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ABSTRACT With the explosive proliferation of mobile devices, the scarcity of communication resources
has emerged as a critical issue in the next generation (NG) communication systems. To overcome this,
non-orthogonal multiple access (NOMA) has been shown to provide a beneficial spectral efficiency gain,
while supporting massive connectivity. Sparse code multiple access (SCMA) is one of the NOMA schemes,
but its application is hampered by its high-complexity multi-user detection. Fortunately, quantum search
techniques were shown to substantially reduce the complexity of multi-user detectors (MUD). However,
the quantum search-aided multiuser detection of SCMA is an open problem at the time of writing. Hence,
we conceive a pair of quantum search-aided MUDs for SCMA, namely, a quantum-assisted message passing
algorithm (Q-MPA)-based MUD and a quantum-assisted sphere decoder-based MPA (QSD-MPA) MUD.

INDEX TERMS Sparse code multiple access, multiuser detection, quantum search algorithm, message
passing algorithm, sphere decoder.

I. INTRODUCTION
Given the explosive proliferation of mobile devices, commu-
nication resources are becoming scarce commodities. To cir-
cumvent this problem, Non-Orthogonal Multiple Access
(NOMA) has been employed for enhancing the spectral effi-
ciency in the face of massive connectivity. In the family
of NOMA schemes, Sparse Code Multiple Access (SCMA)
has been proposed as a promising scheme with superior
link level performance [1]–[5]. However, the implementation
of SCMA is challenging owing to its excessive Multi-User
Detection (MUD) complexity.

To circumvent this, sophisticated classical methods have
been conceived for reducing the complexity of SCMAMUD.
The basic method relies on the classical Message Passing
Algorithm (MPA) based detector that achieves near-optimal
Bit Error Rate (BER) performance [6], [7]. However, the clas-
sical MPA still exhibits an exponentially growing complexity
with the number of users. Hence compelling techniques have
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been put forward for further reducing the MUD complexity.
A plausible approach is to directly simplify the MPA calcula-
tion [8]–[11]. Themax-log approximation of [8] and the Look
Up Table (LUT) based technique of [9] can readily simplify
the MPA at a negligible BER performance erosion. The Par-
tial Marginalization technique basedMPA (PM-MPA) of [10]
can be adjusted to strike an attractive BER vs complexity
trade-off. In [11], the MUD complexity was reduced by a
technique that selects the edges of the classical MPA based
on an adaptive Gaussian approximation. To further reduce the
complexity of the classical MPA, low-complexity codebook
design techniques were advocated in [12], [13]. Specifically,
designing SCMA codebooks relying on the minimum projec-
tions technique before invoking the MPA process (ProjMPA)
may result in a reduced effective codebook size [12]. Thus,
the ProjMPA imposes a much lower complexity than the
classical MPA. Moreover, a high-dimensional codebook
design technique was proposed in [13] for reducing the
MUD complexity per symbol. Additionally, sphere decoder
based techniques can also be applied in MUD-aided SCMA.
Specifically, invoking the List Sphere Decoder (LSD)
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FIGURE 1. Selected contributions on SCMA detector (left) and quantum-assisted multi-user detection (right).

of [14] or the SphereDecoder (SD) of [15] before the classical
MPA also reduces the detection complexity at a marginal
BER performance erosion.

As a future solution, the emerging quantum computing
technology promises to reduce the complexity of classical
search problems, as detailed in [16]. Hence, significant ben-
efits may be expected in the field of communications by
invoking quantum computing at the base station, where its
complexity and price may be deemed acceptable in the future.
Hence in this treatise, we investigate the benefit of Quan-
tum Search Algorithms (QSA) in reducing the complexity
of MUD.

In an unsorted database, QSAs are capable of finding
desired solutions at a lower complexity than the classical
exhaustive search algorithms [17]–[20]. Thus, QSAs can be
chosen for accelerating the solutions of numerous classi-
cal search problems as detailed in [21]. The earliest quan-
tum search based MUD was conceived for Code Division
Multiple Access (CDMA) in [22], where a Hard Input
Hard Output (HIHO) quantum-assisted MUD was shown
to approach the optimal Maximum Likelihood (ML) BER
performance at a reduced complexity. Recent contributions
on quantum-assisted MUD focus on Space Division Multiple
Access (SDMA) [23]–[25], CDMA, and Interleave Division
Multiple Access (IDMA) [26], [27]. For Space Division
Multiple Access (SDMA) and CDMA, quantum-assisted
MUDs with optimal and sub-optimal BER performance were

considered [23]–[25]. Promising quantum-assisted MUDs
were designed for multi-carrier IDMA systems and multi-
layered video streaming in [26], [27]. As a benefit of the
intrinsic quantum parallelism and quantum superposition
exploited by the QSAs, these contributions demonstrated
significant complexity reductions compared to their classi-
cal counterparts. Fig. 1 summarizes recent contributions on
low-complexity SCMA MUD and quantum-assisted MUD.
However, reduced-complexity quantum-assisted MUDs have
not been designed for SCMA.

Against this background, we intrinsically amalgamate
QSAs with the classical MPA detection schemes for con-
ceiving low-complexity MUDs for SCMA. Specifically,
we design a pair of reduced-complexity QSA-aided clas-
sical MPAs, namely, the Quantum-assisted Message Pass-
ing Algorithm (Q-MPA) and the Quantum-assisted Sphere
Decoder based MPA (QSD-MPA). Specifically, the Q-MPA
is conceived by applying QSAs for accelerating the mes-
sage updating in the MPA. Our theoretical analysis and
simulation results show that the Q-MPA requires a lower
number of Cost-Function (CF) evaluations than the classi-
cal MPA. Additionally, our simulation results demonstrate
that the Q-MPA based SCMA MUDs only suffer from a
modest BER performance erosion compared to the classical
MPA. Furthermore, we use the ProjMPA technique of [12]
for further reducing the complexity of the Q-MPA. We will
also demonstrate that the QSD-MPA can further reduce the
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FIGURE 2. Uplink SCMA with turbo coding.

MUD complexity by harnessing the classical SD-MPA. In the
QSD-MPA, the sphere decoding algorithm can be formulated
as a search algorithm. To efficiently solve the resultant search
problem, we present a Quantum-assisted Sphere Decoder
(QSD) based on the Boyer-Brassard-Hoyer-Tapp Quantum
Search Algorithm (BBHT-QSA) [19]. Even if the number
of legitimate codeword combinations is unknown, the QSD
is capable of finding all the desired legitimate codeword
combinations. Let us now denote the number of legitimate
codeword combinations by S. When S is smaller than a
certain critical value, the QSD requires a lower number CF
Evaluations (CFE) than the classical SD. By invoking the
QSD before the MPA, we arrive at our new QSD-MPAMUD
scheme. The theoretical analysis and simulation results show
that the QSD-MPA has a lower number of CFEs than the
SD-MPA, provided that the number of solutions is smaller
than a critical value. Moreover, our simulation results show
that the QSD-MPA approaches the BER performance of the
SD-MPA at a reduced complexity. Thus, the Q-MPA and the
QSD-MPA are potential candidates for reduced-complexity
SCMA MUD.

