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ABSTRACT In this paper, a hierarchical region merging method is proposed for partitioning synthetic
aperture radar (SAR) image into un-overlapping scene area, such as forest regions, urban regions, agricultural
regions, and so on. The proposed method mainly consists of two steps: initial over-segmentation and
hierarchical regions merging. The over-segmentation uses the watershed transform to the thresholded
Bhattacharyya-coefficient-based edge strength map (BESM), and the hierarchical regions merging applies
a new region merging cost weighted by a gradually increasing orientated edge strength penalty. There is a
defect that the ratio-based edge detector widely used in homogeneous SAR image fails to distinguish the
transitions between uniform and texture regions in high spatial resolution SAR image, and yields an initial
over-segmentation result with some regions straddling multiple uniform or texture areas. To overcome this,
the Bhattacharyya coefficient is used to replace the ratio-based edge detector for extracting the ESM of a SAR
image by using a bi-rectangle-window configuration. Multi-scale windows are utilized to capture additional
edge information. A new region merging cost is proposed based on the Kuiper’s distance, weighted by a
new gradually increasing orientated edge strength penalty term. The hierarchical region merging criterion is
obtained with the increasing of the strength of the edge penalty. The effectiveness of the proposed method
is demonstrated by comparing it qualitatively and quantitatively with several state-of-the-art methods.

INDEX TERMS Synthetic aperture radar (SAR) image segmentation, Bhattacharyya coefficient, hierarchi-
cal region merging, Kuiper’s distance.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) imaging system is widely
used in various applications, such as environment surveil-
lance and change detection of the earth’s surface, due to
SAR’s active microwave imaging mechanism [1]. In SAR-
image-based information extraction and scene understanding,
SAR image segmentation is considered to be a fundamen-
tal problem (e.g., [2], [3]), which provides the structural
information of the scene by segmenting its SAR image into
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several disjoint homogeneous regions. SAR image segmen-
tation becomes more difficult than an optical image segmen-
tation because of the existence of speckle noise produced
by coherent imaging principle. One kind of the major SAR
image segmentation methods is the approach based on region
merging, which is widely used in SAR image segmentation
(e.g., [4], [5]) and optical image segmentation (e.g., [6]-[8]).

Starting from an initial partition, the region-merging-based
image segmentation method iteratively merges the most simi-
lar two adjacent region-pair based on a certain region merging
cost and is terminated while the region merging cost of the
most similar two adjacent region-pair is greater than a preset
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threshold. There are two major factors involved with this kind
of method: initial partitioning and region merging. Initial par-
titioning segments an image into over-segmentation, which
is an important step for generating high-quality segmentation
results. This is because the pixel set on boundaries in a final
segmentation result is a subset of the pixel set on the bound-
aries of an initial partition. Region merging consists of region
merging cost and criterion. A region merging cost determines
whether two adjacent regions should be merged into a large
region, and a region merging criterion is a procedure to find
out the candidate region-pairs that may be merged in the
region merging process.

A. INITIAL PARTITIONING

In the community of SAR image segmentation, one of the
widely used initial partitioning methods is the watershed
transform of the Edge Strength Map (ESM) of a SAR image
(e.g., [9]-[14]). The ESM is obtained by using gradient infor-
mation (e.g., [9], [10]) or the ratio of two means calculated
from two set of pixel values delimited by the parallel rectan-
gle bi-window (e.g., [11]-[14]). Due to the existence of the
multiplicative speckle noise in SAR images and the constant
false alarm rate of the ratio-based detectors (e.g., [15]-[17]),
the ratio-based initial partitioning methods outperform the
gradient-based ones in SAR images. However, the ratio-based
methods may result in the phenomenon that some initial
segmented regions straddle multiple homogeneous regions in
high resolution SAR images with abundant textures, as only
the first-order statistic was used in the ratio-based edge
detectors.

B. REGION MERGING

The region merging process is controlled by the region
merging cost that is generally designed by exploiting the
Statistical Similarity Measurement (SSM) of two adjacent
regions and the edge penalty term of a segmentation results.
The simple grayscale-statistics-based SSM in SAR images
will yield good segmentation for the low-resolution SAR
images composed of farmland scenes, but it can possibly
result in over-segmentation for high-resolution SAR images
with heavy textures [9]. Although some complex distribu-
tions can be used to remedy this issue (e.g., [18]-[20]), it may
still fail to find accurate segmentation regions because of
the mismatch between the adopted distribution and the real
distribution of SAR image pixels [21]. The introduction of
the edge penalty term in region merging cost can make the
boundaries of the segmented regions smoother. The length
and the strength information of the common boundaries of
two adjacent regions is used to generate the edge penalty
term (e.g., [9], [22], [23]), and itis gradually increased during
the region merging. This kind of edge penalty has two ben-
eficial functions: 1) reducing influence of the inaccuracy of
parameter estimation in the incipient stage of region merging,
and 2) producing hierarchical segmentation results with the
change of the strength of a penalty term.
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In this paper, Bhattacharyya-based ESM (BESM) is
presented to replace the above mentioned Ratio-based
ESM (RESM) in the watershed based initial partition. This
is inspired by the demonstration that the Bhattacharyya coef-
ficient is an efficient candidate for contrast measure in optical
images (e.g., [24], [25]) and polarimetric and interferometric
SAR images [26]. BESM is generated by calculating the
Bhattacharyya coefficient between two statistical histograms
of the two pixel sets in two parallel rectangles on oppo-
site sides of the pixel. Multiple direction and scale parallel
rectangles are used to capture additional edge information.
The region merging cost is produced via weighting the SSM,
which is measured by the Kuiper’s distance of two adja-
cent regions, by gradually increasing orientated edge strength
penalty term. The main contributions of this paper are sum-
marized as follows: 1) the Bhattacharyya coefficient of two
statistical histograms is used to extract ESM of a SAR image,
which is competent to detect the transitional area between
homogeneous and heterogeneous regions in high resolution
SAR images with abundant textures; 2) a novel Gradually
Increasing Orientated Edge Strength Penalty (GIOESP) term
is presented, effectively exploiting orientated BESM; and 3) a
novel region merging cost is designed via combination of the
Kuiper’s distance and the GIOESP term with the product-type
fusion.

This paper is organized as follows: We briefly survey the
closely related literature in Section II. Section III reviews
the definition of the SAR image segmentation and describes
the outline of the proposed method. The initial partition
method based on the Bhattacharyya coefficient is proposed
in Section IV and, moreover, its characteristics are analyzed
through comparison with the ratio-based initial partition.
In Section V, a hierarchical region merging process with the
GIOESP weighted Kuiper’s distance is presented. Section VI
reports the experimental results on synthetic and real SAR
images. The proposed method is qualitatively and quanti-
tatively evaluated in comparison to several state-of-the-art
methods. Finally, we conclude this paper in Section VII.

