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ABSTRACT In this paper, a novel human body pose estimation system is introduced, which features a
synchronous network of wirelessly connected sensor nodes, thus forming a wireless body sensor network
(WBSN). This measurement architecture for establishing human body pose estimations works in combi-
nation with the HTC Vive base stations and a Wi-Fi router. The former emits infrared pulses and laser
sweeps in the horizontal and vertical plane captured by the sensor nodes’ photodiodes. The infrared data
can be converted into an azimuth and elevation angle for each photodiode relative to the emitting HTC Vive
device. To estimate the human body poses, the sensor data are fed into a probabilistic non-linear maximum
likelihood estimator combined with a parametric human body model. Using a parametric human body model
for estimating the poses proves to be more resilient to sensor noise compared to estimating the Six Degrees of
Freedom (6DoF) of every sensor node individually. The solution space can be constrained to the parameters
of the users body model that relates to a priori information on the subject. The combination of the proposed
hardware sensor network, its synchronous sensor data, and processing algorithms yields a cost-efficient
human body pose estimation system.

INDEX TERMS Body sensor networks, distributed embedded systems, motion capture, pose estimation,
sensor arrays.

I. INTRODUCTION
The notion of Body Sensor Networks (BSN) might still
seem like a futuristic science fiction concept, the reality
however is that these types of devices are becoming more
ubiquitous nowadays. Smartphones equipped with a wireless
radio (e.g. Bluetooth) can easily connect to a great num-
ber of wireless or other so called ’’smart’’ peripherals. The
medical sector is adopting this technology for closely and
continuously monitoring some of the vital body functions
in a less intrusive manner [1]–[3]. More commonly known
examples of these BSNs have spurred a booming market
of health, sports and fitness accessories e.g. wireless heart
rate monitors, pedometers, stride length monitors, cadence
meters, smart or sports watches that enable the user tomonitor
his/her physical health, sporting performance progression and
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sleeping patterns. Besides these devices, targeted at ambi-
tious yet amateur athletes, the professional sporting sector
has also taken its interest in this technology. The aforemen-
tioned devices all have their professional counterparts that
feature either more accurate and precise measurements, have
more features or both. Gathering correct information has
become crucial for training efficiently. A factor that takes a
great part in this is the athletes’ form or technique [4]–[7].
In order to objectively quantify the relevant technical per-
formance metrics, motion capture technology is being used
to further refine this. Rehabilitation physicians and physio-
therapists are currently also using motion capture technolo-
gies for full body pose estimation purposes [8]. By using
full or partial body pose estimation to objectively quantify
the gait of a rehabilitating patient, the rehabilitation pro-
cess can be personalized and adjusted in a timely manner
[9], [10]. This can significantly reduce the recovery time of
the patient, hence shortening the time spent in a hospital or
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rehabilitation center, and potentially reduce costs for all
involved parties.

The best known method for establishing motion cap-
ture is vision based. Vision-based systems make use of
specific passive or active markers that can be attached
to the person or object combined with specialized cam-
eras (e.g. ViCon or Qualisys) [11]–[13]. The downside is
that the cost of these systems can range from e 20.000 to
e 300.000. Markerless vision-based pose estimation systems
using ’’standard’’ RGB cameras are also showing promising
results when combined with machine-learning algorithms
such as a Deep Neural Networks [14] or a Convolutional
Neural Networks [15]. Another method for motion capture
applications is a BSN of nodes that are equipped with Inertial
Measurement Units (IMUs) [11], [16] and often a wireless
radio. These nodes can be strapped to the various body
parts or can be integrated into a specialized body suit (e.g.
XSens) [17]–[21]. Since IMU devices inherently suffer from
integration errors [22], [23], these type of sensors cannot be
used to achieve high-accuracy and high-precision pose esti-
mations without making certain assumption regarding human
motion patterns that compensate for these errors. Therefore,
using this setup in rehabilitation scenarios where normal gait
patterns cannot be expected, is not feasible.

To overcome these issues, we propose a low-cost body sen-
sor network which consists of wirelessly synchronized sensor
nodes that are equipped with a variety of sensors based on our
experience from previous work [24]–[27]. It constitutes an
architecture that enables human body pose estimation. One of
the sensor data sources of the WBSN nodes allows capturing
infrared (IR) light pulses and sweeps emitted by HTC Vive
base stations (also known as Lighthouses) that are installed
in the environment. As shown in previous work [27], this
technology allows us to achieve accuracies up to ±3 cm in
position and ±6◦ in orientation estimates for single nodes
while attaining sub-millimeter and sub-degree precision for
the former and the latter. In our previous work we estimated
the six Degrees-of-Freedom (6DoF) pose of the individual
nodes, which consists of a 3D-position and 3D-orientation,
and combined these poses to estimate a human body pose.
In order to increase the accuracy, precision and robustness
of the body pose estimations, we can model a human sub-
ject as a network of body parts, on which sensors nodes
can be attached, interconnected by joints. The parameters of
the model consist of the physical dimensions of these body
parts, rotational ranges of the joints and placements of the
sensors. By using this parametric human body model the
solution space of the human body pose estimations can be
reduced, which in turn should increase robustness, accuracy
and precision of the proposed solution.