The rest of this paper is organized as follows. Section II
presents the uplink SCMA system model. Based on the clas-
sical MUDs and QSAs, our Q-MPA and the QSD-MPA are
conceived in Sections III and IV, respectively. In Section V,
our numerical results characterizing the Q-MPA and the
QSD-MPA are presented. Finally, our conclusions are offered
in Section VI.

II. SYSTEM MODEL
In this section, we first present the system model for the
SCMA uplink along with the SCMA codeword structure.

A. UPLINK SCMA MODEL
We are interested in a non-orthogonal multiple access system,
in which K (K > 0) users transmit to a common Base
Station (BS) simultaneously in the shared spectrum. Its block
diagram is shown in Fig. 2. The bit stream of the user k ema-
nating from the source is denoted by bk , which is entered into
the turbo encoder. The output of the turbo encoder is divided
into code blocks, where each block consists of R coded bits.
A code block is denoted by ck = (ck,1, ck,2, . . . , ck,R)T ,
which is forwarded to the SCMA encoder. In the SCMA
encoder, ck is mapped into an N -dimensional SCMA

codeword denoted by xk = (xk,1, xk,1, . . . , xk,N )T that is
selected from the SCMA codebook Xk of size M = 2R.
Finally, the SCMA codewords are transmitted by the Orthog-
onal Frequency Division Multiplexing (OFDM) modulator.

The modulated symbols are transmitted through the wire-
less channels by using N OFDM sub-carriers. Let hk,n denote
the channel coefficient of the link between the BS and user
k on the n-th sub-carrier. The channel vector between user
k and the BS is given by hk = (hk,1, hk,2, . . . , hk,N )T .
In addition, let zn denote the Additive White Gaussian Noise
(AWGN) imposed on the n-th sub-carrier with variance σ 2.
The noise imposed on the transmitted signal is denoted by
z = (z1, z2, . . . , zN )T .

At the BS side, the received signal vector is denoted by
y = (y1, y1, . . . , yN )T , in which yn is the received signal at the
n-th sub-carrier. As shown in Fig. 3(a), the signals received
from all users at the same codeword location are transmitted
on the same OFDM sub-carrier. Then, the received signal y is
given by

y =
k=K∑
k=1

diag{hk}xk + z. (1)

When y is received, the information bits will be restored
by using both the SCMA Detector of Fig. 2 and the turbo
decoder.

B. SCMA CODEWORD STRUCTURE
In this subsection, we characterize the codeword structure by
using a mapping matrix and the factor graph concept. The
mapping matrix and the factor graph are denoted by F and
F(V,N ), respectively. The mapping matrix F is a (K × N )-
element matrix, where the element at the k-th row and n-
th column of F is denoted by Fk,n. If the n-th element of
k-th user’s codeword is non-zero, then we have Fk,n = 1,
otherwise Fk,n = 0. Furthermore, the factor graph F(V,N )
is a bipartite graph with N Function Nodes (FN) and K
Variable Nodes (VN). On the factor graph, the n-th FN is
connected to the k-th VN via an edge if Fk,n = 1. Moreover,
the set φ(n) = {k : Fk,n = 1} is defined as the collection
of neighboring nodes of FN n. Similarly, the neighbor nodes
of VN k are defined as ψ(k) = {n : Fk,n = 1} that has a
degree of |ψ(k)| = dv. Additionally, the sets φ(n) and ψ(k)
represent the users colliding on the n-th OFDM sub-carrier
and the OFDM subcarriers used to transmit the k-th user’s
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FIGURE 3. The structure of SCMA codewords. (a) The colored blocks represent the non-zero elements in the SCMA codewords, while the
blank blocks represent the zero elements. In this example, the parameters are set as K = 6 and N = 4. (b) The mapping matrix. The
1-element and 0-element represent the non-zero element and zero element in SCMA codewords, respectively. (c) The factor graph. In this
example, the degree of φ(n) and ψ(k) are df = 3 and dv = 2, respectively.

FIGURE 4. The iterative structure of the multi-user detector.

data, respectively. The mapping matrix and factor graph are
shown in Fig. 3(b) and Fig. 3(c), respectively.

III. THE QUANTUM-ASSISTED MPA MUD
In this section, we introduce a Q-MPA based iterative MUD.
Based on the classicalMPA,we then propose a Q-MPA detec-
tion scheme and conceive its reduced complexity counterpart.

A. THE ITERATIVE STRUCTURE OF MULTI-USER DETECTOR
In the MUD, the extrinsic information is exchanged between
the SCMA detector and the turbo decoder. In the SCMA
detector, the a posteriori Log-Likelihood Ratio (LLR)
denoted by L1 of each channel coded bit is calculated as

L1(ck,r ) = log
Pr{ck,r = 1|y}
Pr{ck,r = 0|y}

. (2)

By exploiting Bayes’ law, we have

L1(ck,r ) = log
Pr{y|ck,r = 1}
Pr{y|ck,r = 0}

+ log
Pr{ck,r = 1}
Pr{ck,r = 0}

= λ1(ck,r )+ λ
p
2(ck,r ), (3)

where λ1(ck,r ) is the extrinsic information delivered by the
SCMA detector, while λp2(ck,r ) is the a priori LLR delivered
by the turbo decoder. In the turbo decoder, the a posteriori
LLR denoted by L2 is also calculated similarly

L2(ck,r ) = λ2(ck,r )+ λ
p
1(ck,r ), (4)

where λp1(ck,r ) represents the a priori LLR gleaned from the
SCMAdetector. Using theQ-MPA,we can obtain the value of

λ1(ck,r ) in the SCMAdetector at the cost of a reduced number
of CF evaluations.

B. THE QUANTUM-ASSISTED MPA
In this section, we present a Q-MPA method along with its
complexity analysis. The Q-MPA is conceived by using Durr-
Hoyer Quantum Search Algorithm (DH-QSA) to reduce the
complexity of the classical MPA. Readers can refer to the
appendix for details about the classical MPA and DH-QSA.

1) THE PROCEDURE OF Q-MPA
The Q-MPA consists of message updating in FNs, message
updating in VNs, and the LLR computation. For the first two
steps, the messages are updated iteratively between the FNs
and the VNs on the factor graph. The message sent from
the n-th FN to the k-th VN at the j-th iteration is denoted
by l jn→k (xk ), where xk is the SCMA codeword of user k .
Similarly, the message sent from the k-th VN to the n-th
FN at the j-th iteration is denoted by l jn←k (xk ). When j = 0,
the initial messages are set to 0. We denote the maximum
number of MPA iterations by J . Then the messages will be
updated iteratively until j = J is reached and the LLR will be
computed by using the results of the iterative process.

