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ABSTRACT The use of infrared (IR) decoys as a countermeasure has become a significant and important
factor that influences the performance of heat-seeking missiles. The system employed by such missiles
utilizes a template matching algorithm that relies on the infrared characteristics of the target. This target
feature vector is compared against the features of nearby objects using minimum distance classification
criterion. One of the problems is that it is very difficult to efficiently consider every possible jamming
condition. This paper confronts the issue using Bayesian methods to build a probabilistic recognition model
that performs well in an aerial jamming environment. Our approach is based on simulating the partial
reasoning functions of human visual cognition, where the Bayesian component is used to handle uncertainty.
Dealing with ambiguity, such as distinguishing between target and decoy, requires a properly trained model.
Our solution, in part, is to conduct a feature histogram analysis on a large set of data that are generated by
using a simulated method. This produces a feature probability model with a mixed Gaussian distribution. The
maximum likelihood estimation is performed to determine the class of the object, and as such distinguish
between genuine targets and decoys. We extend this to construct a new aerial IR target recognition algorithm
that relies on both prior information and our probabilistic recognition model. Our empirical analysis includes
simulated aerial combat images that are generated for the purpose of testing our method. The experimental
results indicate that our approach shows an improvement in performance when compared to the feature
template matching approach.

INDEX TERMS Feature histogram, feature probability distribution function, mixed Gaussian distribution,
naive Bayesian classifier, target recognition.

I. INTRODUCTION
Currently, most of imaging missiles use IR imaging guid-
ance because of better anti-jamming ability and the working
capability in day and night. IR target recognition algorithms
in the complex environment are very important for attacking
the airplane targets. It directly results in the performance of
IR seeker and the accuracy of hitting the targets. A missile
attack on military targets is both real and current threat.
As a result, there is a great deal of interest in developing
countermeasures to prevent this from happening. In this paper
we discuss the IR thermal imaging homing missile, and the
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contribution that our research of the IR recognition algo-
rithms can make towards thwarting certain countermeasures.
Techniques used to confuse thermal imaging systems include
the use of IR decoys and laser jamming [1], [2]. These, among
others, have become an effective means to protect various
targets against this type of threat. Accordingly, the study
of IR target recognition algorithms in the heat seeker is of
intense interest to researchers working in the field of missile
anti-jamming [3], [4].

The working phase of the infrared thermal imaging seeker
includes target acquisition and target tracking phase. Gen-
erally, the target acquisition phase mainly realizes detecting
weak and small targets in a complex background. At this
stage, the target gray, contrast and trajectory characteristics
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FIGURE 1. The aerial jamming environment.

are used to complete the target detection. The target tracking
phase mainly achieves target recognition and stable tracking
in the jamming environment after the target is located and
identified. At this stage, the seeker measures the error devi-
ating from the image center and drives the servo stabilization
platform in order to hold the optical axis to always point to
the target. That is, the target is always in the center of the
image under ideal condition. But it is impossible to directly
extract the real trajectory features of the target. Usually,
the target recognition is realized by using gray, shape, and
statistical features within the single frame. In this paper,
the target recognition problem in the jamming environment
occurs in the target tracking phase, which is different from
the target tracking problem in the general video surveillance
system [5], [6]. As shown in Fig. 1, launching an IR decoy
in the vicinity of the target will cause feature confusion,
resulting in obfuscation of the target. This severely detracts
from the effectiveness of IR target recognition and missile’s
ability to recognize. Therefore, for the missile to perform suc-
cessfully, it is crucial that the IR target recognition system is
able to properly identify its target. This identification includes
the ability to distinguish the genuine target and any possible
decoys or imaginary images.

Currently, a typical IR target recognition algorithm uses
the target’s infrared characteristics to assist with automatic
target recognition [7]–[9]. The IR characteristics are based on
the target’s image template and the similarity measurement
criterion. For the purpose of developing a model, the image
feature template is treated as prior knowledge. The problem
with systems of this type rests in the difference between the-
ory and practice, where the true environment is both complex
and dynamic. In practice, it is difficult to acquire realistic and
sufficient information about potential targets. This jamming
image template, as well as other data used by the missile’s
anti-jamming process, can appear dissimilar depending on
environmental factors. There is a cognitive limitation with
respect to how much information the missile can gather or
deduce about the target, and furthermore, it is hard to cover
all of the test conditions. These issues imply that IR target
recognition algorithm adapts poorly to new and unknown
environments. This is problematic, and it would seem that
target recognition of the IR thermal imaging system is facing
considerable plight.

Inspired by the application of the Bayesian approach for
both text classification and image target detection [10]–[12],
the main contribution of this research involves building a
novel IR target recognition algorithm based on a probabilistic
model. Our work also involves partially replicating the func-
tionality of human visual cognition, and training the model
using a large number of data samples generated by way of
simulation. This model will process the information available
on the target and decoy images with the goal of discerning
them. Ultimately, the model is used to develop a new algo-
rithm with enhanced accuracy in aerial IR target recognition,
while many testing works have been done in order to analyz-
ing the anti-jamming performance under various launching
conditions of IR decoys.