In section II, the hardware of the individual nodes will be
presented, together with the sensor measurement and syn-
chronization scheme. In section III the probabilistic approach
for estimating the actual pose of the individual nodes will be
discussed together with the human body model that combines
the individual node estimates into a body pose estimation.

This pose estimation technique is validated through simula-
tion of which the results are shown in section IV. The results
of the experiments that were performed with the combina-
tion of the aforementioned technology and techniques are
presented in section V. In the final section we will discuss
our conclusions for the proposed solution and future work.
Additionally new functionalities that we want to explore in
the future were also included.

II. SYSTEM TOPOLOGY
In order to achieve the proposed low-cost wireless body
sensor network nodes, a hardware topology was defined that
offers sufficient capabilities for ongoing and future research
purposes. In the design, we took into account the deficiencies
of earlier measurement hardware we developed.

A. HARDWARE ARCHITECTURE
The chosen hardware topology has to meet a number of
prerequisites. In the first place, the overall system cost should
remain low, i.e. approximately e 1.000 for a WBSN that
can provide full body pose estimates. Secondly, since the
wireless sensor nodes need to be attached to various parts
of a human body these devices need to be relatively small
and light. Thirdly, every node needs to be able to function
autonomously. In this case, this third prerequisite implies
that the node should function as a stand-alone member of
the wireless network as well as function without any (extra)
cables for power or data transfers to ensure the test subject’s
normal movement ranges.

To support the autonomy of the WBSN nodes a trade-off
has to be made in processing power and power consumption
while maintaining a compact and viable solution. There is
a great variety of micro-controllers and processors that are
available nowadays ranging from tiny Integrated Circuits
(ICs) that target ultra low-power applications to so called
System-in-Package (SiP) ICs that basically embed an entire
UNIX system. Somewhere in between these two extremes
resides the ARM Cortex M4 series microcontrollers that
incorporate numerous interfaces and hardware capabilities
at a reasonable power consumption. Within the range of
these M4-devices a great variety exists in features, clock
speeds, pin-count, physical size and price. To check off all of
the aforementioned prerequisites, an STM32F429 microcon-
troller from STMicroelectronics [28] was chosen as the core
of the WBSN nodes. The main purposes for this microcon-
troller are sensor data acquisition, timekeeping and perform-
ing data transfers. Although the internal memory provides
128 kB of data storage, an extra external RAM IC of 8MB
was chosen. Using the on-board flexible memory controller,
the external memory can be read or written just like the
internal memory with only slightly slower transfer speeds.
Given the size of this external memory, a large amount of data
can be buffered in worst case scenarios were data transfers to
other computers might not be feasible in real-time. Figure 1
illustrates how the various components of the hardware archi-
tecture are connected to each other. As one of the sensor
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FIGURE 1. Panel a) shows the schematic overview of the WBSN node that
uses an STMicroelectronics STM32F4 microcontroller at its core. This ARM
Cortex M4 microcontroller will perform the data acquisition of the HTC
Vive base station infrared pulses and sweeps, of the Knowles ultrasound
microphones and of the Bosch BNO055 Inertial IMU. The data can be
stored in an external 8MB RAM chip that serves as a data buffer before
transferring the data to a central server through the Espressif
ESP8266 Wi-Fi SoC or wired interface provided by the FTDI FT2232H IC.
The latter converts a USB data connection to two UART interfaces that can
be used for data transfers and reprogramming both microcontrollers. The
USB connection also provides power to the system through the voltage
regulator and the Microchip MCP73833T LiPo charge controller IC that in
turn safely charges a connected single-cell LiPo battery. Panel b) shows
the front side of the WBSN node on which the photodiode sensor
elements are marked. The PCB is mounted on the 3D-printed enclosure
that incorporates the 1400mAh LiPo cell providing an autonomy of
approximately 10 hours. The combination of the PCB and enclosure
measures 6.8 by 7.2 by 1.85 cm and can be attached to objects or body
parts. Panel c) shows the back side of the WBSN node where the digital
microphones are marked together with the triaxial gyroscope,
accelerometer and magnetometer IMU sensor which aligns to the center
of the PCB.

modalities of the WBSN nodes, a three-element infrared
photodiode array was chosen in order to capture infrared
pulses and sweeps emitted by two HTC Vive base stations.
By accurately timing the rising and falling edges of these
infrared emissions, the azimuth and elevation relative to the
emitting base station can be calculated for every photodiode.
This sensormodality was chosen because of the demonstrated
efficacy for estimating 6DoF-poses of sensor nodes in our
previous work [27], the low-cost of the receiver hardware and
the off-the-shelve available HTC Vive base stations.

When working with spherical coordinates to represent a
point in 3D-space, the HTC Vive system can provide the
azimuth and elevation data whereas the distance can be esti-
mated using the configuration of the photodiode array. Given
our previous work [24]–[26], accurately measuring distance

using ultrasound emissions is a feasible and low-cost solu-
tion. Therefore, a three-element digital microphone array [29]
was fitted on the nodes. These Knowles SPH0641LU4H-
1 [30] digital microphones incorporate an analog amplifier
together with a 1-bit61Analog-to-Digital Converter (ADC)
in a single cost-efficient package. When introducing an ultra-
sound transmitter into the measurement environment at a
known absolute location or relative position in regard to the
HTC Vive base stations, the extra information can improve
the pose estimates’ robustness, accuracy and precision.