We first describe the message updating in FNs. In this step,
a pair of equivalent CFs, i.e., f cn,k and f qn,k are defined in the
classical processing phase and the quantum processing phase,
respectively. When the codeword of user k is xmk , the CF f

c
n,k

is given by

f cn,k (x[n]) = −
1

2σ 2 ‖yn −
∑
l∈φ(n)

hl,nxl,n‖2

+

∑
l∈φ(n)\k

l j−1n←l(xl), (5)

where x[n] = {xl,n : l ∈ φ(n)} is a codeword combination
at the n-th sub-carrier. Then, we formulate the equivalent CF
f qn,k in the quantum domain. Let us denote the m-th SCMA
codeword in the codebook Xk by xmk . We define Xk,n =

(x1k,n, x
2
k,n, . . . , x

M
k,n)

T , where xmk,n is the n-th element of xmk .
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FIGURE 5. The diagram of Q-MPA. The results from quantum search will
be used to update messages in the FNs. Then, the messages are updated
between the FNs and VNs as the classical MPA.

Moreover, we define a vector L jn←k given by

L jn←k = [l jn←k (x
1
k ), l

j
n←k (x

2
k ), . . . , l

j
n←k (x

M
k )]T . (6)

Equivalent to f cn,k , the CF f
q
n,k is given by

f qn,k (a[n]) = −
1

2σ 2 ‖yn − hk,nxk,n −
∑

l∈φ(n)\k

hl,nalXl,n‖
2

+

∑
l∈φ(n)\k

alL
j−1
n←l, (7)

where a[n] = {al : l ∈ φ(n)}, al is a M -dimensional vector
denoted by al = (al,1, al,2, . . . , al,M ), al,m belongs to {0, 1}
and

∑M
m=1 al,m = 1. Moreover, we denote al associated

with al,m = 1 by aml , where a
m
l belongs to {a1l , a

2
l , . . . , a

M
l }.

If al = aml , then we have xl = xml . As a result, if a[n] =
{amll : l ∈ φ(n), 1 ≤ ml ≤ M}, then a codeword combination
is formulated as x[n] = {x

ml
l,n : l ∈ φ(n)}.

The message updating in FNs contains the quantum pro-
cessing phase and the message processing phase. In the
quantum processing phase, the entry xmax[n] that maximizes
f cn,k is found by a modified DH-QSA. Specifically, the DH
QSA of [20] utilizes f qn,k and f

c
n,k as the CFs in the quantum

domain and the classical domain, respectively. A threshold
value δ is initialized randomly. Then the specific input as[n]
that satisfies f qn,k (a

s
[n]) > δ is termed as a solution. Then,

the DH-QSA iteratively employs the BBHT-QSA for finding
the solutions. When a result is found by the BBHT-QSA,
a codeword combination xs[n] is determined by as[n]. The CF
value f cn,k (x

s
[n]) is computed in the classical domain to check

if it is a solution. Since f qn,k and f cn,k are equivalent, the CF
value f cn,k (x

s
[n]) is equivalent to f

q
n,k (a

s
[n]). The reason for this

modification is to avoid introducing extra complexity in the
classical domain. If as[n] is a solution, the threshold value δ is
updated to be f cn,k (x

s
[n]). The DH-QSAwill terminate when no

solution can be found or the maximum number of applying
Grover operators has been exhausted. Finally, the xmax[n] will
be found by the DH-QSA. The DH-QSA is summarized in
Algorithm 1 and its flowchart is also given in Fig. 6. Interested
readers might like to refer to Appendix VI-B for further
details on the basis of quantum computing and QSA.

FIGURE 6. Flowchart of Algorithm 1. The Q/C Conversion step converts
the quantum information as

[n] output by the BBHT-QSA into classical
information xs

[n]. Then the value f c
n,k (xs

[n]) will be computed in the
classical domain.

Algorithm 1 The Modified DH-QSA for Q-MPA

1: Set �QD
DHA ← 0. Randomly choose a[n], set threshold

δ← f qn,k (a[n]), a
max
[n] ← a[n].

2: The BBHT-QSA is employed to find a solution as[n] that
satisfies f qn,k (a

s
[n]) > δ. Obtaining a solution as[n] and

�BBHT from the BBHT-QSA.
3: �

QD
DHA← �

QD
DHA +�BBHT .

4: Determine xs[n] by a
s
[n].

5: if f sn,k (x
s
[n]) ≤ δ or �

QD
DHA ≥ 22.5

√

Mdf−1 then
6: Output amax[n] and exit.
7: else
8: Set threshold δ← f qn,k (a

s
[n]), a

max
[n] ← as[n], go to step 2.

9: end if

In the classical processing phase, the particular code-
word combination xmax[n] that maximizes f cn,k is found by the

DH-QSA. Then, the FN updates the message l jn→k (xk ) in the
classical domain as

l jn→k (xk ) = f cn,k (x
max
[n] ). (8)

The message updating in FNs is illustrated in Fig. 5.
The messages obtained are then forwarded to the
neighbor VNs.
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Let us now describe the message updating processes in
VNs. Since xk belongs to {x1k , x

2
k , . . . , x

M
k }, the messages are

updated in the VNs as follows:

l jn←k (xk ) =
∑

u∈ψ(k)\n

l ju→k (xk ). (9)

Then, the messages obtained are forwarded to the neighbor
FNs. The above message updating steps between the FNs
and VNs will be continuous until the maximum number of
iterations is reached.

Finally, the LLRs are computed when j = J is reached.
Specifically, the SCMA detector calculates the LLR of ck,r as

λ1(ck,r ) = max
xk∈X 1(ck,r )

L(xk )− max
xk∈X 0(ck,r )

L(xk )− λ
p
2(ck,r ),

(10)

where we have

L(xk ) =
∑

n∈ψ(k)

lJn→k (xk ). (11)

Both of the message updating step in the VNs and the LLR
computation step are carried out in the classical processing
phase. In this way, the LLR of (2) can be obtained by the
Q-MPA. The Q-MPA is summarized in Algorithm 2.

Algorithm 2 Quantum-Assisted MPA
1: Initialization:
l0n→k (xk ) ← 0, l0n←k (xk ) ← 0,L0n←k (xk ) ←

[0, 0, . . . , 0]T , �QMPA← 0.
2: Iterative Updating:
3: for j ≤ J do
4: for n ≤ N , k ≤ K do
5: for m ≤ M do
6: Invoke Algorithm 1 to find the index xmax[n] that

maximizes f cn,k (x[n]), obtaining �DHA.
7: �QMPA← �QMPA +�DHA.
8: Update l jn→k (x

m
k )← f cn,k (x

max
[n] ).

9: Update l jn←k (x
m
k ) as (9). Store the messages in

vector L jn←k (xk ) as (6).
10: end for
11: end for
12: end for
13: Calculate LLR:

Compute λ1(k, r) as (10).