Il. RELATED WORK

In this section, we survey the related work about initial
over-segmentation methods for SAR images in Section II-A
as well as region-merging-based segmentation methods of
SAR images in Section II-B, respectively.

A. INITIAL OVER-SEGMENTATION

A lot of methods have been proposed to generate initial
over-segmentation results (or referred to as superpixels)
on optical images. The Turbopixels method [27] generated
regular and uniform initial over-segmentation results using
level-set method driven by a geometric flow under uniformly
distributed seeds. The locations of initial seeds and the insta-
bility of the level-set method maybe affect the accuracy
of boundary localization of this method. Based on the
K-means clustering with limited searching space, SLIC [28]
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has efficient performance; however, an auxiliary operation
has to be taken to ensure that the produced initial partition
regions are connected. Graph-cut [29] and N-cuts [30] gen-
erate regular and compact over-segmentation results using
graph-based methods, but which result in higher time and
space complexity. Entropy-based algorithm [31] generates
over-segmentation results with regular size, but with higher
time complexity yet. Because of parallel implementation
of watershed transforming [32], watershed-based algorithms
generate over-segmentation results efficiently, whose adher-
ence to image boundaries depend on the accuracy of the ESM
extracted from initial images.

Generally, the gradient-based and the ratio-based methods
are two approaches to generate ESM in SAR images, e.g.,
[9], [13] and [16]. This has been discussed, in [13], that the
ratio-based method outperforms the gradient-based one in
SAR images. In [14], we improved the ratio-based approach
to compute ratio of averages through rotating bi-windows
for initial over-segmentation of low-resolution SAR images.
But this improved method yet fails to find out bound-
aries between homogeneous area and texture area, and thus
results in under-segmentation regions around transition areas
between different kinds of texture areas. Utilizing coefficient
of variation (CV) as a measurement of homogeneity of a
region, literature [33] proposed a region-growing-based ini-
tial over-segmentation method starting from an initial seed
set. Because of mandatory operation for incorporating an
un-labeled single pixel into the adjacent region with the
lowest CV and inaccuracy of CV estimated from a small
region, this method produced initial segmentation region with
imprecise edge location and under-segmentation. Employ-
ing finite mixture models, literature [34] generated initial
over-segmentation with low under-segmentation error, how-
ever, whose accuracy of edge localization and compactness of
image regions suffered from inaccurate estimation of param-
eters of statistical models.

B. HIERARCHICAL REGION MERGING
Region merging process involves similarity measurement of
two adjacent regions, order of merging regions and genera-
tion of final segmentation results (or termination criterion).
Based on statistical modeling of images data and special
region merging order, SRM [35] generated good segmenta-
tion results, but its performance depended on the designed
merging order in a large part. Using the region adjacency
graph (RAG) representation of initial segmented region gen-
erated by operating watershed transform on gradient magni-
tude, literature [36] presented a fast greedy region merging
algorithm with a small research space in the nearest neighbor
graph of the RAG. In [37], a set of information theory based
hierarchical region merging algorithms were proposed by
using a statistical partition selection criterion to obtain final
segmentation results.

For the community of SAR image segmentation, image
regions are usually described by using parameter or
non-parameter statistical model to deal with speckle noise
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produced by imaging system. Based on the statistical
model, the similarity or dissimilarity between adjacent
regions is designed. A region-based hierarchical Markov
random field (MRF) model was proposed for generation of
multi-resolution segmentation, in [38], and Gamma distribu-
tion was used to describe image regions, which limited this
method into segmentation of homogeneous low-resolution
SAR image. In order to cope with the influence of speckle in
SAR images, literature [5] employed the generalized gamma
distribution for modeling SAR image regions and a MRF
model was used to carry out region merging, however its
method generating initial segmentation results may result in
the regions with serration boundaries.

Recently, the hierarchies of image segmentation have been
studied in the viewpoint of the representation and the perfor-
mance of hierarchical partition. In [39], authors studied three
methods to describe hierarchies of segmentation, saliency
maps, minimum spanning trees and ques flat zones, as well
as their equivalence. And, in [40], an evaluation framework
was proposed to measure the hierarchies of watershed-based
segmentation in the phase of edge localization and object
detection.

I1l. DEFINITION OF SEGMENTATION AND FRAMEWORK
OF THE PROPOSED METHOD

Let Q = {(x,y) : x € {1,2,...,N:},y € {1,2,...,N,}}
denote the discrete 2-D rectangular grid, where N, and N,
are the numbers of the rows and the columns of the grid,
respectively. A SAR image is defined as I(x,y) : @ — R,
where R is the real set. A segmentation )% of a SAR image
is to segment it into several disjoint regions, Q; C 2,k =
1,2,..., K, in which every region is delimited by a closed
and single pixel wide contour, 02,k = 1,2,...,K, and
is homogeneous with respect to a given criterion. The seg-
mentation fN={Q,k = 1,2, ..., K} and the corresponding
contour IN={0Q, k = 1,2, ..., K} satisfy [9]:

(DUE_ e UE_ 09 = @

(Vi #j, 2N Q=10

@DV, j, QN =9

(Iv)02; N 0K # W if regions Q; and Q; are adjacent.
ey

(7) implies that any pixel in an image belongs either to aregion
or to a boundary, (ii) indicates that the segmented regions
are mutually disjointed, and (iii) illustrates that the pixels
belonging to any closed one-pixel boundary are not part of
any region. If two regions ; and 2; are adjacent, then their
shared common boundary is 9€2; N d€2; just as shown in (iv).

The Region Adjacent Graph (RAG) [36] is a convenient
way to represent image segmentation results. RAG is an undi-
rected graph denoted by RAG(V, E, W). The node set V =
{vk, k =1,2,..., K}indicates K regions in the segmentation
results. The edge set E is a subset of V x V. If regions 2
and €, are adjacent, then e,, = (v, ) € E exists in the
edge set E. The W is a |V| by |V| weight matrix, where,
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if en = (vk,vp) € E, then W(v, vp) and W(vp, 1) are
assigned region merging costs (computed by expression (9)
in Section V-C) of two adjacent regions €2 and €2, otherwise
they are assigned an infinite.

The framework of the proposed SAR image segmentation
method consists of the initial segmentation and the hierar-
chical region merging, as shown in Fig. 1. the initial seg-
mentation results can be attained via watershed transform of
the thresholded Multi-scale BESM (MBESM). Starting from
the initial partition, the most similar adjacent region-pair is
iteratively merged by employing the new region merging cost
that is designed by using the Kuiper’s distance of an adjacent
region-pair that is weighted by a Gradually Increasing Orien-
tated Edge Strength Penalty (GIOESP) term.