This paper’s contents are arranged as follows: the second
section reviews traditional aerial IR target recognition algo-
rithms. Section three introduces the probabilistic recognition
model, which incorporates the replication of human visual
cognition and the Bayesian methods. The fourth section con-
structs a new aerial IR target recognition strategy that is based
on the probabilistic recognition model. Section five explains
the experimental approach and describes our experiments.
This includes a presentation and analysis of our results.
Finally, section sixth includes our summary, conclusion and
plans for future work.

II. RELATED WORK
The task of target recognition in an aerial jamming environ-
ment relies on a similarity measurement criterion to rule out
noise created by jamming efforts. It does so by examining
various segments of the data that are similar to the target,
and then applying a distance measure between each of them
and the expected target profile. The task needs to work effi-
ciently, and take into consideration the real-time processing
requirements of an IR thermal imaging system. In this paper,
several different states are considered and form the basis of
the following definitions:
(a) Input feature vector: This is the input for the classifier.
(b) Target feature template: This is the target feature vector.
(c) Jamming feature template: This is the jamming feature

vector.
To distinguish the target and jamming vectors, the system

uses high-efficiency minimum distance as the classification
criterion. It measures the distance between the input feature
vector and each feature template to determine which has the
minimum and maximum differences. Based on these calcu-
lations it makes a determination that which vector represents
the target.

Assuming that m reference vectors R1,R2, . . . ,Rm in m
classes respectively belong to classes ω1, ω2, . . . , ωm. In this
paper m is equal to 2, while vectors R1 and R2 respectively
represent feature templates belonging to the target class ω1,
and the jamming class ω2. For the current feature vector Xi,
which belongs to one of N candidate areas, the target and
jamming vectors are evaluated according to the following
criterion.
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FIGURE 2. Simple probability framework based on human visual cognition.

First, k labeling areas Ik with the nearest distances between
Xi and R1 are found by:

Ik = {i1, . . . , ik |D(Xij ,R1) ≤ T , ij ∈ N , j = 1, . . . , k}, (1)

where D(Xl,R1) =
√
(Xl − R1)T (Xj − R1)(l ∈ N ) and T is a

constant determined by means of measurement during exper-
iments. The target area label ît with the maximal distance
between Xît and R2 is found by:

ît = arg maxj∈IkD(Xj,R2), (2)

where ît is the target area label and Xît is the feature vector
corresponding to ω1.

III. PROBABILISTIC RECOGNITION MODEL
A. PROBABILITY FRAMEWORK OF HUMAN
VISUAL COGNITION
The human languages contain a large number of words related
to the frequency or probability of an occurrence. Some words
of this are ‘possible’, ‘probable’, ‘seem’, ‘think’,’certain’,
‘definite’, and ‘sure’. This suggests that when objects in the
physical world are processed by the visual system, they are
classified according to a certain probability description [13].
This is done by refining key information (such as distin-
guishing features), applying judgment and decision-making
(probability criterion) according to certain criteria, and then
assigning probability based on the results. Consider the fol-
lowing three statements and the differences that they imply:
‘‘I thought I saw a cat’’, ‘‘I think it is a cat’’, and ‘‘I’m sure
that is a cat.’’ We assert that these are distinguished by the
features that are available for consideration, and how these
features are weighed. Perhaps there are partial features or
key features that influence the probability, along with the
total number of features available for analysis. Based on our
own knowledge and memory, we determine whether these
match the conditions of feature setX = {X1,X2,X3, . . . ,Xn}.
Hence, we can infer the probability of a cat P(Y |X).

Goodale and Lee have discovered that the human visual
system is hierarchical. The levels range from the low-level
edge features in V1, to the partial features of a shape or target
in V2, up to the higher-level features in V4. The level of
abstraction in the feature representation is correlated with
the ambiguity of the target description, and also with the
probability of making a correct judgement with respect to
identification. Therefore, it is greatly beneficial to understand
how various images are classified [14], [15]. With respect
to the issue at hand, this paper proposes that in combination
with the prior knowledge, this problem can be represented by
a simple probability framework that simulates human visual
cognition. The probability of target, decoy and jamming noise
has the feature set X is P(X|YC), YC = {Y1,Y2,Y3}, where
Y1 represents the target, Y2 the IR decoy and Y3 the other
jamming efforts. This framework satisfies the conditions that
the feature vector x = (x1, x2, x3, . . . , xn) and the condi-
tional probability of target, decoy and background jamming
is P(Yi|X = x), i = 1, 2, 3. Each scenario is classified as
the maximum posterior probability criterion. The principle is
shown in Fig. 2.