2) COMPLEXITY ANALYSIS OF THE Q-MPA
Since the Q-MPA consists of the quantum processing phase
and the classical processing phase, the total complexity of the
Q-MPA is constituted by the sum of the complexity in the
quantum domain and in the classical domain. Specifically,
the complexity in the quantum domain is determined by the
number of Grover operator applications, while the complex-
ity in the classical domain is determined by the number of
classical CFEs in (5). In this paper, we use the idealized

simplifying assumption that one Grover operator application
in the quantum domain is equivalent to one CFE in the
classical domain. Moreover, we characterize the complexity
of the Q-MPA by the total Number of CFEs (NCFE), which
is denoted by�QMPA. In Theorem 1, we present the NCFE of
the Q-MPA.
Theorem 1: The total NCFE of the Q-MPA is

O(M (df+1)/2).
Proof: In a single DHA search, let �CD and �QD

denote the NCFE in the classical domain and the complex-
ity in the quantum domain, respectively. According to (7),
there are Mdf−1 codeword combinations for each CF. As a
result, the size of the search space is Mdf−1 for each DHA
search. According to the DHA introduced in Appendix VI-D,
the upper-bound and lower-bound of �QD are given by

4.5
√
Mdf−1 ≤ �QD ≤ 22.5

√
Mdf−1. (12)

By contrast, the NCFE in the classical domain is on the order
of �CD = O(log

√

Mdf−1). Let us denote the total NCFE of
a single DHA search by �DHA, which is given by

�DHA = �QD +�CD = O(
√
Mdf−1). (13)

Since there areM SCMA codewords for each message updat-
ing in the FNs, the total NCFE of the Q-MPA is given by

�QMPA = O(M�) = O(M (df+1)/2). (14)

Therefore, the NCFE of the Q-MPA is accelerated to be lower
than the NCFE of the classical MPA given by O(Mdf ).
Due to the random search of the QSAs, the NCFE of a

single quantum search is not constant. We define the average
NCFE as the mean of �QMPA. To evaluate the NCFE of the
Q-MPA more accurately, we use the average NCFE as the
metric of characterizing the Q-MPA.

C. PROJMPA TECHNIQUE BASED Q-MPA
Although we have seen that the NCFE can be reduced by
Q-MPA, it can still be further reduced by using other low-
complexity classical techniques. Since the NCFE of the
Q-MPA increases both with the codebook size M and with
the degree of the FNs df , it can be further mitigated by
reducingM or df . In this subsection, we hence further reduce
the NCFE of the Q-MPA by invoking the classical ProjMPA
technique of [12].

The SCMA codebook size can be viewed as the number
of projections of the SCMA codebook over each non-zero
element in the SCMA codewords [12]. By designing the
SCMA codebook to have the minimum number of projec-
tions, the effective number of codebook entries is reduced
fromM toMp (Mp < M ). When a 16-point SCMA codebook
is employed, the effective codebook size can be reduced to
as few as 9 points [12]. Therefore, we can use the SCMA
codebook having a reduced number of projections for reduc-
ing the NCFE of the Q-MPA. For simplicity, we refer to this
technique as ProjQMPA.
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TABLE 1. NCFE comparison of different receivers.

In the ProjQMPA, the number of CF entries is reduced to
M

df−1
p . As a result, the NCFE of each DH-QSA application

in the Q-MPA becomes O(M
(df−1)/2
p ) by using (13). Since

there are Mp different possible codewords for each message
in the FNs, the total NCFE of the ProjQMPA is given by
O(M

(df+1)/2
p ). Compared to the Q-MPA having the NCFE

order of O(M (df+1)/2), the ProjQMPA further reduces the
NCFE. Furthermore, the theoretical NCFE of the Q-MPA
based MUDs is given in Table 1. Observe from Table 1 that
the Q-MPA based receivers all exhibit lower NCFE than their
classical counterparts. Thus, the Q-MPA can be beneficially
amalgamated with the family of classical SCMA MUDs for
further reducing the MUD complexity.

FIGURE 7. The diagram of sphere decoding. Each point represents a
codeword combination at n-th sub-carrier. The legitimate codeword
combinations are the points within the sphere.

IV. THE QUANTUM-ASSISTED SPHERE
DECODER BASED MPA MUD
In each iteration of the classical MPA, each message updating
in the FNs requires Mdf CFEs. To reduce the complexity of
the classical MPA, the SD-MPA of [15] was proposed to find
all solutions of 5 within a hypersphere by using a classical
SD. Specifically, a CF is defined to measure the Euclidean
distance between the received signal and the codeword com-
binations. Though significant complexity reduction has been
achieved by the SD-MPA, the SD still requires CFEs of all
codeword combinations. The SD is shown in Fig. 7. Thus,
the NCFE of SD-MPA can be further reduced by using QSAs.

In this section, we present a QSD-MPA method along
with its complexity analysis. Based on the classical SD-MPA,
we first present a Quantum-assisted Sphere Decoder (QSD)
by using the BBHT-QSA to accelerate the classical SD. Then,
the classical MPA adopted in the QSD-MPA is introduced.
The complexity analysis of the QSD-MPA is given at the end
of this section. Readers might like to refer to Appendix VI
and Appendix VI-B for details of the classical SD-MPA and
of the BBHT-QSA, respectively.

A. THE QSD-MPA
The QSD-MPA consists of two steps, namely, the QSD
step and the classical MPA step. In the QSD, all the code-
word combinations within a given hypersphere are chosen
as legitimate codeword combinations. In the MPA, the legit-
imate codeword combinations are used for updating mes-
sages between the FNs and VNs on the factor graph. In this
subsection, we describe the QSD step and the MPA step,
respectively.

1) THE QSD
In the QSD, all the legitimate codeword combinations within
a given hypersphere have to be found. To achieve this, a CF is
defined for quantifying the distance between each codeword
combination and the received signal. A codeword combina-
tion at the n-th sub-carrier is denoted by x[n] = {xl,n :
l ∈ φ(n)}. At the n-th sub-carrier, the CF of the QSD
is defined as the Euclidean distance between the codeword
combination considered and the received signal, as

f (x[n]) = ‖yn −
∑
l∈φ(n)

hl,nxl,n‖, (15)

where yn is the received signal. Given the radius of the
hypersphere 1, a codeword combination x[n] is legitimate if
it satisfies

f (x[n]) ≤ 1. (16)

For simplicity, a legitimate codeword combination is termed
as a solution for the CF f . The number of solutions is denoted
by S. When S is unknown a priori, the QSD finds all the
solutions by using the following algorithm.

