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ABSTRACT In this paper, a hierarchical localization framework within indoor environments is proposed
and evaluated, considering severe variations of the illumination conditions. The only source of information
both to build a model of the environment and to solve the localization problem is a catadioptric vision
system, which is mounted on the mobile robot. The images captured by this system are processed globally
to obtain holistic descriptors. The position of the robot is estimated by comparing these descriptors with the
information contained in a topological visual model, which is previously created using a clustering approach
and is composed of a hierarchy of layers. Compacting the information via clustering proves to be an efficient
alternative to estimate the position of the robot hierarchically and with robustness. The proposed localization
strategy is tested with some sets of panoramic images, captured in large indoor environments under real
operating conditions, including illumination changes that change substantially the appearance of the scenes.
The results show a reasonable tradeoff computation time-accuracy when the localization is addressed in a
hierarchical way.

INDEX TERMS Localization, omnidirectional visual information, global appearance descriptors, clustering,

illumination changes.

I. INTRODUCTION

Nowadays, the use of omnidirectional vision sensors in
mobile robotics for solving mapping and localization has
considerably increased. They have been successfully used
by different authors for these purposes. For instance,
Valiente et al. [1] used the local features extracted from
omnidirectional images to generate a reliable visual odom-
etry to improve the Simultaneous Localization And Map-
ping (SLAM) task. Marinho et al. [2] used feature extractions
and machine learning techniques to solve localization using
omnidirectional images. Faessler et al. [3] present a vision-
based quadrotor system to map a dense three-dimensional
area online with the purpose of removing delay between the
quadrotor and external systems. Berenguer et al. [4] con-
sidered the global appearance of omnidirectional images to
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create local maps and to estimate the position of a robot
within these maps. This kind of images covers a field of
view of 360 deg around the robot. Hence, they offer a
huge amount of information from the surroundings of the
robot which permits both building rich maps and estimat-
ing the robot position. Working with images requires a step
to obtain functional, robust and relevant information from
them. Commonly, two methods to extract relevant informa-
tion have been considered in the related literature: either
detecting, describing and tracking some relevant landmarks
over the image (such as [5]-[7]) or creating a unique descrip-
tor per image which contains global information about it
(for instance, [8]-[10]). As for the second proposed method,
on the one hand, it usually leads to more direct localization
algorithms. Basically, they consist in a pairwise comparison
between descriptors. On the other hand, it presents a lack
of metric information. Therefore, this kind of descriptors are
usually used to build topological maps (such as [11]-[13]).

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

49580

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-4047-3841

S. Cebollada et al.: Hierarchical Localization in Topological Models Under Varying Illumination

IEEE Access

In order to address the mapping and localization issue,
arranging the topological information hierarchically consti-
tutes an efficient alternative. This framework consists in
creating a map which is composed of several layers with a
hierarchical structure. The high-level ones present a relatively
compact amount of information, which permits a rough but
quick localization. The low-level layers have usually more
information and are used to refine the position. A good
example of this issue was developed by Stimec et al. [14],
who proposed an unsupervised hierarchical mapping method.
Garcia-Fidalgo and Ortiz [15] presented a review about the
main approaches considered to carry out topological mapping
and localization through visual information in the last years.
recently, da Silva et al. [16] propose a localization and nav-
igation approach for mobile robots using topological maps
and using CNN to obtain descriptors from omnidirectional
images.

Considering this information, the main objective of this
work consists in proposing an approach to solve the local-
ization problem using hierarchical models. Moreover, a com-
parative evaluation of some global descriptors is carried out to
know which one behaves more robustly against illumination
changes. The results obtained throughout this work permit
selecting the best global descriptor method and also tuning
correctly its parameters in order to obtain optimal results
(the maximum accuracy and the lowest computational time).
Additionally, the use of approaches based on deep learning
are also considered to describe the scenes globally. The aim
consists in evaluating which method solves more efficiently
the localization task under the conditions previously exposed.

