparison of DIF with increase of backup datacenter
number.

FIGURE 5. Comparison of DIF with increase of backup load amount.

application datacenters in a unified way by the transmission
strategy proposed in our earlier work [6].

In Fig. 6 and Fig. 7, we illustrate the comparison of
latenavg with increase of backup datacenter number and
backup load amount, respectively. DADP obtains larger
latenavg due to its ignorance of evacuation capability dur-
ing backup datacenter location selection process. ADL-BB
and MDL-BB outperform DADP because of selecting nearer
available locations from every application datacenter to place
related backup datacenter. With minimum total hop number,
TwoStep-ILP performs even better than ADL-BB and MDL-
BB. But the smaller total hop number does not always mean
better network transmission capability. DEA-MO considers
not only hop number but also location-output-capability for
the placement of every bdi, and therefore obtains the best
optimization effect in terms of evacuation latency.

Furthermore, we compute network utilization with
increase of backup load amount to compare the network trans-
mission capability utilization in evacuation process among
these algorithms. There is no network utilization compar-
ison with increase of backup datacenter number, because
TwoStep-ILP leverages one-to-one mutual backup model for
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FIGURE 6. Comparison of latenavg with increase of backup datacenter
number.

FIGURE 7. Comparison of latenavg with increase of backup load amount.

all datacenter nodes. Since we evacuate data with the same
proportional bandwidth allocation strategy for concurrent
transfers [6], the network utilization directly reflects the
usage of network transmission capability. Higher network uti-
lization means more full use of network transmission capac-
ity, so as to achieve more efficient post-disaster evacuation.

We first compute maximum flow from application dat-
acenters to their backup datacenters in every algorithm,
and denote the largest one as MaxFlow. Then, we run
ADL-BB, MDL-BB, DEA-MO, DADP, and TwoStep-ILP
respectively to get their throughput as ThroughputADL ,
ThroughputMDL , ThroughputDEA, ThroughputDADP and
ThroughputILP. We compute the NT [33] for these five algo-
rithms as follows:

NTADL = ThroughputADL
/
MaxFlow (33)

NTMDL = ThroughputMDL
/
MaxFlow (34)

NTDEA = ThroughputDEA
/
MaxFlow (35)

NTDADP = ThroughputDADP
/
MaxFlow (36)

NTILP = ThroughputILP
/
MaxFlow (37)

In Fig. 8, we represents the comparison of NT among
ADL-BB, MDL-BB, DEA-MO, DADP, and TwoStep-ILP

with increase of backup load amount. ADL-BB (with NT
ranging from about 86% to 74%)and MDL-BB (with NT
ranging from about 83% to 72%) outperform DADP (with
NT ranging from about 71% to 56%) because their primary-
to-backup distance constraints reduce total hops among
every backup datacenter and their application datacenters.
TwoStep-ILP performs even better because it minimizes total
hop number and its one-to-one mutual backup model obtains
more full use of network transmission capacity with higher
NT ranging from about 87% to 79%. But higher network
utilization does not necessarily mean more efficient trans-
mission activity as shown in our earlier works [6], [9], [12].
DEA-MO achieves the highest NT ranging from about 93%
to 86%, benefiting from its joint consideration of hop number
and post-disaster evacuation capability from the viewpoint
of traffic engineering (e.g., location-output-capability and
backup-evacuation-latency, etc.).

FIGURE 8. Comparison of NT with increase of backup load amount.

4) COMPARISON OF COMPUTATION TIME
We illustrate the comparison of computation time with
increase of backup datacenter number and total datacenter
number. In Fig. 9, we leverage the US-Backbone topology
with 24 datacenter nodes and set the backup datacenter num-
ber ranging from 5 to 10. In Fig. 10, we leverage theWaxman
model [34] to generate topologies with datacenter node num-
ber ranging from 20 to 100. We set the number of backup
datacenters as 30% of the total number of nodes (except for
TwoStep-ILP which leverages mutual backup strategy). We
can see rising curves in Fig. 9 and Fig. 10. The computation
time of ADL-BB grows more rapidly than other algorithms.
Although its performance in reducing average evacuation
latency is relatively good, it takes more time to obtain solu-
tions. Similarly, DADP has good performance in reducing
expected disaster loss, but its computation time grows very
fast. TwoStep-ILP leverages the ellipsoid or interior point
algorithm to determine backup datacenter location with fast
speed, but its data integrity is relatively low without con-
sidering disaster risk distribution. Compared with MDL-BB,
DEA-MO obtains faster convergence speed. Because it tends
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FIGURE 9. Comparison of computation time with increasing backup
datacenter number.

FIGURE 10. Comparison of computation time with increasing total
datacenter number.

to make better choice through continuous pheromone updat-
ing after every iteration and improves computation efficiency
by pruning strategy to remove redundant non-dominated
solution(s).

In all, the simulation results above indicate that DEA-MO
is an efficient and promising algorithm, since among the five
algorithms for comparison, it reduces expected disaster loss
and improves evacuation capability simultaneously with a
relatively short computation time.

VI. CONCLUSION
Backup datacenters holding massive high-value data are
faced to increasing disaster risks. To reduce damage loss in
case of disasters, reasonable backup datacenter placement
requires less expected disaster loss and higher evacuation
capability. Hence, with global view of network resources
in the SDN scenarios, we propose a new disaster-and-
evacuation-aware backup datacenter placement strategy and
then design multi-objective optimization algorithm to real-
ize it. As far as we know, this is the first research that
optimizes post-disaster evacuation capability from the view-
point of traffic engineering in backup datacenter placement

phase. The innovation points mainly embody in dynam-
ically optimizing multiple objectives in different disaster
situations, and unique pheromone and heuristic information
to adjust location searching. Especially, we use location-
output-capability and backup-evacuation-latency to jointly
evaluate evacuation capability of candidate node, leverage
Pareto-recommendation-degree to express the influence of
non-dominated solutions on location selection, and define
node-damage-loss to estimate expected disaster loss.

Through extensive simulations, we demonstrate that our
algorithm outperforms state-of-the-art algorithms with less
expected disaster loss and higher post-disaster evacuation
capability. Based on this placement strategy, we will aim
to optimizing the subsequent backup transmission phase for
proportional bandwidth allocation to backup datacenters and
load balance on critical links.
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