We assume that all the codeword combinations form an
unsorted database with Q elements, where we have Q = Mdf

at the beginning. An iterative quantum-assisted algorithm
based on the BBHT-QSA is adopted to search through the
database for all solutions. Specifically, the QSD iteratively
employs the BBHT-QSA for finding the legitimate codeword
combinations one by one. Since the BBHT-QSA can find
a specific solution in an unsorted database even when the
number of solutions is unknown a priori, the QSD can find all
solutions in the database after a certain number of iterations.
When a result xo[n] is obtained by a specific BBHT-QSA
iteration, the CF value f (xo[n]) is computed in the classical
domain to check, whether it is legitimate. If f (xo[n]) ≤ 1,
then xo[n] will be output as a solution and it will be removed
from the database. As a result, both the number of remaining
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solutions S and the number of remaining elements Q in
the database are reduced by 1. However, if f (xo[n]) > 1,
we define this occurrence as a failure of the BBHT-QSA.
In this case, the number of remaining solutions S and the num-
ber of remaining elements Q in the database will not change.
Furthermore, we derive a variable V to represent the number
of immediately consecutive failures. If failures occur twice
in succession, we have V > 1. In this case, the QSD
is believed to have obtained all solutions in the database.
Therefore, the BBHT-QSA will be invoked iteratively until
we reach V > 1. By using the above algorithm, all the
legitimate codeword combinations and its CF values can
be obtained. The QSD is summarized in the QSD step
in Algorithm 3.

Algorithm 3 QSD-MPA
1: The QSD step:
�QSD ← 0, �QD

QSD ← 0, �CD
QSD ← 0, V ← 0, Q← Mdf

and set the sphere radius 1.
2: while V < 2 do
3: Invoke the BBHT-QSA to search the Q possible code-

word combinations. Obtaining a result xo[n], �
QD
BBHT ,

and �CD
BBHT .

4: �
QD
QSD← �

QD
QSD +�

QD
BBHT , �

CD
QSD← �CD

QSD +�
CD
BBHT .

5: if f (xo[n]) > 1 then
6: V ← V + 1;
7: continue.
8: else
9: Output xo[n] as a legitimate codeword combination,

store the value of f (xo[n]) in a database, and delete
xo[n] from database;

10: Q← Q− 1, V ← 0.
11: end if
12: end while
13: �QSD← �

QD
QSD +�

CD
QSD.

14: The MPA step:
15: for j ≤ J do
16: Compute Ljn→k (xk ) as (17);

17: Compute Ljn←k (xk ) as (26).
18: end for
19: Compute λ1(k, r) as (27).

2) THE MPA
In the MPA, the messages are iteratively updated between
the FNs and VNs on the factor graph. However, only the
legitimate codeword combinations obtained by the QSD will
be used to update the messages. The message forwarded from
the n-th FN to the k-th VN at the j-th iteration is denoted
by Ljn→k (xk ), where xk is the codeword of user k . Similarly,
the message passed on from the k-th VN to the n-th FN at the
j-th iteration is denoted by Ljn←k (xk ). If x[n] is a legitimate
codeword combination, the FN utilizes the pre-stored CF
value f (x[n]) to update messages. Specifically, the message

Ljn→k (xk ) is given by

Ljn→k (xk ) = max
xl :l∈φ(n)\k

{
−

1
2σ 2 f

2(x[n])+
∑

l∈φ(n)\k

Lj−1n←l(xl)
}
.

(17)

In the k-th VN, the message Ljn←k (xk ) is updated as

Ljn←k (xk ) =
∑

u∈ψ(k)\n

Lju→k (xk ). (18)

When the maximum number of MPA iterations is reached,
the LLR of each coded bit is computed by using (27). The
QSD-MPA is summarized in Algorithm 3.

B. COMPLEXITY ANALYSIS OF THE QSD-MPA
We use the complexity of the classical SD-MPA as the bench-
mark. Since the QSD-MPA has a QSD step and a MPA step,
the total complexity of the QSD-MPA is contributed to both
by the QSD step and by the MPA step. We first consider the
complexity of the MPA. According to the introduction of the
QSD-MPA, the QSD-MPA and the SD-MPA have the same
MPA step. Therefore, the complexity of the MPA step in the
QSD-MPA is the same as in the SD-MPA.Moreover, theMPA
step only adds amodest contribution to the overall complexity
because of the low-complexity additions and multiplications.

Then, we consider the complexity of the QSD step. Again,
we characterize the complexity of the QSD by the NCFE. Let
us denote the total number of codeword combinations and
the number of legitimate codeword combinations byQ and S,
respectively. Since the classical SD-MPA finds the legitimate
codeword combinations by exhaustively searching through
all codeword combinations, the NCFE of the classical
SD-MPA is Q, or equivalently,Mdf . However, a lower NCFE
can be imposed by the QSD-MPA, if S is less than a critical
value. The total NCFE of the QSD is contributed to by
the NCFE in the classical domain and that in the quantum
domain. The NCFE in the quantum domain and that in the
classical domain are determined by the number of Grover
operator applications and by the number of CFEs, respec-
tively. Again we assume that one Grover operator application
in the quantum domain is equivalent to one CFE in the classi-
cal domain. For simplicity, the NCFE in the quantum domain
and that in the classical domain are denoted by �QD

QSD and
�CD
QSD, respectively. Additionally, we use �QSD to denote the

overall NCFE of the QSD. As shown in Algorithm 3, �CD
QSD

and �QD
QSD are obtained by considering all the NCFE contri-

butions of each BBHT-QSA in the corresponding domain.
In Theorem 2, we present the overall NCFE of the QSD step.
Theorem 2: The NCFE of the QSD is upper bounded by

�QSD = O(
√

SMdf ).
Proof: After a certain number of iterations of the BBHT-

QSA, we denote the number of solutions remaining in the
database by s (0 < s ≤ S). In this case, the NCFE of the
BBHT-QSA in the classical domain and the quantum domain
by �CD

BBHT and �QD
BBHT , respectively. The NCFE �

QD
BBHT is
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upper bounded by

�
QD
BBHT ≤ 4.5

√
Q
s
. (19)

If s = 0, the BBHT-QSA requires 4.5
√
Q3 number of Grover

operator applications. Since S is unknown a priori, the total
NCFE of the QSD in the quantum domain is given by

�
QD
QSD ≤

S−1∑
s=0

4.5

√
Q− s
S − s

+ O(
√
Q) ≤ 4.5

√
Q

S∑
s=1

1
√
s

+O(
√
Q), (20)

where the O(
√
Q) represents the NCFE of the failures of

the BBHT-QSA. For the first item at the right side of (20),
we have

4.5
S∑
s=1

1
√
s
≤ 4.5

S∑
s=1

2(
√
s−
√
s− 1) < 9

√
S. (21)

According (20) and (21), the NCFE �
QD
QSD is O(

√
QS).

Meanwhile, �CD
BBHT is on the order of logλ(

√
Q). Note that

Q = Mdf . Thus, the NCFE of the QSD is given by

�QSD = �
CD
QSD +�

QD
QSD = O(

√
SMdf ). (22)

According to Theorem 2, the QSD has lower NCFE than the
classical SD when S is lower than a critical value. Therefore,
the QSD-MPA can be used for reducing theMUD complexity
of SCMA.