An omnidirectional vision sensor [17] is the unique source
of information used to carry out mapping and localization in
this work. The images used in the experiments are obtained
from an indoor dataset (explained in IV-A.1) and they are
described through global appearance descriptors. The present
work continues and expands the research framework pre-
sented in [18], where an approach is proposed to build com-
pact topological models of the environment. The approach
consists in the use of clustering algorithms, which are non-
supervised techniques, along with holistic visual descriptors,
and both the correctness of the model and its utility to solve
the localization problem is assessed. An exhaustive evalua-
tion of different clustering methods was carried out in [18].
In that work, Spectral Clustering along with the holistic
descriptor gist was chosen as the configuration which best
tackled the mapping task. Hence, in this work, the localization
algorithms are tested with the compact maps obtained with
this combination of methods (gist + spectral clustering).
These compact models are the basis of the present work,
whose main differences and contributions are: (a) solving the
localization problem hierarchically, with different degrees of
granularity, (b) making an exhaustive comparative evaluation
of the method and testing its robustness under severe illumi-
nation variations and (c¢) including in the evaluation a new
holistic description method, based on deep learning (obtained
through convolutional neural networks).
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The remainder of the paper is structured as follows.
Section II outlines the global appearance descriptors used
along this work. After that, section III explains briefly the
clustering approach used to compress the information and
section IV presents the experiments carried out to test the
validity of the proposed methods to solve the localization
under changing lighting conditions. At last, the conclusions
are presented in section V.

Il. THE GLOBAL APPEARANCE DESCRIPTOR

This section focuses on the methods used to describe the
global appearance of the set of images. Four methods are
evaluated in this paper: the Fourier Signature (FS), the His-
togram of Oriented Gradients (HOG), the gist of the scenes
and a global descriptor based on a Convolutional Neural
Network (CNN). In order to reduce the effect of changing
lighting conditions, the homomorphic filter [19] is applied
over the images before describing them with HOG, since pre-
vious works [20] concluded that this pre-filtering improves
the localization results when HOG is used.

The panoramic image im(x,y) € RV<*M is the starting
point, hence, a conversion from omnidirectional to panoramic
must be carried out. After that, one of the four proposed
description methods is used to calculate the global appear-
ance descriptor vector d € R'*!. A deep description of FS,
HOG and gist methods can be found in [21]. As for the use
of CNN as global feature extractor, a wide explanation is
presented in [22].

Regarding the FS descriptor, it was firstly used by
Menegatti et al. [8]. This method calculates the discrete
Fourier Transform of each row of the panoramic image and
a complex matrix is obtained IM (u, v). The k; first columns
are retained (compression effect) IM (u, v) € CNxxky Finally,
a decomposition is tackled to obtain just the magnitudes
information (the resulting matrix is invariant to robot ori-
entation changes) and the rows of the resultant matrix are
arranged to create a vector, obtaining the global appearance
descriptor d € RN<kix1,

As for the HOG descriptor, it was firstly used by Dalal and
Triggs [23] for a pedestrians detection task. The version used
in this work consists in splitting the panoramic image into
ky horizontal cells and compiling a histogram of gradients
orientation per each cell with b bins per histogram [24]. The
set of histograms compose the final descriptor d € RP*2x1,

With regard to the gist descriptor, Oliva and Torralba [25]
introduced this method, which has been widely used for
scenes recognition. Several versions can be found depend-
ing on the features of the image used. In this case, firstly,
my different resolution images are created from the origi-
nal panoramic one. Secondly, Gabor filters are applied over
the my images with m; different orientations each. Thirdly,
the pixels of each image are grouped into k3 horizontal blocks
and finally, the obtained orientation information is grouped
to create a vector, which is the resultant descriptor d €
R™Mmksx 1 This descriptor has already been used in mobile
robot localization. For instance, Murillo et al. [26] used
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FIGURE 1. CNN places architecture design based on the pre-trained ‘Caffe” model. Layers fc7’ and fc8’ are used in this work as a method to obtain

holistic descriptors from the original input image.

it with panoramic images for localization in urban regions
including loop closure detection.