As a third sensor modality a Bosch BNO055 [31] IMU
sensor was used in this hardware architecture. It can
also be found in other rehabilitation and binaural hearing
research [32]–[34]. This specific IMU integrates a triaxial
gyroscope, accelerometer and magnetometer. It also fea-
tures a small on-board microcontroller that can fuse this
specific sensor data into absolute orientations (e.g. quater-
nions or Euler angles) using recursive Bayesian filtering tech-
niques. Due to its ease of use, high-accuracy and data fusion
capabilities this sensor can provide absolute orientation infor-
mation of the sensor nodes at an increased data rate. Because
of its intrinsic operation it can also alleviate Non-Line-Of-
Sight (NLOS) situations of the optical and acoustic sensors
that either yield no or inaccurate sensor data.

In order to wirelessly transfer the acquired sensor data to a
central processing hub, the ubiquitous IEEE 802.11 wireless
radio standard was chosen, commonly known as Wi-Fi. The
one-to-many scalable network topology, high data throughput
rate, possible internet access and off-the-shelve low-cost
router hardware (if required) fits the envisioned system archi-
tecture. To create a Wi-Fi client out of a WBSN node,
a low-cost and low-power Espressif ESP8266 [35] Wi-Fi
System-on-Chip (SoC), which runs a full TCP/IP stack, was
used together with an inverted-F PCB trace antenna tuned
to 2.4GHz. Since this SoC features a programmable micro-
controller its operation can be tailored to cooperate with the
STM32F4 in a joint state machine. Besides a wireless connec-
tion, a wired USB connection was also provided which serves
multiple purposes. Firstly, the USB data is routed to an FTDI
FT2232H IC which creates two Universal Asynchronous
Receiver-Transmitter (UART) interfaces that connect to both
the ESP8266 and the STM32F4 microcontrollers for either
data transfers or reprogramming purposes. Secondly, the 5V
that is provided through the USB connection will provide
power to the entire system and is used by the Microchip
MCP73833T Lithium Polymer (LiPo) charge controller IC
to safely charge single-cell LiPo batteries. The proposed
system uses a 1400mAh LiPo cell to provide power to
the WBSN node for approximately 10 hours of continu-
ous operation. This satisfies the autonomous measurement
prerequisite or other use-cases where a USB connection is
not available or feasible. In Figure 1 panel b) the actual
assembled PCB is shown mounted on a 3D-printed enclo-
sure that incorporates the LiPo battery. It can be strapped
to an object or body part. The PCB fits all of the aforemen-
tioned ICs in a 5 by 5 cm rectangle. In combination with the
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FIGURE 2. Panel a) illustrates two HTC Vive base stations (LHA and LHB
placed in an environment together with a WSBN node that is equipped
with three IR sensitive photodiodes that will receive the IR pulses emitted
by LHA and LHB. b) shows three discretized photodiode receiver signals
that exhibit two synchronization pulses, which are received at the same
time, together with a narrow pulse that corresponds to the either the
horizontal or vertical IR laser plane sweep that passes over the
photodiode.

3D-printed enclosure a node measures 6.8 cm by 7.2 cm by
1.85 cm. When combining the price of the PCBs with the
price of all components, the hardware cost of a single WBSN
node amounts to approximatelye 65 (in a batch of 10 nodes).
Fifteen of these sensors, adding up to±e 975, should suffice
for estimating a full body pose. The e 1000 price point is
slightly exceeded when a Wi-Fi router and two HTC Vive
base stations are added to the system cost. However, it is
reasonable to assume that the sensor cost can be decreased
significantly in a larger production quantity.

B. PROPOSED DATA ACQUISITION AND PROCESSING
As mentioned in the previous subsection, the WBSN nodes
are equipped with three sensor modalities. Each sensor tech-
nology has its inherent advantages and disadvantages but
can be combined to complement each other. However in this
work, we will focus on a single sensor modality that will be
used as the primordial source of data for establishing human
body pose estimates. Other modalities will be added later
in an iterative design process. Given the positive results of
our previous work [27], the three-element photodiode array
combined with two fixed HTC Vive base stations in a mea-
surement environment were chosen to start from.

The three IR photodiodes are positioned on the WBSN
PCB in an acute triangle configuration, as shown in Figure 1
panel b), and will receive the IR pulses and sweeps
originating from the base stations, which is illustrated
in Figure 2 panel a). To extract the azimuth and elevation

information, also referred to as lighthouse data in this paper,
the STM32F4 microcontroller registers the timing at which
the rising and falling edges are detected. With two HTC
Vive base stations the discretized photodiode receiver signal,
shown in Figure 2 panel b), will exhibit a pulse train that
features two sync pulses with varying pulse width and a
narrow pulse that represents the passing of either the hori-
zontal or vertical sweep. As will be detailed later, the delay
between t1 or t3 and t5 is affinely related to the azimuth and
elevation angle under which the photodiode was swept by
the laser plane. This delay differs for each photodiode due
to their different positions on the PCB. The sequence of two
synchronization pulses and a sweep occurs at a rate of 120Hz.
The duration of the synchronization pulse flashes encodes
three information bits that indicate whether (a) the device
will produce an IR laser sweep, whether (b) it will be the
vertical or horizontal sweep and (c) an additional data bit. The
latter can be used to optically transfer additional status infor-
mation, e.g. firmware version, rotor offsets, etc. The azimuth
θPDn and elevation φPDn angle for every photodiode PDn can
be calculated using the time difference1t between the rising
edge of one of the synchronization pulses t1 or t3 and the
rising edge of the laser sweep t5 as shown in Equation 1. The
azimuth θPDn is the angle in the XY -plane measured from
the positive X -axis and elevation φPDn is the angle in the
XZ -plane measured from the positive X -axis. This deviates
from the classic definition in a spherical coordinate system
[36]–[42].