According to the BBHT-QSA, each BBHT-QSA iteration
may apply different number of Grover operator applications.
To compare the NCFE of the QSD and the classical SD,
we use the average NCFE denoted by �̃QSD.

V. NUMERICAL RESULTS
In this section, we evaluate the BER performance vs NCFE
of the quantum-assisted MUD schemes.

A. PERFORMANCE VS NCFE
Due to the random search of QSAs, simulations are required
to evaluate the NCFE of our quantum-assisted MUDs.
We proceed by our NCFE comparison between the quantum-
assisted schemes and their classical counterparts in this
section.

1) NCFE OF THE Q-MPA BASED MUDS
We first present our NCFE comparison between the classical
MPA and the Q-MPA, where the average NCFE curves and
theoretical NCFE lower-bound are portrayed. To compare the
NCFE of the Q-MPA and the classical MPA, the NCFE ratio
R1 is defined as

R1 =
�̃QMPA

Mdf
, (23)

where Mdf is the NCFE of the classical MPA. The NCFE
of the Q-MPA is then characterized by the NCFE ratio R1.

FIGURE 8. NCFE comparison between the classical MPA and the Q-MPA.

In Fig. 8, the Y-axis represents the NCFE ratio R1 and the
X-axis the SCMA codebook size M . Our simulation results
show that the Q-MPA exhibits 45.55% of the classical MPA
NCFE for M = 16 and df = 3. Additionally, the average
NCFE is only 11.57% higher than the theoretical NCFE
lower-bound. Furthermore, the NCFE ratio curves decrease
significantly as either M or df becomes higher. The lower
NCFE imposed by the Q-MPA is because of applying fewer
Grover operators in the quantum domain. Therefore, it can be
concluded that the Q-MPA significantly reduces the NCFE of
the classical MPA, especially when M and df are large.

Moreover, we compare the NCFE of the ProjQMPA and
of the classical ProjMPA. In this case, the 16-point SCMA
codebook is reduced to as few as 9 effective projections.
When df = 3, our simulation results show that the ProjQMPA
exhibits an average NCFE 80.42% compared to the classical
ProjMPA. Thus, the complexity of the Q-MPA can be reduced
by combining it with the classical ProjMPA technique.

2) NCFE OF THE QSD-MPA MUD
In this subsection, the NCFE of the QSD-MPA is presented.
We first characterize the NCFE of the QSD for different
number of solutions. The NCFE ratio R2 is defined as

R2 =
�̃QSD

Q
, (24)

where Q represents the NCFE of the classical exhaustive
search, while �̃QSD is the average NCFE of the QSD. The
NCFE ratio curves of the database sizes on Q = 4096
and Q = 2048 are shown in Fig. 9. The simulation results
demonstrate that the average NCFE monotonically increases
with the number of solutions S. As a result, critical values
exist on the NCFE ratio curves. Specifically, the critical value
is 408 for Q = 4096 and 178 for Q = 2048. Explicitly,
the MUD NCFE can be reduced if R2 ≤ 1. When S = 200
and Q = 4096, the NCFE ratio is R2 = 78.5%. Furthermore,
the NCFE can be further reduced if S is a smaller number.
The results are consistent with Theorem 2. Therefore, it can
be concluded that the QSD reduces the NCFE of the classical
SD, provided that S is below the critical value of Fig. 9.

In the following QSD-MPA based simulations, we adopt
the 16-point SCMA codebook of [12] and the SCMA
codeword structure shown in Fig. 3. As a result, the number
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FIGURE 9. NCFE ratio vs the number of solutions.

FIGURE 10. Average number of solutions vs SNR.

of codeword combinations in each OFDM sub-carrier is Q =
4096. Additionally, we set the radii of the QSD to 1 = 3σ ,
1 = 2.8σ , and1 = 2.5σ , respectively. In the QSD, the num-
ber of legitimate codeword combinationsmay vary depending
on the uncertainty of the received signal. We hereby give
the simulation results that describe the average number of
legitimate codeword combinations corresponding to different
SNRs. As shown in Fig. 10, the results confirm that only
a small number of codeword combinations are within the
SNR-dependent hypersphere. Specifically, the number of
solutions is only 142, when 1 = 3σ and the SNR is 13 dB.
Moreover, the number of legitimate codeword combinations
decreases with the radius of the hypersphere. According to
the NCFE of the QSD, we can see that the average numbers
are within the reduced-number region. Therefore, the QSD
has a lower average NCFE than the classical SD.

To evaluate the average NCFE of the QSD-MPA more
intuitively, we also demonstrate the NCFE vs SNRs. Since
the MPA step of the QSD-MPA is the same as that of the
classical MPA, we only consider the NCFE of the QSD and
that of the classical SD in this simulation. We adopt the
same parameters as in the simulations of Fig. 10. As shown
in Fig. 11, the results show that the average NCFE of the
QSD method is lower than that of the classical SD method.
Specifically, when the SNR is 15 dB, the NCFE ratio is
R2 = 56.7%, 53.4%, and 49.2% when 1 = 3σ , 1 = 2.8σ ,
and 1 = 2.5σ , respectively. According to the simulation
results of the QSD, the NCFE reduction is due to the sphere
radius. Additionally, we can observe from the results that the

FIGURE 11. NCFE ratio vs SNR.

NCFE ratioR2 decreases as the SNR increases. In conclusion,
the QSD-MPA detection scheme is capable of reducing the
complexity of the classical MPA.

B. BER PERFORMANCE
In this section, we evaluate the BER performance of the
quantum-assisted MUD schemes. Specifically, BER perfor-
mance comparisons are provided between the Q-MPA and
the classical MPA, the ProjQMPA and the classical ProjMPA,
the QSD-MPA and the classical SD-MPA, respectively. In our
simulations, the basic parameters are set as follows: the num-
ber of users is K = 6, the number of OFDM subcarriers is
N = 4, the degrees of the factor graph are df = 3 and dv = 2.
We adopt the SCMA codeword structure shown in Fig. 3.
Additionally, we employ a turbo code having an interleaver
length of 1024 bits and coding rate of 1/3 as our channel code.

FIGURE 12. BER comparison between the classical MPA and the Q-MPA
with turbo coding.

Wefirst present the BER performance of the Q-MPA under
3, 5, and 7 MPA iterations. In this simulation, the 16-point
SCMA codebook of [12] is employed. As shown in Fig. 12,
the simulation curves of the Q-MPA basically overlap with
MPA curves when the SNR is lower than 14 dB. Moreover,
the Q-MPA suffers less than 0.01 dB SNR penalty at 14.5 dB.
In conclusion, the Q-MPA suffers only negligible BER per-
formance degradation, which is due to the fact that the success
probability of DH-QSA is slightly less than 1.
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FIGURE 13. BER comparison between the classical ProjMPA and the
ProjQMPA.