B. PROBABILISTIC RECOGNITION MODEL
WITH BAYESIAN APPROACH
This paper introduces a probability framework to solve the
problem of aerial target recognition. The data for analysis
may contain misleading features that are the result of an
IR decoy or other noise related to jamming. The feature set
used for describing the environment is comprised primarily
of texture features, motion features and shape features. The
texture feature includes descriptors such as maximum gray,
mean gray, and energy. The motion feature includes related
labels such as speed, trajectory change rate, etc. Finally,
the shape feature describes length-width ratio, circumfer-
ence, area, center of gravity, etc. A set of public feature
variables are selected from the set to make up the feature
vector X = (X1,X2,X3, . . . ,Xn). The feature membership
probability P(Yi|X = x) can be adopted to describe the
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probability of the target, IR decoy and background jamming
when the feature vector X is a designated value. If the spec-
ified threshold condition is satisfied then the target is recog-
nized, where X1,X2,X3, . . . ,Xn represent feature variables
x = (x1, x2, x3, . . . , xn), it follows that xi represents the value
of the feature variable Xi; xi ∈ �, where � is the valid
range; Yi represents the target class; i respectively represent
the target, IR decoy and background jamming noise.

The probability framework in this paper is a type of graph
that is based on Bayesian theory, also called a Bayesian
classifier. The biggest challenge for the Bayesian classifier
is to compute the joint probability P(X,Yi); And the sim-
plest method used to solve this issue is the naive Bayesian
model [16]. If Yi is given, then all of the variables Xi are
conditionally independent:

P(X,Yi) = P{X1,X2, . . . ,Xn,Yi}

= P(Yi)P(X1|Yi)P(X2|Yi) . . .P(Xn|Yi) (3)

where P(Yi) is the prior probability of the target class, and
P(Xj|Yi) is conditional probability ofXj given Yi. In our model
this class-conditional probability density is i = 1, 2, 3, j =
1, 2, . . . , n. The Bayesian formula states that the classifica-
tion can be converted into a given X = x by computing the
posterior probability P(Yi|X = x), and solving the maximum
posterior probability:

P(Yi|X = x) =
P(X,Yi)∑3
i=1 P(X,Yi)

=
P(X,Yi)P(Yi)∑3

i=1 P(X = x,Yi)P(Yi)
(4)

The formula is further expanded as follows:

P(Yi|X=x)=
P(Yi)P(X1|Yi)P(X2|Yi) . . .P(Xn|Yi)∑3
i=1 P(Yi)P(X1|Yi)P(X2|Yi) . . .P(Xn|Yi)

(5)

For all of the classes, because the above-mentioned for-
mula

∑3
i=1 P(Yi)P(X1|Yi)P(X2|Yi) . . .P(Xn|Yi) is constant,

and assuming that the attribute values are mutually indepen-
dent, according tomaximumposterior criterion, the following
formula is adopted to classify the feature vector x:

Ŷ = arg maxŶ∈YCP(Yi|X = x)

= arg maxŶ∈YC {P(X = x|Yi)P(Yi)} (6)

where the class prior parameter θ = P(Yi) can be estimated
via statistical analysis of the number of classes in the training
set D based on the smoothing approach:

θ̂ =
NC + α
N + Cα

(7)

where NC is the number of samples belonging to the Yi class
in the training set, N is the sum of the various classes in the
sample data, α ≥ 0, and α = 1 is Laplacian smoothing [13].

Nevertheless, in order to estimate P(X = x|Yi), it is nec-
essary to assume a feature distribution or generate a non-
parametric model for the solution.

C. FEATURE PROBABILITY DENSITY-FUNCTION MODEL
Deriving the feature distribution is a difficult problem via
theoretical analysis. The feature distribution law can be rec-
ognized by employing a statistical approach. While, this is
dependent on whether there are sufficient training samples
and a reasonable assumption is made on that basis. In terms
of the IR images being referenced, the gray histogram is a
function related to the gray scale distribution. The algorithm
determines the frequency of each gray value in the image
mathematically. Then, this paper introduces the feature his-
togram approach [17] to describe the frequency of each class
of feature value. For example, how often is one of the feature
values mean gray in the training set.

For a training set D that includes N samples, and the range
of each class of values is [0,Lk − 1], k = 0, 1, . . . , n, where
n is number of the selected feature, the normalized histogram
of any class of feature can be represented as follows:

P(rk , t) =
nk,t
N

(8)

where rk is t th value of k th feature; rk,t ∈[0,Lk−1], where nk,t
is the total number of feature values rk,t in the training set.
With respect to the training samples that have a certain fea-

ture in common, the statistics are compiled and a histogram
can be used to visualize the commonalities. This is done by
setting the horizontal coordinate as the feature value, with
its frequency set as the vertical coordinate. Such a histogram
will reflect the probability distribution law of a given feature.
Fig. 3 depicts the histogram of the mean gray value from
four different perspectives. The first describes the target(refer
Fig. 3(a)), while another more generally describes the area of
the target(refer Fig. 3(c)). Similarly in the next two diagrams,
we can see the mean gray of the IR decoy(refer Fig. 3(b))
compared to that of the IR decoy area(refer Fig. 3(d)). It is
clear that the histograms are of both unimodal and multi-
modal types. A unimodal curve is relatively close to Gaussian
distribution, while the multimodal differs significantly.