SAR image

Initial segmentation
Multi-scale Bhattacharyya-
based ESM (MBESM)

Watershed transform to )

MBESM

Initial partition

Hierarchical region merging
via GIOESP-weighted
Kuiper’ s distance

Segmentation

FIGURE 1. The framework of the proposed method.

|

IV. INITIAL PARTITION USING BHATTACHARYYA
COEFFICIENT

Since the process of region merging iteratively merges the
two most similar adjacent regions into a large region starting
from an initial partition, and the positions of the boundaries of
regions cannot be adjusted during this procedure, it is desired
that an initial partition satisfies the following property:

Vi € Nipi, HRJ' € E)’%Opt 1 Q; C R;. 2)

where, Ny, and Ny, indicate the initial and the optimal
segmentations, respectively. Expression (2) indicates that any
region in the initial partition is composed of the pixels that
belong to a common homogeneous region in the optimal
segmentation and the edges that need to be detected in the
optimal segmentation must be labeled in the initial partition.

Different from the Statistical Region Growing (SRG) [33]
and the RESM-based watershed transform [14] initial
partition methods, in this paper, the Bhattacharyya
Coefficient (BHC) of the two empirical distribution func-
tions estimated by using pixels in a multi-scale rotatable
rectangle bi-window is used to calculate the ESM of an
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original SAR image. The obtained ESM is named Multi-scale
Bhattacharyya-based ESM (MBESM). Then, the initial parti-
tion is generated via watershed transform on the thresholded
MBESM.

The BHC of a SAR image /(x, y) is calculated based on
the quantified version of the original SAR image. That is to
say, we first quantify a SAR image data on a finite number
of Q values, and the quantified image is I;(x,y) : @ —
{1,2,..., 0}. The quantization scheme used here consists
of a histogram equalization of the original SAR image and
reassignment of the level of the equalized image. Firstly,
a histogram equalization of the original SAR image is per-
formed, which defined by s; = 211;21 h (j), where h(k) is
the proportion of gray level k in the original SAR image.
Here k € {1,2,...,L} and 53 € [0, 1] are gray levels in
the original SAR image and the equalized level, respectively.
We can then obtain the quantified image 1,(x, y), I,(x, y) = p,
if spxy) € [(p — D/Q, p/Ql, else Iy(x, y) = Q.

Based on the quantified image /,(x, y), an orientated BHC,
BHC(x,y,0), of a SAR image is computed using a rotatable
parallel rectangle bi-window, as shown in Fig. 2(a). At the
center of a pixel point (x,y), two histograms are calcu-
lated from two sets of quantified intensity values in I,(x, y)
covered by these two parallel rectangle widows, as shown
in Fig. 2(c). The obtained two histograms are noted by A, (1)
and iy(n),n = 1,2, ..., Q, respectively (see Fig. 2(d)), and
the orientated BHC, BHC (x, y, 0), at point (x, y) is calculated
by

Q
BHC (x,y,0) = —1In | Y (h (k) -y k))'* | (3)
k=1

angle 6 is uniformly sampled in the interval [0, ] in the
computation. Eight orientations are used in all our applica-
tions. Then, the second-order Savitzky-Golay filtering [41] is
used to enhance local maxima and smooth out false peaks in
the direction orthogonal to 6 in BHC(x, y, 0). Figs. 2(b)-(e)
show an example of a computation of an oriented BHC of a
SAR image. In Fig. 2(e), a strong oriented BHC means that
the corresponding pixel point is likely to lie on the boundary
between two distinct regions.

For a given SAR image, to detect trivial as well as some
important edge information of the SAR image, three BHCs,
BHC(x, y, 0),s = W1, W, W3, are calculated at three scales:
[Wl = {1/29 W/z’ ds 0, (.X, y)}v W2 = {19 w, d7 0, ()C, )’)},
and W3 = {2[,2w,d, 0, (x, ¥)}]. One then obtains the final
oriented BHC of the SAR image by linearly combining the
three BHCs:

BHC (x.y.0)= )
se{W;, W, W3}

os - BHC (x,y,0) “4)

where s indicates scales, and the parameters o represent
the prior knowledge about the three BHCs with different
scales. There are more trivial details resulted from the speckle
noise in the BHC obtained by using the small scale Wi,
and, by comparison, more important information about the
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FIGURE 2. Oriented Bhattacharyya coefficient (BHC) of two histograms. (a) shows a rotatable parallel rectangle bi-window W = {/,w,d, 6, b(x, y)} ata
center pixel point (x, y). (b) gives an intensity-format SAR image, in which a parallel rectangle bi-window centered at a center pixel, represented by a
black solid circle, and rotated through ¢ angle around on this center pixel exists. A quantified version of the SAR image in (b) is shown in (c), where the
quantitative level Q is 70. This quantified image is used to calculate the BHC of the original SAR image. In (d), the gray and the black distributions are the
histograms of the quantified intensity in the gray and the black rectangle windows in (c), respectively. (e) shows the BHCs of the original SAR image
shown in (b) that are calculated by using each pixel along the orientated angle /4, where the length and the width of each rectangle window are 9 and
4 pixels, respectively, and the space between these two rectangles is a single pixel. Note that (b) displays an amplitude-format SAR image for an

illustrative purpose.

FIGURE 3. Comparisons of initial partition results produced by the proposed BHC-based watershed transform, the RESM-based watershed
transform [14] and the SRG [33]. (a) The thresholded BHC of the quantified image in Fig. 2(c) calculated by using three bi-windows configures:

w, ={11,4,1,60 ={0,7/8, ..., (Ir)/8}}, W, = {21,8,1,0 = {0, /8, ..., (7x)/8}}, and W5 = {41,16,1,0 = {0, =/8, ..., (7x)/8}}. (b) Initial partition
result by the proposed BHC-based watershed transform. (c) Initial partition result by the RESM-based watershed transform [14]. (d) Initial partition
result by the SRG [33]. (e) [respectively, (f) and (g)] Zoom of a local rectangle area extracted from (b) [respectively, (c) and (d)].

boundaries of an original SAR image exists in the BHC
produced by utilizing the large scale W3. Taking the maxi-
mum response over orientations produces our ESM at each
location:

BHC (x,y) = pmax {BHC (x,y, 0)} 5

It is well known that the number of regions generated by
using the watershed transform [32] on an ESM is determined
by the number of local minima in the ESM. A mass of local
minima in an ESM lead to fragmentized regions, which will
be alleviated by a simple o percentile-based thresholding
operation of the ESM, as was done in [14]. Here, the same
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thresholding operation is done on the BHC, BHC(x,y),
to produce a thresholded BHC and then the initial partition
of the SAR image is generated utilizing watershed transform
on the thresholded BHC.