Last, concerning the use of the CNN-based descriptor,
this method comes from the use of deep learning for clas-
sification, as Krizhevsky et al. [27] do. The neural network
tackles two steps. First, it carries out a learning process,
i.e., a set of images (which are already labeled) are col-
lected and introduced to the network. Second, once trained,
the network receives new images (also labeled) and tunes
its internal parameters to optimize the results. After that,
the network is available to face the classification task: a new
image is introduced and the CNN returns the most likely
label option. During the process of classification, descrip-
tors are obtained by the fully connected layers which are
within the neural network. These descriptors can be seen as
global appearance descriptors of the input image. Therefore,
they may be also used to carry out the localization task in
the same way as the previously proposed global appearance
descriptors. The neural network architecture that we use in
this work is places [28], which was trained with around
2.5 million images to categorize 205 possible kinds of scenes.
The fig. 1 shows the architecture of this CNN. To obtain holis-
tic descriptors from these layers, the networks is directly used
with the pre-training done by the creators, hence, a re-training
is not necessary. The CNN is used directly as it appears
in [29]. The descriptors extracted from this network corre-
spond to the ones calculated in the layers ’fc7’ and ’fc8’.
These descriptors contain respectively 4096 (d € R*096x1)
and 205 (d € R*%*1!) components. This kind of descriptor
has been used by other authors such as Mancini et al. [30],
who use them to carry out place categorization with the
Naive Bayes classifier. As for mobile robot localization,
Paya et al. [22] proposed CNN-based descriptors to create
hierarchical visual models. In a different way, Xu et al. [31]
propose the use of a CNN which detects objects from the
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images and establishes relationships between the detected
objects. Afterwards, the relationships established are used
to calculate similitude between images. Nevertheless, in our
work, CNNs are used just with the purpose of obtaining a
holistic descriptor per scene.

Ill. CLUSTERING THE VISUAL INFORMATION

This section outlines the clustering method used to compact
the model. The clustering process departs from a set of images
I = {imy, ..., im,}. These images were captured from dif-
ferent positions within the environment to map. The image
capturing positions are known, but they are only used as
ground truth P = {(x1, y1), ..., (X, yn)}. Then, a set of global
appearance descriptors D = {dj, ..., d,, } is calculated, one per
image (through one of the description methods explained in
section II). To create a compact model, a clustering process
will be carried out with the components of D.

Several studies about clustering have been carried out.
For instance, Theodoridis and Koutroumbas [32] developed
a wide study about clustering and von Luxburg [33] provided
a complete tutorial about the most common spectral clus-
tering methods. This kind of algorithms have proved to be
more effective than the traditional ones when the data size
is high. Furthermore, the Spectral Clustering developed by
Ng et al. [34] confirmed to be a good solution in these situa-
tions. This algorithm only considegs the similitudes between

|dj—d;]
instances d; and d;: S;; = e_T{, where o is a parameter
which controls the rapidity of reduction of the similitude
when the distance between d; and d; increases. The clustering
process is as follows:

1) Calculation of the normalized Laplacian matrix:
L=1-D"'2sp'/? 1)

where D is a diagonal matrix D; = Zf/: 1 Sij.
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FIGURE 2. Block diagram regarding the steps to carry out the localization task through compact models.

2) Calculation of the n, main eigenvectors of L,
{u1,un, ..., u, }. Arranging these vectors by columns,
the matrix U € R"*" is obtained.

3) The matrix U is normalized to obtain the matrix

T € R,

Extraction of vector y; € R" from the i-th row of the

matrix 7'.i =1, ..., n.

The y; vectors are clustered by using a simple clus-

tering algorithm (k-means in this work). The clusters

A1, Ay, ..., Ay, are obtained.

6) Last, the clusters with the original data are obtained as

C1, (3, ..., Gy, where C; = dj such that y; € A;.

After the clustering process, the representative of each
cluster is calculated as the average of the descriptors which
compose a specific cluster. The final result is a set of repre-
sentatives R = {ry, ..., '}, which constitutes the compressed
map (i.e. the high-level layer of the hierarchical map). It can
be used to carry out the localization task in a more efficient
way.

4)

5)

IV. LOCALIZATION UNDER CHANGING

LIGHTING CONDITIONS

In a previous work [20], among the traditional global appear-
ance descriptors, gist proved to be the most efficient to com-
pact the model in indoor environments. Now, a comparative
study of the proposed descriptors for localization under illu-
mination changes is tackled including also the description
method based on CNN.
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A. LOCALIZATION THROUGH COMPACT MODELS

The localization step is carried out once the compressed
map is built. Hence, the starting point is a compact topo-
logical model, which consists of a set of n. representatives
{r1, ..., .} and the coordinates of each cluster {(x, y)1, ...,
(x, ¥)n.}, where n. is the number of clusters. Neverthe-
less, the coordinates are only used as ground truth to test
the accuracy. Only visual information is used during the
localization. It allows us to carry out a pure evaluation of
the visual description methods through avoiding the influ-
ence of other type of information. The accuracy is eval-
uated through the following error equation errores; =

Ot — st 0% + Ggrs — Yest. )2, Where (e 1, Vgr1) is the
pose provided by the ground truth and (X, ¢, Yesr.r) is the pose
estimated by the algorithm for the test image ¢.