1) GAUSSIAN MODEL FOR FEATURE PROBABILITY
DISTRIBUTION FUNCTION
Accordingly, the feature histograms curve can approximately
be described by the Gaussian model (GM) [10]. Assum-
ing that (Xk1,Xk2, . . .XkN ) is an instance of Xk , its value
is (xk1, xk2, . . . xkN ), θk = (µk , σ k ). The maximum like-
lihood (ML) [17] is taken from the training dataset D to
estimate θk . The likelihood function is represented as:

L(θk ) =
N∏
i=1

N(xk,i|ωk ,µk , σ
2
k )

=

N∏
i=1

1
√
2πσk

exp(−
(xk,i − µk )2

2σ 2
k

) (9)

Furthermore, the parameter estimation of θk is as follows:

µ̂k =
1
N

N∑
i=1

xk,i (10)
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FIGURE 3. The feature histogram of (a) the mean gray attribute of target,
(b) the mean gray attribute of jamming, (c) the area attribute of target,
and (d) the area attribute of jamming in different scenarios.

σ̂ 2
k =

1
N

N∑
i=1

(xk,i − µ̂k )2 (11)

Therefore, the posterior probability of target class Yi can
be obtained through computing a product of posterior

probabilities for variables Xk according to the following
formula:

P(X = x|Yi) =
n∏

k=1

N(Xk |µ̂k , σ̂ 2
k ) (12)

2) GAUSSIAN MIXTURE MODEL FOR FEATURE
PROBABILITY DISTRIBUTION FUNCTION
Importantly, in order to better describe the characteristics
of the feature distribution, the feature histograms curve
can approximately be described by the Gaussian mixture
model (GMM). Therefore, we assume in this paper that all of
the random variables for the selected feature are distributed
as per the mixed Gaussian distribution [18]:

N̄(Xk |µk, σ
2
k ) =

m∑
j=1

ωk,jN(Xk |µk,j, σ 2
k,j) (13)

N(Xk |µk,j, σ
2
k,j) =

1
√
2πσk,j

exp(−
(Xk − µk,j)2

2σ 2
k,j

) (14)

where ωYi,j is the weight coefficient of item in the mixed
Gaussian distribution, andµk,j, σ 2

k,j are respectively the mean
values and variance parameters of item m. The distribu-
tion concerns Xk feature variables. Assuming that (Xk1,Xk2,
. . . ,XkN ) is an instance of Xk , its value is (xk1, xk2, . . . , xkN ),
2k = (ωk ,µk , σ

2
k ). The maximum likelihood (ML) [17]

is taken from the training dataset D to estimate 2k . The
likelihood function is represented as:

L(2k ) =
N∏
i=1

N̄(xk,i|ωk ,µk , σ
2
k ) (15)

lnL(2k ) =
N∑
i=1

ln{
m∑
j=1

ωk,jN(xk,i|µk,j, σ 2
k,j)} (16)

Unfortunately, this represents a nonlinear function of the
parameter 2k ; therefore, direct maximization is impossible.
Nevertheless, ML parameter estimation can be solved itera-
tively using the EM [18] approach. The iterative formula for
the EM approach is as follows.

The sample data x̄k,i are posterior probability generated by
the jth Gaussian distribution:

P(j|xk,i,2k ) =
ωjN(xk,i|µj, σ 2

j )∑m
i=1 ωtN(xk,i|µt , σ

2
t )

(17)

Furthermore, the parameter estimation of2k is as follows:

ω̂j =
1
N

N∑
i=1

P(j|xk,i,2k ) (18)

µ̂j =

∑N
i=1 P(j|xk,i,2k )xk,i∑N
i=1 P(j|xk,i,2k )

(19)

ˆσ 2
j =

∑N
i=1 P(j|xk,i,2k )x2k,i∑N
i=1 P(j|xk,i,2k )

− µ̂2
j (20)
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FIGURE 4. The algorithm flow chart.

FIGURE 5. Images representing the training set generated for this paper.

Therefore, the posterior probability of target class Yi can be
obtained through computing a product of posterior probabil-
ities for variables Xk according to the following formula:

P(X = x|Yi) =
n∏

k=1

N̄(Xk |µ̂k , σ̂ 2
k ) (21)

IV. PROPOSED APPROACH
Fig. 4 is a flow chart that illustrates the process followed by
our algorithm. It is divided into 4 steps: In step 1 we generate
the training and testing sets, and classify all of the instances
accordingly. The second step is feature extraction from the

training samples, followed by smoothing of the features and
then computing the feature histogram based on Formula (7).
In the third step, assuming the mixed Gaussian distribution
for the feature histogram, we estimate the model’s parameters
based on Formulas (18) - (20) and the training data. From
this we determine the feature probability distribution model.
In the final step, we build a target and jamming recognition
algorithm based on the naive Bayesian classifier.