Fig. 3 shows the thresholded BHC of the SAR image
in Fig. 2(c), as well as the initial partition results obtained
by the BHC-based watershed transform, the RESM-based
watershed transform [14], the SRG [33], and their zooms
of local rectangle areas. The initial partition results in
Fig. 3(b), (c) and (d) consist of 2089, 2750, and 8289 regions,
respectively. Moreover, the most of edges in the SAR
image are detected and precisely located by the proposed
BHC-based method. However, some important edges in
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the SAR image cannot be detected by the RESM-based
method and the SRG method precisely. The SRG method
also generates more fragmentized regions than the other two
methods.

V. HIERARCHICAL REGION MERGING WITH GIOESP
WEIGHTED KUIPER'S DISTANCE

The goal of a region merging is merging adjacent regions
starting from an initial partition to generate the final seg-
mentation results, which is executed by iteratively merg-
ing the most similar adjacent region-pairs under the control
of a region merging cost. The order of merging adjacent
region-pairs in a region merging process and the quality
of final segmentation results are determined by the region
merging cost. In this section, the Statistical Similarity Mea-
sure (SSM) based on the Kuiper’s distance [42] between
two histograms calculated from the two adjacent regions is
proposed to measure the similarity of two adjacent regions.
In order to restrict the effect caused by inaccuracy of esti-
mated histograms of two adjacent regions on final segmenta-
tion results, a Gradually Increasing Orientated Edge Strength
Penalty (GIOESP) using Orientated Bhattacharyya Coeffi-
cient (OBHC) is proposed to weight the Kuiper’s distance of
two adjacent regions.

A. SSM OF TWO REGIONS USING KUIPER'S DISTANCE

An SSM is used to judge whether two pixel-value sets in
two adjacent regions are drawn from the identical probability
distribution. In the community of SAR image processing,
the SSM between two adjacent regions is designed based on
the hypothesis that the pixel-value sets in regions obey a cer-
tain probability distribution, such as Gamma distribution [5],
GV distribution [18], and so on. The main problem with these
methods is with the parameters’ estimation of these distribu-
tions and the model mismatch between the adopted distribu-
tion model and the SAR image data. The Kuiper’s distance
between two histograms estimated from two adjacent regions
is used to determine whether the two adjacent regions are
drawn from an identical probability distribution model.

Let 21, Q22 € Nk be two adjacent regions in a segmenta-
tion with K regions, and k1 (k) and ha(k), k = 1,2, ..., Q, are
histograms, with Q bins, of regions 2] and €2,, respectively.
They are calculated by using the quantified image I, (x, y) of
original SAR image I(x,y) with quantization level Q. The
standard K-S distance [42] is used to measure the difference
between hy(k) and hy(k), which is defined as the maximum
value of the absolute difference between two cumulative
distribution functions S{(k) and Sy(k),k = 1,2,...,0.
These two cumulative functions are respectively calculated

k
from the two histograms & (k) and ha(k), S; (k) = Y_ h; (),

=1
i = 1,2. It has been shown [42] that the stanc{ard K-S
distance can effectively measure the difference between two
cumulative distribution functions when the maximum value
of the absolute difference between these two cumulative
distribution functions occurs around the median values of
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these two calculated histograms. However, this measurement
may be failed if the maximum value happens at the tails of
these two distribution function. The Kuiper’s distance [42] is
introduced to measure the similarity of two adjacent regions
in this paper, which is a variant of the standard K-S distance
mentioned above, to improve the performance of the standard
K-S distance. The Kuiper’s distance between two cumulative
distribution functions is defined as [42]

V@1, 9) = max ($i(k) ~ $:k)
+ max ()= Sik).  (©)
k=1,2,--,0

As the same technique used in [42], considering the influ-
ence of the areas of two adjacent regions on the statistical
measure V, an area-weighted Kuiper’s distance D is used to
measure the similarity of the two adjacent regions [43]:

0.24
D(R1, 22) = (/N +0.155 + \/—N_E)V(Ql, Q). (D)

where N, = N1 x N2/(N1 + N2), and Ny and N, are areas
of the two adjacent regions, respectively. A large value of D
means a greater dissimilarity between the two regions.

In this paper, replacing the standard K-S distance with
the Kuiper’s distance makes the best of the sensitivity
of the Kuiper’s distance at the tails of two probability
distributions [42] to measure the similarity of two adjacent
regions. It is a fact that the pixel values in a high-resolution
SAR image obey a heavy-tailed probability distribution. This
property coincides with the sensitivity of the Kuiper’s dis-
tance, so it is convinced that the Kuiper’s distance is more
effective in measuring similarity of two adjacent regions
in a high-resolution SAR image than the standard K-S
distance.

B. GIOESP-WEIGHTED REGION MERGING COST

It has been shown [4], [5], [9], [18] that the penalty or the reg-
ularization mechanism plays an important role in obtaining
meaningful segmentation results. The mechanism is imple-
mented by introducing prior information of a segmentation
result into a region merging cost, which generally involves
the length of boundaries, the area of each region, or both. The
goal of the penalty term in a region merging cost is to pro-
duce the final segmentation results possessing some desired
properties, such as smoother, bigger and fewer regions and
boundaries. In practice, the limitations of the final segmen-
tation results mentioned above are necessary, since there
are a lot of fragmentized regions and rough boundaries in
the segmentation results, which are resulted from noise and
textures in an image. Due to existence of strong speckle noise
in a SAR image, this is even more severe in a SAR image
segmentation.

In this paper, a Gradually Increasing Orientated Edge
Strength Penalty (GIOESP) of a common boundary between
two adjacent regions is proposed based on the oriented
BHC (OBHC) and length of the common boundary.
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The GIOESP, w(£21, €27), is defined as

w (21, Q) = |F1—2|L’
(OBHC (x,,0.)))"
L= Z (l—exp{— . .
(.)€l 2 K?

®)

where I'1 » is a set of pixel coordinates on the common
boundary between two adjacent regions €21 and €2;. |[I'1 ] is
the cardinality of the set '} 5, i.e., the length of the common
boundary I'y 2, and OBHC (x,y, 6(x.y)) is the oriented BHC
of a pixel (x,y) along the direction 6y that is estimated
by the polygon approximation of the common boundary. K
is a parameter which is used to tune the strength of the
penalty term, and the strength is in inverse proportion to the
parameter K.

C. HIERARCHICAL REGION MERGING CRITERION AND
IT'S PROPERTIES

To obtain satisfactory segmentation results, it is necessary to
combine the SSM and the GIOESP to form a region merg-
ing cost to determine whether two adjacent regions can be
merged. The product-type fusion of the SSM and the GIOESP
is used to construct region merging cost, as following:

Kk (821, 822) = w (821, ) - D (21, §22) . &)

As shown in Algorithm (1), a hierarchical region merg-
ing criterion is proposed based on the region merging cost
Kk (21, Q).