In Fig. 13, we compare the BER performance of the Pro-
jQMPA and of the classical ProjMPA. In this case, the number
of SCMA codewords is reduced from 16 to 9 projections
per non-zero OFDM sub-carrier by using the low number
of projections technique. Compared to the classical MPA,
the ProjQMPA achieves an even closer BER match with its
classical counterpart. It can be concluded From Fig. 12 and
Fig. 13 that the Q-MPA based SCMA MUDs only suffer
slight BER performance erosion.

FIGURE 14. BER comparison between the QSD-MPA and the classical
SD-MPA method.

Additionally, we give the BER performance of our QSD-
MPA detection scheme. In this simulation, the 16-point
SCMA codebook of [12] is adopted. As a result, the number
of possible codeword combinations at a single sub-carrier is
4096. Moreover, we set the radii of the QSD as 1 = 2.5σ ,
1 = 2.8σ , and 1 = 3σ . As shown in Fig. 14, the BER
curves of the QSD-MPA overlap with the corresponding BER
curves of the classical SD-MPA. Therefore, the simulation
results indicate that the QSD-MPA achieves a similar BER
performance as the classical SD-MPA. The sustained BER
performance of the QSD-MPA MUD is a benefit of the
QSDfinding all the legitimate codeword combinations within
the hypersphere with near-certainty. Thus, we can conclude
that the QSD-MPA achieves a similar BER as the classical
SD-MPA at a lower complexity.

VI. CONCLUSIONS
In this paper, we conceived two quantum-assisted MUDs for
SCMA by amalgamating QSAs and classical MUDs. Specif-
ically, we conceived a Q-MPA scheme and a QSD-MPA
scheme for reducing the complexity of the classical MPA
scheme in two different ways. The Q-MPA was conceived by
adopting the DH-QSA to accelerate the maximization search
process of the classical MPA. By contrast, the QSD-MPAwas
conceived by invoking the QSD before the classical MPA.
We characterize the complexity of both schemes by the total
NCFE in the quantum domain and in the classical domain.
Our simulation results show that the Q-MPA is capable of
reducing the NCFE substantially at the cost of a negligible
BER performance loss. Furthermore, the NCFE can be fur-
ther reduced by using low-complexity classical techniques
for shrinking the search space of the Q-MPA. Additionally,
our simulation results show that the QSD-MPA can reduce
the NCFE for MUD without BER performance degradation
compared to the classical SD-MPA scheme. Therefore, the
Q-MPA and the QSD-MPA can be used for low-complexity
SCMA detection, albeit it still requires substantial research
on QSAs.

APPENDIX A
THE CLASSICAL MPA AND THE CLASSICAL SD-MPA
In this Appendix, we first describe the classical MPA. Then,
the classical SD-MPA MUD is introduced.

A. CLASSICAL MPA
The classical MPA can be divided into message updating
step in the FNs, message updating step in the VNs, and the
LLR computation step. For the first two steps, messages are
iteratively updated between the FNs and VNs on the factor
graph.When the SCMAcodeword of user k is xk , themessage
sent from the n-th FN to the k-th VN at the j-th iteration is
denoted by Ljn→k (xk ). Similarly, the message sent from the
k-th VN to the n-th FN at the j-th iteration is denoted by
Ljn←k (xk ). When j = 0, all the initial messages are set to 0.
In the n-th FN, the message Ljn→k (xk ) is updated as

Ljn→k (xk ) = max
xl :l∈φ(n)\k

{
−

1
2σ 2 ‖yn −

∑
l∈φ(n)

hl,nxl,n‖2

+

∑
l∈φ(n)\k

Lj−1n←l(xl)
}
, (25)

where yn is the received signal at the n-th sub-carrier,
and φ(n)\k represents the neighbor VNs excluding the
k-th VN. In the k-th VN, the message Ljn←k (xk ) is
updated as

Ljn←k (xk ) =
∑

u∈ψ(k)\n

Lju→k (xk ). (26)

The maximum number of MPA iterations is denoted by J
and when j = J is reached, the LLR computation step is
executed. Let us define X 1(ck,r ) = {ck,r = 1|xk ∈ X } and
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X 0(ck,r ) = {ck,r = 0|xk ∈ X }. By using the results on the
factor graph, the extrinsic information of (2) is obtained by

λ1(ck,r ) = max
xk∈X 1(ck,r )

L(xk )− max
xk∈X 0(ck,r )

L(xk )− λ
p
2(ck,r ),

(27)

where

L(xk ) =
∑

n∈ψ(k)

LJn→k (xk ). (28)

In the SCMA detector, the LLR of each coded bit can thus be
obtained.

In Eq.(25), the message updating operation requires
searching through the codeword combinations, which results
in an exponentially increasing complexity order of O(Mdf ).
However, (26) will introduce only a modest complexity
because of the simple multiplications and additions. Thus,
the message updating in the FNs imposes the highest com-
plexity contribution of the classical MPA.

B. CLASSICAL SPHERE DECODER BASED MPA
The classical SD-MPA was proposed in [15] for reducing the
complexity of the classical MPA. The SD-MPA is divided
into the SD step and the MPA step. In the SD step, only the
codeword combinations falling within a given hypersphere
are selected as legitimate codeword combinations. The code-
word combination in the n-th sub-carrier is denoted by x[n] =
{xl,n : l ∈ φ(n)}. Codeword combination x[n] is legitimate,
if it satisfies

‖yn −
∑
l∈φ(n)

hl,nxl,n‖ ≤ 1, (29)

where yn is the signal received by the n-th sub-carrier, while
1 is the radius of the given hypersphere. The left side of
(29) is defined as the CF for the SD step. By computing and
pre-storing the CF values of all the codeword combinations,
the legitimate codeword combinations are obtained. In the
MPA, the CF values of legitimate codeword combinations are
used for updating the messages in the FNs.

Since there are a total Mdf of codeword combinations
at each sub-carrier, the SD requires computing and pre-
storing Mdf CF values. In the MPA step, only legitimate
codeword combinations are considered. The SD-MPA has
a significantly lower complexity than the classical MPA.
Furthermore, a BER vs complexity trade-off can be struck by
dynamically changing the sphere radius 1 according to the
noise power σ .

APPENDIX B
QUANTUM COMPUTING AND QUANTUM
SEARCH ALGORITHMS
In this Appendix, we provide a rudimentary introduction to
QSAs. First, the basis of quantum computing is introduced.
Then, we describe three popular QSAs, namely, the Grover’s
QSA, the BBHT-QSA, and the DH-QSA.