A. TRAINING DATASET
Obtaining training data for this problem is a difficult task,
as image data for genuine missile flights is rare. Whether in
test or real life, air-combat countermeasure images are only
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FIGURE 6. Marking of target and jamming samples in training set.

FIGURE 7. Effects of clustering the original image with 2, 3, and 4 clusters. (a) Original. (b) 2 clusters. (c) 3 clusters. (d) 4 clusters.

released to study for government bodies. This paper uses
the air-combat countermeasure sample library to reproduce
situations involving combat aircraft and missiles. We gener-
ate various ballistic samples through the use of advanced IR
modeling and simulation techniques, and in turn, we build
both a training and testing set that is used by the classifier.
In order to test the target recognition performance under
various jamming conditions, we use the simulation images

shown in Fig.5. The images are 16-bit gray scale and the
resolution is 128 × 128 pixels. The initial launching dis-
tance for jamming is 5000m 3000m, 2000m, and 1000m.
There are 12,24,48 decoys launched, and the missile interval
is 0.5s. There is a ballistic curve with the entrance angle
(angle between the missile body and target aircraft shaft upon
launching the missile) of 15◦ as an interval from 0◦ to 360◦.
As a whole, the following image sequence is generated.
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Next, the K-means algorithm [19], [20] is used to divide
the data that represents the images. The result is a separation
of areas between target and jamming. The discrimination is
made using the feature similarity matching approach based
on the characteristics in prior knowledge. The target and
jamming areas are automatically marked with the appropriate
label. If there are any images that are marked incorrectly
then they are relabeled accordingly (i.e. marked manually).
Examples of this are shown in Fig. 6. From here, feature
extraction is performed and from this we create positive and
negative training samples for the target and jamming objects,
with all of the selected features: D+ = {x1, x2, . . . , xn}
and D− = {x1, x2, . . . , xn}, xk = {xk,1, xk,2, . . . , xk,N },
where n is the number of features, and N is the number of
samples.

B. PREPROCESSING
1) TARGET SEGMENTATION
In order to achieve the highest classification accuracy, it is
important to extract the image details such that we retain the
relevant information. Consequently, the images need to be
preprocessed by various means including filtering, segmen-
tation, etc. In terms of an IR image with artificial jamming
present, the radiation characteristics of the IR decoy are rela-
tively apparent. It presents as a highly bright area, similar to
the areas containing the tail flow, tail flame and the head of the
target aircraft. These intensely lit areas are sharply different;
therefore, image segmentation based on the gray threshold
makes it hard to achieve the ideal effect. For this research,
we conduct image segmentation using theK-means clustering
algorithm. Clusters are formed based on pixels with a similar
IR gray-value. Each pixel is assigned a class based on a set
of rules, and this continues until the entire image has been
segmented.

The choice of the number of clusters greatly affects the
generation of candidate areas, and thus the final results.
If there are too few clusters, then the target body is easy to
merged with the background. So, it can results in the target
being split. When the number of clusters is sufficiently large
then the body of the aircraft is properly represented within
the extraction. As such, it is possible to discern a relatively
complete target. This paper experiments with cluster sizes of
2, 3 and 4; the initial clustering centers are evenly distributed
within the images. The results of our clustering are shown
in Fig. 7. Based on what we learned during this test, we made
the choice for the number of clusters to be 3 in the remaining
experiments.

2) SELECTION AND EXTRACTION OF FEATURES
The process of selecting and extracting features involves
searching for recognizable objects, or pieces, in each segment
that was created. It is the responsibility of the classification
algorithm to examine the available features and in turn, clas-
sify the represented objects. There are numerous prospective
features present in both target and jamming scenarios, and in

FIGURE 8. The feature variability curve of (a) the Mean Gray attribute of
target, (b) the Circularity attribute, and (c) the area attribute of target and
jamming in part of image data sequences.

order to improve both speed and accuracy of classification it
is important to narrow the scope. In this paper we chose to
focus on features that represent the target and jamming char-
acteristics at various imaging stages. We use the following
selection criteria:

a) The selected feature should have the highest similarity
with the correct target, specified by the corresponding feature
in the target template;

b) The selected feature should have the lowest similarity
or alternatively the highest dissimilarity with the non-like
targets;

c) When the target meets a set of specific characteristics
(i.e. mean gray value, area, length-width ratio, motion speed,
etc.) then the target best matching these features should be
selected.

Generally, the method and steps for selecting features
according to the above principles are as follows:

a) Target characteristic analysis. According to the research
results of the target imaging characteristics of the seeker
tracking process from the far distance to near distance, the tar-
get characteristics include the point target with no shape
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TABLE 1. Features used in this paper.

information, the surface target with rough outline and gray
distribution, the surface target with contour structure details
and gray scale distribution. Based the known and prior infor-
mation, a candidate feature set is constructed;

b) Target data analysis. Based on the test and simulation
dataset, the relationship between the candidate target and
the jamming characteristics over time are studied. And the
selected feature with obvious difference of the target and
the jamming are given by analyzing the ratio between total
average difference and total average target feature, which is
greater than a certain threshold T ;

c) Time performance test. The calculation efficiency of
features are analyzed and the features are kept whose the
calculation time are ms level. Finally, considering time per-
formance and recognition performance, the available feature
set is obtained.