1t =

{
t5 − t1, if 104µs ≥ t2 − t1 ≥ 62µs
t5 − t3, if 104µs ≥ t4 − t3 ≥ 62µs

θPDn = −1t · 60 · 360+ 90◦

φPDn = 1t · 60 · 360− 90◦ (1)

Whereas a prior implementation sampled the IR information
at a regular interval and parsed the lighthouse data in post
processing, our current firmware implementation is able to
parse the information of the three photodiode receivers in
real-time. This real-time execution was achieved by imple-
menting a free-running 1-µs clock on the STM32F4 of which
the counter value is added to a shift register with every
rising or falling edge of the received IR pulses. With every
new entry, the content of shift register will be shifted and
checked for the appropriate time intervals that in turn triggers
the calculation for either the azimuth or elevation. The 1-µs
clock that was used in this process corresponds to measuring
the lighthouse data with a resolution of 0.04◦. The data
will then be transferred through a UART-interface to the
ESP8266 Wi-Fi SoC.

Despite the benefit of having wireless data acquisition
capabilities, the problem of inter-node synchronization arises.
The synchronization between the different nodes is crucial for
the intended use-case of human body pose estimation. Unsyn-
chronized data can result in body pose estimations where
individual body parts appear to be lagging behind. This might
even entirely disrupt the estimation technique. In order to
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alleviate this issue every individual WBSN node will request
a Network Time Protocol (NTP) timestamp from one of the
available NTP servers. Within the specification of the NTP
protocol it is stated that these timestamps are represented as
a 64-bit fixed-point number, in seconds relative to 0000 UT
on 1 January 1900 of which there is an integer part and a
fractional part [43], [44]. This fractional part brings about a
free-running 1-ms clock on the server side that can be polled.
Once the NTP timestamp is received, the internal clock of the
ESP8266 will maintain the time with microsecond precision
only to refresh its NTP timestamp at larger intervals.

These microsecond timestamps are appended to every data
point that is received from the STM32F4 before transmitting
the data wirelessly through a TCP connection to a local server
which collects all of the data.Whenwe look into the collected
data, it is clear that it is very unlikely to have data points
between the different WBSN nodes with exactly the same
timestamp. Due to our implementation where the nodes will
sequentially initiate a connection to the TCP server, the first
and/or last data point of the nodeswill not be perfectly aligned
either. By using linear interpolation on the collected data
of every individual node between a common start and end
timestamp, a synchronous data set is created with a fixed
100-ms interval.

III. SENSOR NODE MODEL, HUMAN BODY MODEL &
PROBABILISTIC POSE ESTIMATION
Once the synchronous hardware architecture was developed
and verified, its sensor data needed to be integrated into
the processing algorithm in order to achieve the actual body
pose estimates. To facilitate the sensor integration and further
development of the pose estimation processing algorithm,
we composed a model for the sensor node.

A. SENSOR NODE MODEL
Composing a model of the WBSN node, requires the char-
acterization of the sensor in terms of the noise distribution,
in this case on the azimuth and elevation data. By measuring
the lighthouse data for every photodiode in various sensor
orientations, the noise distribution is reflected in the actual
standard deviation on the data. Using a FLIR Motion Con-
trol E46 Pan-Tilt Unit (PTU) [45], we were able to rotate
a WBSN node mounted on the PTU with a given pan and
tilt angle. In that specific orientation, 3600 data points were
measured before moving to a new pan/tilt orientation. These
measurements ranged from −60◦ to 60◦ in pan angle and
from −30◦ to 30◦ tilt angle. When processing the lighthouse
data for every orientation, the standard deviation (SD) of
both azimuth and elevation were calculated for the individual
photodiode. Figure 3 shows the noise distribution of the
data of one of the three photodiodes. It is shown that the
SD for all of the data varies between 0◦ and 0.1◦ in both
the azimuth and elevation. If we calculate the mean stan-
dard deviation of these noise distributions, the mean SD for
azimuth equals 0.0156◦ and 0.0128◦ for elevation. The data
of the other photodiodes is comparable to these values and

FIGURE 3. Using a FLIR E46 pan-tilt unit, which spurs accuracies up to
0.129◦, a WBSN node was oriented with various pan and tilt angles. Within
a given range of pan and tilt angles the lighthouse azimuth and elevation
data was measured which allowed us to establish the noise distributions
for this sensor modality. Every data point represents the standard
deviation on either the measured azimuth or elevation data for one of the
photodiodes fitted on the WBSN node. The noise distributions for the
other photodiodes were comparable and hence not shown in this figure.

therefore not mentioned or shown in Figure 3. Although the
noise on the sensor data is almost negligible, it does allow us
to simulate realistic sensor data. Though some geometrical
patterns appear in the plots of Figure 3 we did not take them
into account, as they are not consistent for all photodiodes
and given the low values of the standard deviations. The
simulations allows us to develop the required techniques and
algorithms for establishing the actual estimation of the body
poses without the need of performing numerous and time
consuming experiments.