The proposed region merging criterion, (i.e., Algorithm 1),
starts from an initial partition and its RAG expression. The
hierarchical segmentation results are obtained by gradually
increasing of parameter K. The region merging process is
terminated when all pixels in the image are segmented into
one region. There are two parameters, & and Ty, needed to
be set, which respectively affect the number of levels and the
number of the region of each level in the outputted hierarchi-
cal segmentation tree. The smaller « is, the greater the number
of levels there are in the hierarchical segmentation tree, and
the number of regions in each level of the segmentation tree
is in direct proportion to the parameter 7yerg.

Observe that the output of the Algorithm 1 is a tree, which
is composed of hierarchical segmentation results and whose
leaf nodes consist of the finest segmentation regions and
root node is the image itself. Fig. 4 shows an example of
a hierarchical segmentation tree of a synthetic SAR image.
From the Fig. 4, we can see that the expression of the hier-
archical segmentation tree gives one a chance to choose the
segmentation regions to satisfy different applications.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

This section shows the experimental results of the proposed
method for synthetic and real SAR images. In addition,
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Algorithm 1 Hierarchical Region Merging Criterion
Input: Initial segmentation results N;,; by the
MBESM-based watershed transform of a SAR image.
QOutput: Hierarchical region merging results shown by a
tree.
1: Initialize i = 0 and K = 0.01 in Eq. 8
2: Initialize the RAG, RAG(V;, E;, W;), of the initial par-
tition results N;,; using the region merging cost, Eq. 9,
to compute edgears weight of the RAG
3: while the number of nodes in RAG(V;, E;, W;) is greater
than one and K < 2
Find the minimal edge enin from the RAG(V;, E;, W;)
: while the weight w(epy) is not greater than the thresh-
old Tmerg
6: Merge two nodes, Vmin 1 and vpin_2, connected by
the edge emin
7: Update the weight of the edges connected to node
Vmin_1 OF Vmin 2 in the RAG(V;, E;, W;) using Eq. 9
8: Find the minimal edge e, from the RAG
(Vi, Ei, Wi)
9:  end while
10: Update K = K + «, save the RAG(V;, E;, W) into

the ith level of hierarchical tree, Viy; = Vi, Eiy1 =
Ei,Wiy1 =W,andi=i+ 1.
11: Recalculate the weights of all edges in the

RAG(V;, E;, W;) using region merging cost, Eq. 9
with the updated parameter K

12: end while

13: return the hierarchical tree of the segmentation results.

the method is compared with several state-of-the-art methods,
i.e., MDL [4], RCBLP [14], IRGS [9], and CHUMSIS [44].
The Precision-Recall (P-R) framework [45] is used to quan-
titatively evaluate and compare the performance of different
segmentation methods for the boundary quality, as well as
the segment covering criteria, the Probabilistic Rand index
and the Variation of Information [45] are introduced for the
assessment of the region quality of segmentation results.
The proposed segmentation method includes several
adjustable parameters. The values of these parameters are
selected from a mass of experiments as their default setting
used for all segmentation experiments in this paper. The
quantitative level Q in the computation both of the BHC for
initial partition and the Kuiper’s distance of region merg-
ing is set to 10 for balancing between the robustness for
speckle noise and the detection of different texture features
in a SAR image. The bi-window configurations are set with
three scales: W; = {11,4,1,60 = {0,n/8,...,(T7)/8}},
W, = {21,8,1,0 = {0,n/8,...,(77)/8}}, and W3 =
{41,16,1,0 = {0, /8, ..., (7m)/8}}, to capture more edge
information in a SAR image. The weighted sum of these
three OBHCs are implemented to generate the BHC, whose
weights of the combination are 1 = 0.2, op = 0.3 and a3 =
0.5. The reason why the weights are used to combine the
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FIGURE 4. Hierarchical tree with N + 1 hierarchies (or levels) and each one is the segmentation result produced by the Algorithm(1) with a certain

parameter K.

(@ (b)

(d) (e)

FIGURE 5. Synthetic images and the their Ground Truths (GTs). (a) Synthetic image (S1) tessellated by different regions extracted from real SAR images
and its GT. (b)-(e) cartoon images (C1, C2, C3 and C4) tessellated by several disjoint regions with constant reflectance and their GTs, respectively.

OBHC:s to produce the HBC is that the OHBC generated by
using smaller scale W; includes more trivial details resulted
from speckle in a SAR image and one produced by utilizing
larger scale W3 possesses more important information about
boundaries in a SAR image because of noise suppression of
large bi-window. The region merging threshold 7}, and the
step o of the increasing parameter K in Algorithm(1) are set
to 1.0 and 0.001, respectively.

A. SYNTHETIC SAR IMAGE SEGMENTATION

Five synthetic SAR images are used in this paper to eval-
uate the localization accuracy of boundaries and the region
quality of different methods quantitatively. The synthetic
SAR image (S1) in Fig. 5(a) is tessellated by five texture
regions extracted from different real SAR images and the
others, shown in Fig. 5(b)-(e), are cartoon images tessel-
lated by several disjoint regions with constant reflectance.
Based on these four cartoon images (C1,C2,C3 and C4),
some simulated SAR images with different numbers of looks
are generated via the fully developed speckle model. The
Ground Truths (GTs) of these five synthetic images are shown
in Fig. 5(a)-(e)(bottom row), respectively.

Fig. 6 shows segmentation results produced by differ-
ent methods on synthetic SAR image S1 and simulated
SAR images generated by cartoon image C1 with different
numbers of looks. Observe that, from the experimental results
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TABLE 1. The number of regions produced by different methods for
cartoon scene C1 with different numbers of looks.

CHUMSIS | MDL | IRGS | RCBLP | proposed
CI(1) 256 73 139 118 48
CI1(2) 224 128 75 110 48
C1(4) 125 141 73 105 61

Notes: C1(1), C1(2) and C1(4) indicate 1-look, 2-look and 4-look synthetic
SAR image generated by fully developed speckle model with cartoon image
C1, respectively.

on the synthetic SAR image S1(see top row in Fig. 6), our
proposed method fully gives correct segmentation results
along with precision location of boundaries. However, all the
other four comparing methods do not fully produce correct
segmentation results and generate boundaries with impre-
cise location resulted from the existence of abundant texture
information in S1. With respect to the experimental results
shown in Fig. 6 (the second row to bottom row) of simulated
SAR images generated by cartoon scene C1 with different
numbers of looks, it can be seen that these five methods can
detect the most boundaries of the foreground region but suffer
from over-segmentation in different degrees. The number of
regions of the foreground scene with different numbers of
looks is shown in Table 1. It is noticed that the proposed
method produces the fewest regions. For the single-look
case in the second row shown in Fig. 6, as the speckle
noise strengthens, the MDL method does not detect all of
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() (®) () (d (e)
FIGURE 6. Segmentation results of synthetic SAR image S1(top row) and simulated SAR
images(from second to bottom row) generated by cartoon image C1 with different numbers of looks
(single-look, two-look and four-look, respectively). (a)CHUMSIS [44] (b) MDL [4] (c) IRGS [9]
(d) RCBLP [14] (e) proposed.