A. BASIS OF QUANTUM COMPUTING
In quantum computing, the basic information storage unit is
qubit [17]. A single qubit is in a superposed state denoted by

|ρ〉 that can be expressed as |ρ〉 = α |0〉+β |1〉, where |α|2+
|β|2 = 1 and α, β ∈ C. Once a measurement or observation
of a qubit is performed, the quantum state |ρ〉 will collapse
into |0〉 with probability |α|2 or |1〉 with probability |β|2.
To store more information in qubits, large quantum systems
can be created by using the entanglement of qubits. Let us
consider for example a quantum system relying on a pair
of two entangled qubits |ρ1〉 and |ρ2〉. Then the state of the
quantum system can be expressed as |ρ1〉 |ρ2〉 = α00 |00〉 +
α01 |01〉+α10 |10〉+α11 |11〉, where we have |α00|2+|α01|2+
|α10|

2
+|α11|

2
= 1. Furthermore, the quantum state of a quan-

tum system is manipulated by unitary quantum operators U ,
where U−1 = U+ [17]. By designing appropriate QSAs that
are represented by unitary operators, the quantum state can
be beneficially manipulated to achieve specific tasks.

B. GROVER’S QUANTUM SEARCH ALGORITHM
Given a value δ1 and an unsorted database having Q1 ele-
ments that represent the inputs of a CF f1, Grover’s QSA
finds an element qs in the database that satisfies f1(qs) = δ1.
The specific element qs that satisfies f1(qs) = δ1 is termed
as a solution. Provided that the number of solutions is
known a priori, Grover’s QSA succeeds in finding the spe-
cific entries constituting the solutions with a probability of
almost 100%.

Grover’s QSA prepares a quantum system that has log2 Q1
qubits in |0〉 state. The Hadamard gateH is applied to initiate
the system with an equiprobable state |ϕ〉. The resultant state
|ϕ〉 is given by

|ϕ〉 = H |0〉 =
Q1−1∑
q=0

|q〉 , (30)

where computational basis state |q〉 represents an element q in
the database. Then, Grover operator G = HP0HO is applied
repeatedly to |ϕ〉, where P0 = 2 |0〉 〈0| − I represents a
conditional phase shift operator associated with every com-
putational basis state except for state |0〉 which is subjected
to a phase shift of−1, andO is the so-called Oracle [17], [18].
To elaborate a little further, the Oracle O evaluates f1 for all
inputs in parallel and recognizes the solutions sought in the
database. If we have f1(q) = δ1, the Oracle maps |q〉 to− |q〉,
otherwise |q〉 remains unchanged. Since the complexity of the
Oracle depends on the specific application [17], we assume
that each application of the Grover operator corresponds to
one CFE [18], [21]. Assuming that the number of solutions is
S1, the optimal number of applying Grover operators to |ϕ〉
is �opt = bπ/4

√
Q1/S1c. It follows that the probability of

successfully finding a solution is Popt = sin2[(2�opt + 1)θ ],
where θ = arcsin(

√
S1/Q1) [18].

C. BBHT QUANTUM SEARCH ALGORITHM
Given a value δ2 and an unsorted database having Q2
elements that represent the legitimate inputs of a CF f2,
an element xs that satisfies f2(xs) = δ2 is termed as a
solution. When the number of solutions is unknown a priori,
the BBHT-QSA is capable of finding a solution with
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Algorithm 4 BBHT Quantum Search Algorithm

1: Set value δ2. λ← 6/5, m← 1, �BBHT ← 0, �CD
BBHT ←

0, �QD
BBHT ← 0.

2: Initiate the state of quantum system in |ϕ〉 as (30).
3: Uniformly pick ω ∈ {1, 2, . . . ,m}.
4: Apply ω number of Grover operators on the system,

obtain the final state |xo〉 = Gω |x〉.
5: Measure the final state |xo〉 and obtain the output |q〉.
6: Compute f2(q) in the classical domain.
7: �

QD
BBHT ← �

QD
BBHT + ω,�

CD
BBHT = �

CD
BBHT + 1.

8: if f2(q) = δ2 or �
QD
BBHT ≥ 4.5

√
Q2 then

9: xs← q, output xs and exit.
10: else
11: m← bλm,

√
Q2c, go to step 3.

12: end if
13: �BBHT ← �

QD
BBHT +�

CD
BBHT .

a probability of almost 100%. As shown in Algorithm 4,
the BBHT-QSA applies a pseudo-random number ω of
Grover operators G to the initial state |ϕ〉 in (30). The process
of applyingGrover operator will be repeated until a legitimate
solution xs is found. Let us define the number of CFEs in the
quantum domain by �QD

BBHT and the number of CFEs in the

classical domain by �CD
BBHT . The overall complexity of the

BBHT-QSA is given by

�BBHT = �
CD
BBHT +�

QD
BBHT . (31)

The number of solutions is denoted by S2. When λ = 6/5
and S2 > 0, at most �max

QD = 4.5
√
Q2/S2 Grover operators

are used by the BBHT-QSA before finding a solution [19],
otherwise S2 = 0.

D. DURR-HOYER QUANTUM SEARCH ALGORITHM
Given an unsorted database havingQ3 elements that represent
the legitimate inputs of a CF f3, the DH-QSA succeeds in
finding the specific entry denoted by xmax that maximizes f3
with a probability of almost 100% [20], [24]. The DH-QSA
randomly selects a threshold δ3 at the beginning. Then,
the BBHT-QSA is employed for finding an element having
a higher CF value in the database. To achieve this, the Oracle
in the BBHT-QSA only marks an element |x〉 that satisfies
f3(x) > δ3 as a solution. Once a solution xs is obtained by
the BBHT-QSA, the threshold δ3 and xmax will be updated
as δ3 ← f3(xs) and xmax ← xs, respectively. In DH-QSA,
the BBHT-QSA will be invoked repeatedly until no solution
x that satisfies f3(x) > δ3 can be found. Let us denote the
total number of applying Grover operator in the DH-QSA
by �QD

DHA. The DH-QSA succeeds in finding xmax by using
at least 4.5

√
Q3 Grover operators, and at most 22.5

√
Q3

Grover operators. Thus, the lower-bound and upper-bound of
�
QD
DHA are given by

4.5
√
Q3 ≤ �

QD
DHA ≤ 22.5

√
Q3. (32)

Additionally, the complexity �CD
DHA in the classical domain

is on the order of O(logQ3). Thus, the complexity

Algorithm 5 Durr-Hoyer Quantum Search Algorithm
1: Set �← 0. Randomly choose q0 ∈ {0, 1, . . . ,Q3 − 1},

set threshold δ3← f3(q0), xmax ← q0.
2: The BBHT-QSA is employed to find a solution xs that

satisfies f3(xs) > δ3. Obtaining a solution xs and �BBHT
from the BBHT-QSA.

3: �DHA← �DHA +�BBHT .
4: if f3(xs) ≤ δ3 or �

QD
DHA ≥ 22.5

√
Q3 then

5: Output xmax and exit.
6: else
7: Set threshold δ3← f3(xs), xmax ← xs, go to step 2.
8: end if

of the DH-QSA is O(
√
Q3). The DH-QSA is detailed

in Algorithm 5.
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