As shown in Fig. 8, there is a large difference in the average
gray level and circularity of the target and the jamming from
the analysis of a selected data segment. And the calculation
efficiency of these features is high. Hence, the features can
be used to distinguish the target and the jamming.

Although there are many features to use and some com-
plicated features may have better recognition performance,
the time of air-to-air missile attack is very short and the
image frequency of a hot imaging system is not less than
50 frames per second. Considering the tradeoff between
the feature computation efficiency and recognition effect,
we have selected 9 features by analyzing the feature vari-
ability and the elapsed time based on the simulation database

in the jamming environment, in order to test our proposed
Bayesian method for this research, as shown in Table 1.

3) FEATURE HISTOGRAM SMOOTHING
The feature histograms created during the process have obvi-
ous and significant fluctuations. This is a result of applying
the generative model, as well as characteristics related to the
training set. Therefore, it is beneficial to use a smoothing
operation. We have done so based on the sliding window and
mean value filtering approach:

P̄(rk,t ) =
1
T

T∑
t=1

P(rk,t ) (22)

where T is the width of sliding window. The feature his-
tograms, previously shown in Fig. 3, are transformed after
smoothing into what is shown in Fig. 9.

C. PARAMETER SPECIFICATION OF FEATURE
PROBABILITY DISTRIBUTION FUNCTION
The steps for specifying parameters for the feature probability
distribution function is shown in Algorithm 1.

The feature probability distribution function expression
using Gauss model(GM) for mean gray and the area of target
in Table 1 is as follows:

N̄t (X1|µ1, σ
2
1 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 = 0.1202 · e−(
x−21350
1742 )2 (23)
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FIGURE 9. Feature histogram of (a) the mean gray attribute of target,
(b) the mean gray attribute of jamming, (c) the area attribute of target,
and (d) the area attribute of jamming post smoothing in different
scenarios.

N̄t (X6|µ6, σ
2
6 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 = 0.0620 · e−(
x−2.761
1.289 )2 (24)

The feature probability distribution function expression
using GM for the mean gray and area of jamming is

FIGURE 10. Curve comparison between the GM feature probability
distribution function, GMM feature probability distribution function, and
feature histogram of: (a) the mean gray attribute of target, (b) the mean
gray attribute of jamming, (c) the area attribute of target, and (d) the area
attribute of jamming.

as follows:

N̄t (X1|µ1, σ
2
1 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 = 0.1096 · e−(
x−52200
1363 )2 (25)
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Algorithm 1 Parameter Specification for the Feature
Probability Distribution Function.
1: Construct the training set D, then acquire exterior rect-

angle areas related to both target and jamming objects.
This is done based on the automatic and artificial mark-
ing approaches. Compute X1,X2,X3, . . . ,Xn for all n
selected feature variables and build training sets for the
target and jamming scenarios: D+ = {x1, x2, . . . , xn}
and D− = {x1, x2, . . . , xn}, xk = {xk,1, xk,2, . . . , xk,N },
where k = 1, 2, . . . , n;

2: Compute histograms for all features using Formulas (8)
and (22). Perform the smoothing and then conduct a
statistical analysis of the wave crest over the histograms
for X1,X2,X3, . . . ,Xn. Determine the Gaussian mixture
model items m;

3: Determine the Gaussian mixture distribution model
parameters θk = (µk , σk ) as (10) and (11). And deter-
mine theGaussianmixture distributionmodel parameters
θk = (ωk , µk , σk ) as (18)-(20).

N̄t (X6|µ6, σ
2
6 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 = 0.1752 · e−(
x−4.81
0.265 )2 (26)

The feature probability distribution function expression
using Gauss mixed model (GMM) for mean gray and the area
of target in Table 1 is as follows:

N̄t (X1|µ1, σ
2
1 ) = a1 ·

1
√
2πσ1

e
−

(x−µ1)
2

2σ21

+a2 ·
1

√
2πσ2

e
−

(x−µ2)
2

2σ22

+a2 ·
1

√
2πσ3

e
−

(x−µ3)
2

2σ23

= 0.08453 · e−(
x−22170
417.3 )2

+0.1003 · e−(
x−20990
1722 )2

+0.0101 · e−(
x−51700
1979 )2 (27)

N̄t (X6|µ6, σ
2
6 ) = a1 ·

1
√
2πσ1

e
−

(x−µ1)
2

2σ21

+a2 ·
1

√
2πσ2

e
−

(x−µ2)
2

2σ22

= 0.0627 · e−(
x−2.4380
0.6338 )2

+0.02708 · e−(
x−4.1190
2.134 )2 (28)

The feature probability distribution function expression
using GMM for the mean gray and area of jamming is