(a) (b) () (d) (e)

FIGURE 7. Segmentation results of simulated SAR images(from top to bottom row) generated by cartoon image C2 with
different numbers of looks (single-look, two-look and four-look, respectively). (a) CHUMSIS [44] (b) MDL [4] (c) IRGS [9]
(d) RCBLP [14] (e) proposed.

the foreground regions, and the CHUMSIS and the IRGS with the precision location of boundaries and somewhat over-
methods tend to produce coarse boundaries. The RCBLP and segmentation. In contrast, the proposed method yields fewer
the proposed methods can detect most of foreground regions regions.
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(@) (b)

©

(d ©

FIGURE 8. Segmentation results of simulated SAR images(from top to bottom row) generated by cartoon image C3 with different numbers of
looks (single-look, two-look and four-look, respectively). (a) CHUMSIS [44] (b) MDL [4] (c) IRGS [9] (d) RCBLP [14] (e) proposed.

Fig. 7 to Fig. 9 display segmentation results produced
by different approaches on three groups of simulated SAR
images generated by three cartoon images, C2, C3 and C4,
respectively, with different numbers of looks, single-look,
two-look and four-look from top to bottom row in each
figure. When it comes to the segmentation results produced
by the MDL, the RCBLP and the proposed methods on
two-look and four-look simulated SAR images, which are
shown from the second to bottom row in each figure of
Fig. 7 to Fig. 9, it is not obvious to chose the best one visu-
ally. However, comparing with the CHUMSIS and the IRGS
methods, these three methods produce high quality results
with the high precision location of boundaries and without
under-segmentation. In terms of single-look simulated SAR
images, as the existence of the strong speckle noise, all of
these five methods tend to generate the segmentation results
whose boundaries locate in incorrect position. By compar-
ison, the RCBLP method does better than others. Our pro-
posed method outperforms the CHUMSIS and the IRGS
methods and is comparable to the MDL method. It is worth
noticed that, different from the MDL, the RCBLP and the
IRGS methods, the proposed method does not suppose that
the SAR images processed obey a certain statistical model.

B. REAL SAR IMAGE SEGMENTATION
In this section, six different real scenes (RS1, RS2, RS3, RS4,
RS5 and RS6), which are shown in the first column in Fig. 10
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and including agriculture, forest, urban and so on, are utilized
to testify the effectiveness of the five methods. The experi-
mental results displayed in Fig. 11 indicate that all the five
methods are competent in segmenting homogeneous regions
that are tessellated by agricultural scenes. However, compar-
ing to the proposed method, all the other comparing methods
fail in the detection of the boundaries between homogeneous
and texture regions and give obviously over-segmentation in
urban area(see the fifth and sixth rows in Fig. 11). Because
the urban areas shown in the fifth and sixth rows in Fig. 11
disobey the piecewise constant cartoon model that the MDL
and the RCBLP methods demand, these two methods result
in obviously over-segmentation and disappearance of bound-
aries between agriculture and urban areas. The segmenta-
tion results by the CHUMSIS and the IRGS methods show
the same characteristics as the MDL and RCBLP methods,
over-segmentation in urban areas and failure of detecting
boundaries of urban areas. Visually, the proposed method
gives better results for urban and forest areas, which benefits
from the novel ESM extracting method and the hierarchical
region merging criterion.

C. QUANTITATIVE PERFORMANCE ASSESSMENT

In order to evaluate the precision of boundary location of a
segmentation result quantitatively, the Precision-Recall (P-R)
framework is used to compare the boundaries detected by
an algorithm with the GT, where the Precision (P) is the
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FIGURE 9. Segmentation results of simulated SAR images(from top to bottom row) generated by cartoon image C4 with different numbers of
looks (single-look, two-look and four-look, respectively). (a) CHUMSIS [44] (b) MDL [4] (c) IRGS [9] (d) RCBLP [14] (e) proposed.

probability of the edge pixels of segmentation results to be
valid and the Recall (R) is the probability of the edge pixels
in the GT to be detected. The F-measure is the weighted har-
monic mean of R and P [45], which gives an overall boundary
quality assessment of a method. A larger F-measure indicates
that the edge location of a segmentation result of an image
is closer to the GT of the image. A powerful performance
descriptor, the P-R curve of a method, will be obtained by
changing a parameter of a method if the parameter exist. The
ideal segmentation result corresponds to the point (1,1) in the
P-R plane, which means that the boundaries of a segmenta-
tion result completely match the GT, and the better method
produces the P-R curve that is closer to the ideal point (1,1)
than ones generated by other methods.

For a set of algorithm segmentation results, related to
different hierarchies of a hierarchical algorithm, three quan-
titative indexes, the segment covering criteria (cov.), the
Probabilistic Rand Index (PRI) and the Variation of Infor-
mation (VI) [45], are used to assess the region quality of
the segmentation results with the GT. The cov. and the PRI
of a method are equal to one, respectively, indicate that the
segmentation result generated by this method fully matches
the GT. The closer to one the cov. and the PRI of a method
are, the better its performance is. And the VI measures the
distance between a set of segmented regions and the GT, so its
ideal value is zero.
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1) SYNTHETIC AND SIMULATED SAR IMAGES

Fig. 12 plots the P-R curve comparison of the five methods
for the synthetic SAR image S1. The recalls, precisions and
F-measures of them at the best hierarchy are listed in Table 2.
From Fig. 12 and Table 2, it can be seen that the proposed
method is superior to the other comparing methods in the
boundary quality, which means that the proposed method out-
perform the other methods in detection of transition between
different texture information.