B. HUMAN BODY MODEL
In our previous work [24]–[27], a body pose was established
by directly using the position and orientation (6DoF) of the
individual measurement system(s). The pose of the human
body or the pose of a subset of the body can be described
as an interconnected chain of body parts with a given size
and a point in 3D-space, that functions as the body’s origin.
Figure 4 panel a) shows an articulated lower body with EPwB
as the origin to which all other body parts are connected,
defined in a right-handed world coordinate system that has
its origin in EPwO. The superscript w indicates that this point is
defined in the world coordinate system instead of a relative
coordinate system, indicated with the superscript r. The body
parts themselves can pivot around their respective joints that
in turn affect the orientation of subsequent body parts. Since
we are interested in estimating human body poses, a paramet-
ric human body model was created which incorporates (for

VOLUME 7, 2019 49345



D. Laurijssen et al.: Synchronous WBSN Enabling Human Body Pose Estimation

FIGURE 4. a) Human body model of an articulated lower body with EPw
B as

the origin to which all other body parts are connected in a right-handed
coordinate system with its origin in EPw

O . The different body parts are an
interconnected chain with a start and end point P relating to their human
body counterparts. The sensors, designated with a capital S, are
represented by a 3D-model of the PCB on which the photodiodes are
indicated together with the center of the WBSN node. The center of the
nodes correspond to the origin of their relative coordinate system, shown
with its X , Y and Z axes. b) Zooms in on the origin of the world
coordinate system and clearly shows the principal X , Y and Z axes and
the rotations about these axes α, β and γ . c) Shows one of the WBSN
nodes with its three photodiodes PD1, PD2 and PD3 and center which
corresponds to the origin of its relative coordinate system.

the time being) the lower limbs and torso. The parameters for
the model consist of the physical size of each body part, their
respective minimum and maximum rotations in either X , Y
and Z in regard to the pivot point and the sensor placement
on the body parts. Panel b of Figure 4 zooms in on the origin
of the world coordinate system to clearly display how the X ,
Y and Z principal axes are oriented. This panel also shows
the rotations α, β and γ in regard to these axes. The body

consists of 7 parts: the torso (T ), the left and right part of the
pelvis (PL and PR), the upper left and right legs (UL andUR),
the lower left and right legs (LL and LR).

These body parts each have a start and an end point which
in most cases serve as joints, besides EPwB these points are
designated by an acronym derived from the name of the
corresponding body part: the sternum (EPS ), the left and right
hip (EPwHL and EPwHR), the left and right knee (EPwKL and EPwKR),
the left and right ankle (EPwAL and EP

w
AR). The sensors in Figure 4

are designated with a capital S with the body part they are
attached to as their subscript, e.g. ST is the sensor placed on
the torso. Each sensor is represented using a 3D-model of the
PCB on which the photodiodes are indicated together with
the center of the PCB and its principal axes.

Our human body model, which consists of the aforemen-
tioned components, is an interconnected kinematic chain that
is modeled as a set of matrix equations. As an example the
equations that define the lower right joints EPwHR, EP

w
KR and EP

w
AR

are given in Equation 2:


EPwHR = EP

w
B + R

α,β,γ
B · EVPR

EPwKR = EP
w
HR + R

α,β,γ
B · Rα,β,γUR · EVUR

EPwAR = EP
w
KR + R

α,β,γ
B · Rα,β,γUR · Rα,β,γLR · EVLR

EVPR =

 0
−dPR
0

 , EVUR =
 0

0
−dUR

 , EVLR =
 0

0
−dLR

 (2)

with R a 3D-rotation matrix given by the body parts’ parent
rotation defined by α, β and γ and a 3D-translation vector
EV defined by the size of the body part d . In the example of
EPwKR the point in world coordinates will be defined by the
joint of the node EPwHR, the combined rotations of the pelvis
and upper right leg (which corresponds to the product of the
matrices Rα,β,γB and Rα,β,γUR ) and the translation vectors EVUR.
This vector equals to a negative displacement dUR in the Z -
axis that corresponds to the actual length of the upper right
leg. This set of equations is the same for the left portion of
the body and can be expanded for the other body parts.