Algorithm 2 Proposed Recognition Algorithm
1: The K-means segmentation algorithm explores and pro-

cesses the image area. The resulting segments contain
the acquired image primitive data in the connected areas.
With the background set to 0, each area is considered as
an input feature vector to be classified;

2: The feature vector X = (X1,X2,X3, . . . ,X9) represents
the feature variable, as shown in Table 1, where x =
(x1, x2, x3, . . . , x9) represents the 9 feature values in the
area to be classified. This will take place for each test
image I in the test set;

3: Define category set YC = {Y1,Y2}, where Y1represents
the target aircraft, and Y2 represents jamming efforts;

4: Compute the posterior probabilities P(X = x|Y1),
P(X = x|Y2) of the classes Y1,Y2, based on Formula
(12) and (21). This is calculated using the probability
distribution function of the 9 features based on Formulas
(23) - (30);

5: Compute class prior probability based on Formula (7),
and compute the posterior probability P(Y1|X = x),
P(Y2|X = x), based on Formula (5);

6: As per the naive Bayesian classifier and the maximum
posterior criterion, compute the maximum posterior
probability based on Formula (6). In the recognition
algorithm described, if P(Y1|x) > P(Y2|x), x =

(x̄k1, x̄k2, . . . , x̄kN )T belongs to the target feature tem-
plate, rather than the jamming feature template, then
recognition of the target is accomplished.

as follows:

N̄t (X1|µ1, σ
2
1 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 + a2 ·
1

√
2πσ2

e
−

(x−µ2)
2

2σ22

= 0.1257 · e−(
x−52210
1149 )2

+ 0.01574 · e−(
x−22380
1814 )2 (29)

N̄t (X6|µ6, σ
2
6 )

= a1 ·
1

√
2πσ1

e
−

(x−µ1)
2

2σ21 + a2 ·
1

√
2πσ2

e
−

(x−µ2)
2

2σ22

= 0.1646 · e−(
x−4.817
0.2157 )2

+ 0.0296 · e−(
x−3.988
1.511 )2 (30)

As shown in Fig. 10, solving the feature probability dis-
tribution function through Gauss model and Gauss mixed
model based on the training dataset can result in a change
of the feature histogram (FH). This can then be used as prior
knowledge for the naive Bayesian classifier.

D. RECOGNITION ALGORITHM WITH
BAYESIAN CLASSIFIER
The anti-countermeasure, aerial IR target recognition algo-
rithm that we have founded on the naive Bayesian classifier
is described in Algorithm 2.
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FIGURE 11. Aerial jamming environment simulation test image.

FIGURE 12. Recognition results for initial jamming launch distance of 3000 m.

FIGURE 13. Recognition results for initial jamming launch distance of 2000 m.

V. EXPERIMENTAL RESULTS
In this section, we assess the performance of our aircraft
target recognition algorithm in various jamming scenarios.
The parameter settings for the simulation of the IR sce-
nario test images is as follows: the background is simple
and uniform; the number of launched IR decoys can be
set to 12, 24 and 48; the interval of launched IR decoys
can be set to 0.4s, 0.5s, 0.7s and 1.0s; the target altitude

of both missile and aircraft is identical, and the distance
is 8000m; the various angles of view at the same hori-
zontal plane (centered by aircraft, represented by azimuth
angle between missile and aircraft) are respectively 10◦, 30◦,
60◦ and 90◦; the initial launching distances of the jam-
ming efforts can be respectively set to 5000m, 3000m,
2000m and 1000m. The simulation test image is shown in
Fig. 11.
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FIGURE 14. Recognition results for initial jamming launch distance of 1000 m.

FIGURE 15. Recognition results at 30◦ azimuth angle.

FIGURE 16. Recognition results at 60◦ azimuth angle.

FIGURE 17. Recognition results at 90◦ azimuth angle.

A. ANALYSIS OF TARGET RECOGNITION RESULTS FOR
JAMMING ENVIRONMENTS WITH DECOYS
LAUNCHED AT VARIOUS DISTANCES
The relative azimuth angle is 10◦. For initial jamming launch
distances of 3000m, 2000m and 1000m, the recognition

results of our algorithm using GMM feature probability dis-
tribution function are respectively shown in Fig. 12, Fig. 13
and Fig. 14. The target aircraft is marked with a red rectangu-
lar box, and the IR decoy is framed in green. The above illus-
trated simulation experiments have shown that the targets and
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FIGURE 18. Recognition results with 2 decoys being launched once at 10◦ azimuth angle.

FIGURE 19. Recognition results with 4 decoys being launched once at 60◦ azimuth angle.

TABLE 2. Target recognition results under various situational conditions.

jamming efforts have been completely separated. Regardless
of whether the launch distance was short, medium or long,
the features of both target and jamming are relatively signifi-
cant. Testing indicates that our algorithm achieves better than
90% target recognition accuracy.