Fig. 13 depicts the P-R curve comparisons of the
five methods for the single-look, two-look and four-look
simulated SAR images generated by the four cartoon
scenes C1,C2,C3 and C4, and their recalls, precisions and
F-measures of these images at the best hierarchy are also
listed in Table 2. From Fig. 13, it is obvious that, for
multi-look simulated SAR images generated by piecewise
constant cartoon scenes C1, the five methods obtain similar
P-R curve, but, for single-look SAR image, the CHUMSIS
method produces lower P-R value than the other methods.
However, from Table 2, the proposed method also achieves
slightly higher F-measure than the other methods, and,
Table 1 indicates that the proposed method produces the seg-
mentation results with the fewest regions, which means that
the proposed method gets the minimum over-segmentation in
the five methods. For cartoon scenes C2,C3 and C4, Fig. 13
and Table 2 illustrate that the MDL and the RCBLP methods
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(a) (b) (© (d)

FIGURE 10. Ground Truths (GTs) of the six real SAR images generated by manual operation with different persons.

are averagely better than the other three methods, whose scene into disjoint regions. When comparing the proposed
reason is the fact that these two methods were proposed to method to the CHUMSIS and the IRGS methods for pro-
segment the SAR image modeled with piecewise constant cessing cartoon scenes C2,C3 and C4, the proposed method
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() (b) (©)
FIGURE 11. Segmentation results of real SAR images.

obtains slightly higher F-measure than the IRGS method and
comparable F-measure with the CHUMSIS method.

Table 3 gives three region assessment indexes on synthetic
and simulated SAR images. From Table 3, we can see that the
proposed method obtains better PRI and VI indexes than the
other comparing methods at most cases. And the cov. indexes
obtained by these five methods for simulated SAR images are
comparable.

2) REAL SAR IMAGES

In order to evaluate the performance of a method using P-R
framework on real SAR images, the ground truths (GTs)
of the six real SAR images used in this paper are obtained
manually by different persons. Specifically, the GTs of each
one of these six real SAR images are labeled by more than
one person with their own interpretation for the image. The
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FIGURE 12. P-R curve comparison of the five methods for the synthetic
SAR image S1 with GT.

ground truths of the six real SAR images are shown in Fig. 10.
The precision (recall and F-measure) of a segmentation result
produced by a certain method are average values of the
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FIGURE 13. P-R curve comparisons of the five methods for the single-look, two-look and four-looks (from top to bottom row) simulated SAR
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images generated by the four cartoon scenes (C1, C2, C3 and C4) with GTs.

TABLE 2. Comparisons of recalls(R), Precisions(P), and F-measures(F) of the five methods for the synthetic and simulated SAR images (where the bold

fonts stand for the best F-measures).

0.6

0.2 04

0.6

Recall

(d)

number SAR CHUMSIS MDL IRGS RCBLP proposed
of look image R P F R P F R P F R P F R P F
N/A S1 0.62| 0.35| 0.45]| 0.74| 0.28| 0.41| 0.55| 0.28| 0.37| 0.65| 0.63| 0.64| 0.96| 0.84| 0.90
Cl 0.92| 0.88| 0.90| 0.86| 0.98| 0.91| 0.94| 0.95| 0.94| 0.94| 098] 0.96| 0.94| 0.98| 0.96
Lookl C2 0.78] 0.97] 0.86] 0.80] 0.98] 0.88] 0.89] 0.74] 0.81] 0.81] 0.95] 0.87] 0.81] 0.90] 0.85
C3 0.80[ 0.95| 0.87] 0.77] 1.00] 0.87] 0.77] 0.85] 0.81] 0.78] 0.98] 0.87] 0.79] 0.91] 0.85
C4 0.86| 0.90| 0.88] 0.78| 1.00| 0.88| 0.73| 0.64| 0.68| 0.79| 1.00| 0.88| 0.78| 0.90| 0.83
Cl 096 0.92| 0.94] 0.94] 0.93| 093] 0.94] 0.98| 0.96| 0.92| 098] 0.95| 0.94| 0.99| 0.96
Look? C2 0.741 0.99] 0.85] 0.80] 1.00] 0.89] 0.87[ 0.82] 0.84] 0.82] 0.89| 0.85] 0.80] 0.96] 0.87
C3 0.771 0.96] 0.86] 0.80 1.00] 0.89] 0.79] 0.85] 0.82] 0.76| 1.00[ 0.86[ 0.77] 0.97] 0.86
C4 0.84| 0.88| 0.86| 0.78] 1.00] 0.88| 0.86| 0.72| 0.79] 0.79| 1.00| 0.88] 0.79| 0.97| 0.87
Cl 0.95| 0.97| 0.96| 0.93] 0.95| 0.94] 0.95] 098] 0.96| 0.94| 0.97| 0.95| 0.95| 0.98] 0.96
Lookd C2 0.741 0.99] 0.85] 0.80] 0.97] 0.88] 0.85] 0.79] 0.82] 0.83] 0.90[ 0.86[ 0.80] 0.98] 0.88
C3 0.74] 0.99| 0.85] 0.80| 1.00| 0.89| 0.81| 0.84| 0.82] 0.77| 0.98] 0.86| 0.77| 0.99| 0.87
C4 0.78| 1.00| 0.88| 0.78] 0.99] 0.87| 0.84| 0.80| 0.82] 0.78| 1.00| 0.88] 0.78] 0.99| 0.87

TABLE 3. Region assessment indexes on synthetic and si

imulated SAR images with different numbers of looks (The bold fonts denote the best indexes).

number SAR CHUMSIS MDL IRGS RCBLP proposed
of look | image [ PRI| VI | Cov| PRI| VI [ Cov| PRI| VI | Cov| PRI| VI [ Cov| PRI| VI | Cov
N/A S1 0.95| 0.85| 0.83] 0.92] 0.94| 0.80| 0.89| 0.86| 0.74| 0.96| 0.57| 0.88| 1.00| 0.06| 0.98
Cl 0.13] 4.62| 0.25| 0.26] 2.16| 0.34| 0.23| 2.60| 0.24| 0.23| 2.56| 0.29| 1.00| 0.00| 0.57
Lookl C2 091 0.66| 0.76] 1.00| 0.09] 0.99| 0.99| 0.24| 0.96| 1.00| 0.12] 0.99] 1.00| 0.07| 0.98
C3 0.88] 0.82] 0.71] 0.96] 0.49] 0.92] 0.96] 0.49] 0.89] 0.96] 0.50] 0.91] 0.97] 0.37] 0.91
C4 1.00| 0.08| 0.99] 1.00| 0.07] 0.99| 0.95| 0.49| 0.88| 1.00| 0.08| 0.99| 1.00| 0.02| 0.99
Cl 0.12| 4.33| 0.20| 0.29| 2.01| 0.34| 0.47| 1.43| 0.47| 0.23| 2.56| 0.29| 1.00| 0.00| 0.57
Look?2 C2 0.92] 0.60| 0.76| 1.00| 0.06] 1.00| 1.00| 0.10| 0.98| 1.00| 0.14| 0.98] 1.00| 0.03| 0.99
C3 0.78] 1.22] 0.5T] 0.97] 0.41] 0.92] 0.97] 0.41] 0.90] 0.96] 0.50] 0.91] 0.97] 0.33] 0.91
C4 1.00| 0.07| 0.99] 1.00| 0.06] 0.99| 0.99| 0.11| 0.98| 1.00| 0.08| 0.99| 1.00| 0.02| 0.99
Cl 0.15] 3.64| 0.24]| 0.27] 2.24| 0.34| 0.26| 2.16| 0.29| 0.27| 2.34| 0.34| 1.00| 0.00| 0.57
Lookd C2 0.92] 0.60[ 0.76] 1.00] 0.05] 1.00] 1.00[ 0.09] 0.98] 1.00] 0.15] 0.98] 1.00] 0.02] 0.99
C3 0.88] 0.74] 0.72] 0.97] 0.37] 0.93] 0.97] 0.37] 0.91| 0.96] 0.50] 0.91] 0.97] 0.31] 0.92
C4 1.00 0.01] 0.99| 1.00] 0.06] 0.99| 1.00| 0.06| 0.98| 1.00| 0.07| 0.99| 1.00| 0.02] 0.99