To introduce the WBSN sensor nodes attached to the body
parts into the model, the node’s attributes are first defined in
their relative coordinate system with the center of the PCB
as its origin. In this case, the configuration of the photodiode
array Srn is described by as a 3x3-matrix:

Srn =

X rPD1
X rPD2

X rPD3
Y rPD1

Y rPD2
Y rPD3

Z rPD1
Z rPD1

Z rPD3


with X rPD, Y

r
PD and Z rPD the relative coordinates of PD1, PD2

and PD3. In order to transform these relative coordinates
to the world coordinate system, information regarding the
placement of the sensor on the subject’s body is required. This
corresponds to defining a displacement vector EVSn relative to
the body part’s parent joint. Equation 3 demonstrates how the
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sensors’ world coordinates are calculated:

SwUR = PwHR + R
α,β,γ
B · Rα,β,γUR · (SrUR + VSUR )

SwLR = PwKR + R
α,β,γ
B · Rα,β,γUR · Rα,β,γLR · (SrLR + VSLR )

SwUL = PwHL + R
α,β,γ
B · Rα,β,γUL · (SrUL + VSUL )

SwLL = PwKL + R
α,β,γ
B · Rα,β,γUL · Rα,β,γLL · (SrLL + VSLL )

SwT = PwB + R
α,β,γ
B · Rα,β,γT · (SrT + VST )

(3)

with VSn = [ EVSn | EVSn | EVSn ] for every sensor array configura-
tion Sn and Pwn = [EPwn |EP

w
n |
EPwn ] for every joint EPwn to which

the displacement vectors EVS are referred to. The displacement
vectors EVS can also accommodate other translations that are
not in the same direction as its subsequent body part, e.g. due
to body tissue. Rα,β,γ represent the rotations of the subse-
quent body parts and Sr represents the sensor configuration.
These equations yield the world coordinates Sw of all WBSN
nodes and their sensor elements in a Cartesian 3D-world
coordinate system. The individual sensor coordinates Sw of
every WBSN node can thus be described as a 3x3-matrix that
consists of the X , Y and Z coordinates. The combination of
all Sw can be regarded as the sensor system state SSwS which
can be written as a 3x15-matrix:

SSwS =
[
SwUR | S

w
UL | S

w
UL | S

w
LL | S

w
T
]

Next, the position and orientation of the HTC Vive base sta-
tions, LHA and LHB, are defined in the world coordinate sys-
tem. This information is necessary since the actual measured
lighthouse sensor data is relative to either LHA or LHB. These
points are defined by EPwLH , which describes the 3D-position
(X , Y and Z ), and a 3D-rotation (α, β and γ ) that can be
used to construct a rotation matrix Rα,β,γLH . The sensor system
state SSrS can thus be calculated by applying the rotation
matrix Rα,β,γLH and a translation with PwLH = [EPwLH |EP

w
LH |
EPwLH ]

to the individual sensor coordinates of SSwS as shown in the
following Equation:

SSrLHS = PwLH + R
α,β,γ
LH · SSwS

The result is two 3x15 matrices SS
rLHA
S and SS

rLHB
S that con-

tain the sensor coordinates in a relative Cartesian coordinate
system with their origin defined by EPwLHA and

EPwLHB . As a last
step (to translate the sensor coordinate data into lighthouse
azimuth and elevation data) every column of either matrix
SSrLHS , containing Cartesian coordinates, can be converted
to its spherical counterpart of which the range is discarded.
As mentioned before, the HTC Vive base station’s architec-
ture deviates from the traditional spherical coordinate system
definition. The HTC Vive lighthouse azimuth θLH and ele-
vation ψLH data is more closely approximated using the fol-
lowing equations that make use of the four-quadrant inverse
tangent function (tan−1):

θLH (k) = tan−1
SS

rLH
S (Y ,k)

SS
rLH
S (X ,k)

ψLH (k) = tan−1
SS

rLH
S (Z ,k)

SS
rLH
S (X ,k)

where the indices of the SSrLHS argument refer to the row
and column of the matrix that correspond to either the X ,
Y or Z sensor coordinate and k the sensor’s identifier. When
applied to both SS

rLHA
S and SS

rLHB
S , two 2x15-matrices M c

LHA
and M c

LHB are calculated (hence the superscript c), which in
turn can be written as a combined 2x30-matrixM c

LH :

M c
LHA =

[
θS1 θS2 . . . θS15
ψS1 ψS2 . . . ψS15

]
M c
LHB =

[
θS1 θS2 . . . θS15
ψS1 ψS2 . . . ψS15

]
M c
LH =

[
M c
LHA ,M

c
LHB

]
C. PROBABILISTIC POSE ESTIMATION
Up to this point, we have established a forward parametric
human body model that can be seen as a kinematic chain
which can be used to generate sensor data M c

LH based on
the position of the HTC Vive base stations EPwLH , the sensor
configuration Sr , displacement vectors EV that define either
size of the body parts or the placement of the sensors,
a model’s origin point EPwB and rotations of the body parts
Rα,β,γ . While a number of these parameters are dependent on
the measurement setup and test subject, the origin point EPwB
and rotations of the body parts α, β, γ are the variables which
are used to estimate the actual pose of the subject throughout
a simulation or experiment.

Since we have a priori information concerning which rota-
tions can be expected for every joint, a number of parameters
can be discarded resulting in a 14-element vector E�:

E� =
[
EPwB(X ), EP

w
B(Y ), EP

w
B(Z ), αB, βB, γB, βUR, γUR,

βLR, βUL , γUL , βLL , βT , γT
]

This vector can be used to generate a sensor system pose, and
consequently the sensor azimuth and elevation data M c

LH ( E�)
that is the input for our probabilistic pose estimation algo-
rithm. This algorithm will minimize the difference between
the measured lighthouse azimuth and elevation dataMm

LH and
the calculated azimuth and elevation data M c

LH ( E�). To per-
form the minimization, a likelihood function L( EMm

LH |
E�) for

a measurement Mm
LH given a parameter vector E� is defined.