The localization task is performed through the follow-
ing steps: first, it is assumed that the previous position of
the robot is unknown; second, the robot captures a new
image im; (an image from the test dataset which is differ-
ent from the images used to create the map) and describes
that image to obtain the descriptor d;; third, the distance
between d; and each representative descriptor is calcu-
lated, obtaining a distances vector I; = {ls1, ..., I;s,} Where
lj = dist(d;, rj); fourth, the minimum value of /; indi-
cates the cluster which corresponds to the current position
of the robot. A block diagram about these steps is shown
in fig. 2.
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1) EXPERIMENTS

To carry out the experiments, the COLD (COsy Localization
Database) database is used [35]. This database is composed of
several sets of omnidirectional images captured with a cata-
dioptric vision system composed of a Videre Design MDCS?2
camera and a hyperbolic mirror. The images were collected
under three different illumination conditions (cloudy days,
sunny days and at nights). The Freiburg and Saarbiicken
datasets (images acquired at indoor laboratory environments
located in those cities) were used to develop the experiments
in this work. The images captured during cloudy weather are
used to build a compact model through spectral clustering
since they are the ones which are less affected by brightness,
reflections, dark areas and thus, they provide more informa-
tion. The sunny weather images and also the images captured
at night are used as test images to evaluate the localization
task under lighting changes.

Both datasets are composed of several rooms, such as corri-
dors, personal offices, printer areas, kitchens, bathrooms, etc.
The selected Freiburg dataset covers 9 different rooms and the
Saarbriicken dataset covers 8. This dataset includes different
changes in the environment such as people walking or posi-
tion of furniture and objects. The datasets contain also images
which do not provide much information due to the acquisition
position and blurry images. All these handicaps make these
datasets suitable to carry out experiments under real operating
conditions. From the original cloudy dataset, a downsam-
pling is carried out in order to obtain an acquisition distance
between images of 40 cm approximately. This downsamplig
is carried out because it is desirable to keep the model con-
figuration which was used in previous works ( [20] and [21]).
Hence, after downsampling, a training dataset composed
of 519 (in Freiburg) and 566 (in Saarbriicken) images are
considered. Furthermore, departing from the sunny and night
datasets, three test datasets are created. Those images were
selected randomly across the whole map. The table 1 sum-
marizes the sets created for the experiments. The fig. 3 shows
some examples of omnidirectional images in both environ-
ments under the proposed illumination conditions.

TABLE 1. Datasets created from the COLD database to carry out the
experiments.

oL Path

Dataset name Illun}1flat10n Nu'mber length
condition of images (m)

Freiburg_training Cloudy 519 104.2
Freiburg_test_night Night 58
Freiburg_test_sunny Sunny 45
Saarbriicken_training | Cloudy 566 156.6
Saarbriicken_test Night 57

As mentioned before, the localization experiment departs
from the compact model. Several compact maps have been
built, considering different numbers of clusters n, =
[10, 20, ..., 100, N,,,,] where N,,, is the total number of
images which compose the model (519 in the Freiburg envi-
ronment and 566 in Saarbiicken, table 1). It will enable us to
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(d) (e)

FIGURE 3. Some sample omnidirectional images belonging to the
Freiburg environment under (a) cloudy, (b) night and (c) sunny
illumination conditions and also images which belong to the Saarbriicken
environment under (d) cloudy and (e) night illumination conditions.

analyze the localization process considering different granu-
larities in the high-level layer of the map. The case n, = Ny,
provides information about the localization process when all
the images of the original model are considered (i.e., no com-
pression is performed and the localization is addressed as
an image retrieval problem). This way, it can be seen as a
reference to test the utility of the compact maps. To create the
clusters, gist was chosen since it has provided the best results
in previous works [20] and its parameters are tuned to k3 = 32
and nyus = 16. The fig. 4 shows examples of a sample
clustering experiment applied to the datasets, according to the
spectral clustering method. The images of these datasets are
under cloudy illumination conditions.

Once the compact map is available (i.e. the clusters’ repre-
sentatives have been calculated), the localization is estimated
as follows. Among the n. clusters, the node whose distance
presents the minimum value of /; is chosen as the one which
the captured image belongs to. Therefore, to estimate the
goodness of the localization task, the Euclidean distance
between the position where the test image was captured and
the position of the nearest neighbour is calculated. Addition-
ally, the computation time is measured since the scope is to
reach a balance between accuracy and computational time.
The experiments have been carried out in a PC with two CPU
Quad-Core Intel Xeon®) at 2,8 GHz and through Matlab®
programming.
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FIGURE 4. Results of a sample clustering considering nc = 20 clusters
and gist descriptor with k3 = 32 and n,45s = 16. Some sample
panoramic images belonging to the (a) Freibug and (b) Saarbriicken
dataset under cloudy illumination conditions are shown.