0.8

precisions (recalls and F-measures,

respectively) calculated

by using the segmentation result to match every GT of the

image.

Fig. 14 plots the P-R curve comparisons of the five meth-

ods for these six real SAR images
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and Table 4 gives their

precisions, recalls and F-measures at the best hierarchy in the
hierarchical segmentation tree. Fig. 14 and Table 4 indicate
that, in most cases, the proposed method achieves better
P-R curve and F-measure than the other comparing methods,
which means that the precision of the edge location of the
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FIGURE 14. P-R curve comparisons of the five methods for the six real SAR images with GTs.

TABLE 4. Comparisons of recalls(R), Precisions(P), and F-measures(F) of the five methods for the six Real SAR images (where the bold fonts stand for the

best F-measures).

CHUMSIS MDL

IRGS RCBLP proposed

R P F R 3 F

R P F R P F R P F

RS1 0.80| 0.78| 0.79] 0.67| 0.87| 0.76] 0.80| 0.71] 0.75| 0.87| 0.75| 0.81| 0.75| 0.94| 0.83

RS2 0.51| 0.89| 0.65| 0.52] 0.88] 0.66| 0.72] 0.72] 0.72| 0.81| 0.79| 0.80| 0.73| 0.87| 0.80

RS3 0.68| 0.72| 0.70| 0.72] 0.78] 0.75] 0.76] 0.58| 0.66| 0.87| 0.61| 0.72]| 0.78] 0.80| 0.79

RS4 0.66| 0.90| 0.76| 0.65| 0.87| 0.74| 0.86| 0.72] 0.78] 0.93| 0.83| 0.88| 0.91| 0.79| 0.85

RS5 0.49| 0.86| 0.62]| 0.61] 0.65| 0.63| 0.67| 0.83] 0.74| 0.62| 0.77| 0.69| 0.74| 0.81| 0.77

RS6 0.65| 0.86| 0.74| 0.68]| 0.82] 0.74| 0.71] 0.83] 0.77| 0.72] 0.86| 0.79| 0.76| 0.87| 0.81

TABLE 5. Region assessment indexes on real SAR images with different scenes (The bold fonts denote the best indexes).

CHUMSIS MDL

IRGS RCBLP proposed

PRI| VI | Cov| PRI| VI | Cov| PRI| VI | Cov| PRI| VI | Cov| PRI| VI | Cov

RS1 0.87| 3.28| 0.36| 0.88| 2.31| 0.50| 0.90| 2.44| 0.57| 0.88| 2.12| 0.59| 0.92| 1.57| 0.76

RS2 0.88| 2.45| 0.53| 0.87| 2.66| 0.42| 0.87| 2.93| 0.51| 0.88| 2.34| 0.55| 0.90| 1.70| 0.78

RS3 0.87| 2.98| 0.45| 0.85| 2.59| 0.50| 0.87| 2.80| 0.50| 0.86| 2.41| 0.55| 0.92| 1.53| 0.74

RS4 0.88| 2.91| 0.45| 0.85] 3.29| 0.34| 0.85| 3.69| 0.34| 0.91| 2.38| 0.59| 0.93| 1.89| 0.77

RS5 0.84| 2.45| 0.48] 0.83] 2.87| 0.44| 0.88] 1.96| 0.64| 0.88| 2.06| 0.64| 0.89| 1.52| 0.76

RS6 0.97| 1.74| 0.58]| 0.97| 1.70| 0.58| 0.98| 1.53] 0.67| 0.98| 1.65| 0.69| 0.98] 1.05| 0.80

segmentation results produced by the proposed method is
higher than ones generated by the other comparing methods,
which is coincident with visually results shown in Fig. 11.

Table 5 illustrates three region assessment indexes on real
SAR images for different methods, which shows that the pro-
posed method achieves the best values in these five methods.
Table 5 indicates that the regions produced by the proposed
method are closer to the GT than the ones generated by the
other comparing methods.

VIi. CONCLUSION

This paper has proposed a SAR image segmentation
method utilizing hierarchical region merging with a
gradually increased orientated edge strength weighted
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Kuiper’s distance. By using the proposed Bhattacharyya
coefficient-based (BHC-based) edge information detector,
the BHC-based watershed transform can obtain a high quality
initial partition results with a small number of regions and
little under-segmentation. This forms the basis of high quality
segmentation results of the proposed method. The Kuiper’s
distance-based SSM was used to measure the similarity of
a pair of adjacent regions and was multiplied by the pro-
posed gradually increased orientated edge strength penalty
(GIOESP). Then, a new hierarchical region-merging crite-
rion was obtained. The main contributions of this paper are
summarized as follows: 1) Bhattacharyya coefficient based
edge detector has been proposed to estimate the ESM of
a SAR image with strong speckle noise and rich texture

84493



IEEEACC@SS Z.Zhang et al.: SAR Image Segmentation Using Hierarchical Region Merging With Orientated Edge Strength Weighted Kuiper's Distance

information; 2) based on the estimated orientated Bhat-
tacharyya ESM, a novel Gradually Increasing Orientated
Edge Strength Penalty (GIOESP) term has been presented
to yield hierarchical segmentation results via changing the
strength of the penalty term; and 3) a novel region merg-
ing cost has been proposed by using the GIOESP term to
multiply the Kuiper’s distance-based SSM term. A mass of
experimental results using synthetic and real SAR images
was made for the assessment of the proposed method. Visual
and quantitative assessments show that the proposed method
outperformed the four state-of-the-art methods in boundary
localization and region consistency.

Furthermore, the above described experiment shows that
the proposed Bhattacharyya coefficient-based edge informa-
tion detector is an effective way to search for the transition
between homogeneous and heterogeneous regions in a SAR
image. It can be used in edge detection, feature represen-
tation, and other fields. More studies using Bhattacharyya
coefficient on the SAR image will be explored in our future
work.
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