This likelihood function assumes Gaussian error distributions
on the measured data and can be written as follows using the
vectorized versions EMm

LH and EM c
LH ( E�) of the matrices Mm

LH
and M c

LH ( E�):

L( EMm
LH |
E�) = e

[
−

1
2 ·( EM

m
LH−
EMc
LH ( E�))

T
·6

−1
m ·( EMm

LH−
EMc
LH ( E�))

]

with 6m being the distribution’s covariance matrix that is
set to be a scaled identity matrix multiplied with a noise
distribution σm for the azimuth and elevation:

6m = σm · I

Using the likelihood function a posterior probability func-
tion for the parameter vector E� can be calculated given a
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measurement EMm
LH , utilizing Bayes rule:

P( E�| EMm
LH ) =

L( EMm
LH |
E�) · P( E�)∑

E�

[
L( EMm

LH |
E�) · P( E�)

]
with P( E�) the prior distribution function for E� which cor-
relates to a set of constraints for the parameter vector. This
allows further utilizing the a priori information regarding the
rotation ranges of the joints. To achieve the human body pose
estimates, the parameter vector E�est will be estimated by
minimizing the negative logarithm of the posterior probabil-
ity function using an unconstrained non-linear minimization
function:

E�est = argmin
{
− log

[
P( E�| EMm

LH
]}

IV. SIMULATED RESULTS
By combining these sets of equations in conjunction with
our parametric human body model and probabilistic pose
estimation algorithm, we are able to simulate the efficacy
of the proposed human body pose estimation system. For
multiple simulations an environment was set up in which two
virtual HTC Vive base stations were positioned. A simulated
lower human body, to which fiveWBSNnodeswere attached,
was described by defining the parameters of the human body
model together with the sensor placement. By defining a
motion/gait pattern the simulated test subject can move in
the environment in a given time period sampled at a fixed
interval. Every time step corresponds to a snapshot of the sim-
ulated subject’s pose that was used as our ground-truth. Using
our proposed models we can simulate WBSN lighthouse data
to which sensor noise can be applied. The simulated measure-
ment data will in turn be used as in the input for our pose esti-
mation algorithm in combination with the parameters of the
forward parametric human bodymodel. In these simulations a
walking trajectory was often chosen from the back of the sim-
ulated environment to the front where the HTC Vive base sta-
tions were positioned. Figure 5 shows a representation of one
of these simulation experiments. In this representation four
snapshots were chosen in which the estimated pose is shown
along the movement trajectory together with the ground-truth
pose as an overlay. The lighthouses in the environment are
indicated with an × at the corresponding position.
As can be seen in Figure 5, the ground-truth poses and

estimated poses differ only slightly even when we add more
sensor noise to the simulated measurements than we have
established through our sensor characterization. On the one
hand, the noise rejection of our proposed method can be
attributed to the use of the parametric human body model
(PHBM) which constrains the solution space due to the kine-
matic chain. On the other hand, the proposed model also
limits the rotation ranges of the joints. Some rotation ranges
can even be discarded thus reducing the parameter vector E� to
14 parameters for an articulated lower human body equipped
with 5 WBSN nodes. In previous work where the 6DoF pose
for every individual node (IN) was estimated to establish a

FIGURE 5. Visual representation of one of the simulations that were used
to verify the proposed algorithms and models. In this simulation a lower
human body was outfitted with 5 WBSN nodes, the former and the latter
were described in the human body model by defining its parameters and
sensor placement. The simulated test subject walked from the back to the
front of the defined environment, in which two lighthouses were
positioned. Both the estimated pose as the ground-truth pose are drawn
in this representation.

FIGURE 6. The efficacy of our proposed pose estimation technique based
on a parametric human body model that incorporates a kinematic chain
to estimating a body pose by using a combination of the 6DoF poses of
individual nodes was quantified in a simulation that added cumulative
sensor noise. As performance metrics the average error on both the
position and the orientation were used. Panel a) represents the average
error on the position whereas panel b) shows the average orientation
error. It is shown that in both cases the parametric human body model
approach boasts lower average errors in general and is less susceptible
to sensor noise. The region of interest is indicated with a gray
background in both panels.

body pose, the joint parameter vector for estimating the same
articulated lower human body with an equal amount of sensor
nodes would consist of 30 parameters (6DoF * 5 nodes).

In order to quantify the efficacy of using either parameter
vector E�PHBM (consisting of 14 parameters) or E�IN (consist-
ing of 30 parameters), the average position and orientation
errors were compared with added cumulative sensor noise.
Whereas the individual node approach does not benefit from
the rotational constraints nor a kinematic chain, the same
probabilistic pose estimation algorithm was used to approxi-
mate the human body pose. Using the aforementioned simu-
lation environment, these two approaches could be tested of
which the results are shown in Figure 6 where panel a) shows
the average position error and b) the average orientation error.
These results clearly show that a human body model with
a kinematic chain approach, which reduces the parameter
vector E�, has an overall much lower average error on both
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FIGURE 7. In a) our test subject was equipped with five WBSN nodes to
the upper legs, lower legs and torso. Based on the node placement on the
body and on the physical properties of the test subject, an estimated
body pose was generated that is shown as an overlay. Panel b) shows the
same estimated pose of the test subject by itself from a different
viewpoint. Panel c) Shows five snapshots of body pose estimates based
on a recorded motion pattern. The first three snapshots illustrate the
poses during a normal gait pattern in a straight line while the fourth and
fifth snapshot display the test subject lifting its right and left leg. While a
ground-truth reference could not be recorded at this time, the poses can
be easily distinguished.

the position and orientation. Additionally the individual node
approach is more susceptible to sensor noise, especially the
average orientation error quickly escalates. These results
prove that our proposed parametric human body model is
highly resistant to sensor noise. This feature is desirable in
a system that requires high accuracy and precision in its pose
estimates.