When the target and jamming objects overlap in the image,
the algorithm suffers from degrading performance for both
medium and long launch distances. Considering the marking
of the training samples and the feature probability distribu-
tion, the target recognition accuracy for these distances is
relatively low. At the same time, however, the performance
at short distances does not significantly deteriorate. Post
analysis has revealed that this is related to the shape and
gray distribution features. These are relatively apparent at
low distances, and thus the degree of feature confusion is

relatively small. Hence, the classification accuracy is still
relatively high.

B. ANALYSIS OF TARGET RECOGNITION RESULTS
FOR JAMMING ENVIRONMENTS WITH DECOYS
LAUNCHED AT DIFFERENT ANGLES OF VIEW
This next group of experiments involves launching decoys at
various azimuth angles. The initial launching distance is fixed
at 3000m, while the azimuth angles are 30◦, 60◦ and 90◦. The
results of our algorithm using GMM are illustrated in Fig. 15,
Fig. 16 and Fig. 17. The target aircraft is marked with a red
rectangular box, and the IR decoy is framed in green.

The simulation experiments illustrated in Fig. 12, Fig. 15,
Fig. 16 and Fig. 17 correspond to azimuth angles of 10◦,
30◦, 60◦ and 90◦. At a 3000m, the launch distance for all
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FIGURE 20. Recognition results with a large number of decoys in the real jamming environments.

is considered long. The time that the target is obscured by
IR decoys is relatively small, and it follows that the degree
of feature confusion is comparatively small. In this case,
the accuracy of training sample marking and the feature prob-
ability distribution function is relatively high. Consequently,
the target recognition accuracy also increases. As mentioned
above, at short distances the shape and gray distribution fea-
tures are relatively apparent. Hence, the degree of feature con-
fusion is relatively small and the target recognition accuracy
remains high. The target recognition rate can be defined as
follows:

Pr =
Nr
Nt
× 100% (31)

where Nr represents the number of images for which the
recognition was successful, and Nt represents a total number
of test images including both target and IR decoy. Fig.3
shows a comparison of our algorithm using GM and GMM
feature probability distribution function against the feature
matching algorithm based on the datasets generated for
our research. It is clear that the accuracy of our algorithm
surpasses that of the feature matching algorithm. And the
accuracy of our algorithm using GMM feature probability
distribution function is better than GM feature probability
distribution function.

C. ANALYSIS OF TARGET RECOGNITION RESULTS
UNDER THE DIFFERENT LAUNCHING
CONDITIONS OF IR DECOYS
This following group of experiments involves launching
decoys with various strategies. First, the initial launching
distance is fixed at 5000m, while the azimuth angles are

10◦, 30◦, 60◦ and 90◦. Second, the launching intervals can
be set to 0.4s, 0.7s, and 1.0s, while the numbers of decoys to
be launched once are 1, 2 and 4. And the total numbers of
decoys are 12, 24 and 48. The results with 2 and 4 decoys
being launched once are illustrated in Fig. 18 and Fig. 19,
where the target aircraft is marked with a red rectangular box,
and the IR decoy is marked with a green rectangular box.

Further, The recognition results of our algorithm using
GMM are listed in Table 4. Some regular pattern can be draw.
First, the recognition probability is become greater when the
launching intervals are from 0.4s to 1.0s. Second, the recog-
nition probability is become smaller when the numbers of
launched decoys once are from 1 to 4 and the total numbers
of launched decoys are from 12 to 48. As mentioned above,
the influence of launching strategies is relatively apparent
for the obscured time and the degree of feature confusion
generated by IR decoys.

D. TARGET RECOGNITION TESTS IN THE
REAL JAMMING ENVIRONMENTS
This final group of experiments involves target recognition in
the real jamming environments. The results of our algorithm
using GMM are illustrated in Fig. 19. The target aircraft is
markedwith a red rectangular box, and the IR decoy is framed
in green. Fig. 20 shows that the real jamming environments
may be complex very much. So, our algorithm using GMM
feature probability distribution function has a certain effects
and the average accuracy of target recognition algorithm is
less than 0.3. Hence, it is close to the simulation results at the
azimuth angles of 10◦ from table 3, in which the launching
intervals are 0.4s and the total numbers of launched decoys
are 48 with 4 decoys launched once.
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TABLE 3. Target recognition results under various conditions of launched decoys.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a novel target recognition algorithm
that operates in an aerial combat environment where heat
seeking missile countermeasures are employed. The algo-
rithm is based on a Bayesian probabilistic model that was
developed in several stages. These include generating valid
training and testing sets using a simulation, and then building
a feature variable probability distribution model for each set.
The model has a mixed Gaussian distribution. Next, a classi-
fication algorithm was trained to solve the problem of a low
target recognition rate due to jamming. Experimental results
have shown that our Bayesian approach performs superiorly
when compared to the feature similarity matching algorithm.
These tests were performed using our generated test datasets.
Future work for this research includes improving the sample
datasets, modifying the model using the measured data of IR
decoys, extracting additional image information to formmore
reasonable prior distribution under the proposed Bayesian
framework, to build a more accurate feature probability dis-
tribution function, and to consider the relation of feature
variable for a better Bayesian network.
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