V. EXPERIMENTAL RESULTS
Trough iterative development and extensive simulations we
were able to create the algorithms that perform the human
body pose estimations using the generated gait patterns and
simulated sensor data with added sensor noise distributions.
These simulations also enabled us to quantify the efficacy

of the proposed technique. A number of experiments were
performed to verify the feasibility of the developed human
body model, probabilistic pose estimation approach and sim-
ulations in real-world circumstances. An office environment,
which measures 6.2m by 3.4m by 3.1m, was used as our
test environment. It was equipped with two HTC Vive base
stations and an off-the-shelve Wi-Fi router. Five WBSN
nodes were attached to a human test subject’s lower body,
i.e. the upper left and right legs, lower left and right legs and
torso as shown in Figure 7 panel a) with an overlay of the
estimated body pose by using the parametric human body
model. Panel b) of Figure 7 displays the same estimated body
pose by itself from a different viewpoint.

The test subject walked from the back of the test environ-
ment towards the front of the room where the lighthouses
were set up, marked with an× in Figure 7 panel c). Through-
out this recorded motion a number of motions and stances
were used, at first the test subject walked in a straight line
using a normal gait pattern after which the test subject raised
its right leg, switched to lifting its left leg and finishing in
a standing pose. Figure 7 panel c) displays five chosen snap-
shots of the estimated poses based on the recorded data. In the
first three snapshots the gait pattern is shown while snapshot
four and five display lifting respectively the right and left leg.
These estimated body poses can be easily distinguished and
certainly appear to reflect the reality.

A ground-truth reference that confirms the realism of
our estimated body poses however was not accomplished
throughout our real-world experiment due to practical con-
cerns. While a Qualisys motion capture system was available
to establish a ground-truth, the cameras used by such a mea-
surement system emit infrared emissions that interfere with
the infrared emissions emitted by the HTCVive base stations.
This IR interference disrupts the processing of the photodiode
information thus rendering the WBSN nodes virtually void
of the sensor information. We are currently working on a
solution to alleviate the lack of a ground-truth reference.

VI. DISCUSSION, CONCLUSIONS AND FUTURE WORK
By introducing a new hardware architecture based on a
WBSN topology we have created a novel approach to human
body pose estimation in a low-cost yet accurate and precise
fashion. The basis for our approach is powerful yet power-
efficient hardware that combines three sensor modalities.
These sensors (optical, acoustic and inertial) can be used to
complement one another to overcome their inherent flaws,
e.g. non-line-of-sight, integration drift, etc. by applying sen-
sor fusion techniques. In this paper, we limited ourselves to
only using a single modality, i.e. the optical detection of emit-
ted IR pulses and laser plane sweeps. Through its scalable
architecture and wireless data transfer capabilities combined
with NTP microsecond timestamps, which allows inter-node
synchronization, a significant step was been taken towards
attaining full body pose measurements and estimations. As a
future addition to fully utilize and optimize the captured light-
house data, the synchronization pulses can be parsed to gain
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additional information of the HTC Vive base stations. This
information contains e.g. device specific calibration offsets
of the horizontal and vertical rotors.

While the redesigned hardware proves to be a valuable
contribution, this first iteration of the parametric human body
model also shows great promises for the body pose estimates.
Given the structure of the kinematic chain, other joints and
body parts can be easily added with their respective rotational
ranges and physical sizes. Although currently only the sensor
model for the HTC Vive sensor is implemented, the other
sensor modalities will follow to further improve the robust-
ness, accuracy and precision of the pose estimates. The sensor
processing and pose estimation techniques could be further
optimized in future work as well. In this work single snap-
shots of sensor data are processed to attain the body poses
while time-sequence processing could be used instead. This
type of processing could be achieved by applying a moving-
window technique on the sensor data or by using a particle
filter in conjunction with our probabilistic pose estimator.

Although we have established a simulation environment
that allows us to produce realistic sensor data in combination
with the measured noise distributions, experiments where a
ground-truth reference can also be recorded are needed for
benchmarking purposes and further validation of the devel-
oped algorithms. This will give us a better insight into the
real accuracy and precision of our proposed human body pose
estimation system. We believe this can be achieved using our
Qualisys motion capture system in combination with active
IR LEDmarkers, instead of passive markers, placed at known
positions on the various WBSN sensor nodes. By using these
active markers, the IR emissions of the Qualisys cameras can
be disabled thus allowing us to capture the HTC Vive IR
sweeps and pulses to obtain theWBSN lighthouse sensor data
and simultaneously track the position and orientation of the
sensor nodes with the Qualisys system.
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