To calculate the distance between descriptors, three
kinds of distances are considered: the correlation distance,
the cosine distance and the Euclidean distance. Also, three
illumination conditions are considered: the cloudy condition,
the night condition and the sunny condition. The dataset
under cloudy condition is the one used to create the compact
map (clustering and obtaining the representatives). Night
and sunny conditions are used to evaluate the localization
task under illumination changes. Fig. 5 shows the average
localization error (cm) vs. the number of clusters 7. obtained
in the Freiburg environment when the test dataset was night
and fig. 6 when the test dataset was sunny; fig. 7 shows the
average localization error (cm) obtained in the Saarbriicken
environment when the test dataset was night. In all cases,
the localization error is expressed in cm, and the colorbar
that expresses this error has the same range, to facilitate a
comparative evaluation between figures.

In general, as the number of clusters increases, the aver-
age localization error tends to decrease. This behavior was
expected and was also remarked in previous works [20].
When there is a low number of clusters, the plots present
high error values, as expected. This is due to the fact that

VOLUME 7, 2019

TABLE 2. Computation time (sec) required to obtain the global
appearance descriptor (HOG and CNN) per each test image. Freiburg test
dataset under night conditions.

descriptor time (ms)
HOG | k2=2 131.0 £ 0.58
k2=4 145.8 £0.34
k2=8 148.3 £0.12

k2=16 | 158.1 £0.19
k2=32 | 177.8 £ 0.93
k2=64 | 192.3 £0.41
CNN "tc7’ 444.7 £ 5.62

"fc8’ 453.3 £4.51

despite the matching between test images and representatives
has been successful, the representatives are too sparse among
them. Moreover, as for the illumination conditions, if we
compare the outputs obtained under night conditions and
the ones obtained under sunny conditions (see fig. 5 and
fig. 6), generally, sunny conditions have a more negative
impact upon the localization. For example, when using the
CNN descriptor layer ’fc7’, if n, = 10, the error under night
conditions is over 200 cm whereas under sunny conditions,
it is over 300 cm. If n. = 60, the error under night con-
ditions is under 100 cm and under sunny conditions, it is
over 200 cm.

Among the four studied global appearance descriptors,
FS is the one which presents worst localization results in
general. As for HOG, this descriptor presents relatively good
localization error results. For example, for night conditions
in the Freiburg environment (see fig. 5), when a correct
tuning of the ky parameter is carried out and for more than
50 clusters, the localization error values are under 100 cm.
It can be considered a successful result considering the size of
the environment (table 1) and the granularity of the compact
map. Moreover, the best results are obtained when the cosine
distance is applied. In the case of the Saarbriicken environ-
ment, HOG presents slightly worse results than in Freiburg
(fig. 7). Gist presents also relatively good localization results
and they are not as influenced by the k3 parameter (number of
horizontal blocks) as the HOG results with k. For instance,
in the gist results presented in the fig. 5, the error decreases
until the number of clusters is 40 and after that value, the aver-
age localization error keeps almost constant. For the gist
descriptor, the Euclidean distance presents the worst results
whereas the cosine and correlation distances are quite similar.
The CNN descriptor presents as good localization results as
using HOG in Freiburg at night. Through the use of CNN with
the layer ’fc7’, the localization error is lower than 100 cm
when n. > 30 (using either correlation or cosine distance).
Moreover, the results in the Saarbriicken environment are the
best. Nevertheless, under sunny conditions (see fig. 6), CNN
is more affected than HOG.

Among the two best descriptors which present best local-
ization outputs (HOG and CNN), a computation time evalua-
tion is obtained. With this aim, the time required to calculate
the global appearance descriptors is performed. Table 2 shows
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FIGURE 5. Results of the localization task when the night illumination conditions affect the Freiburg environment. Average localization error (cm) vs.
number of clusters and descriptor size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and Euclidean) are

considered.

the average computational time (sec) to compute the global
appearance descriptor for the Freiburg_test night dataset.
As for HOG, the obtained values keep almost constant

independently on the value of k. Regarding the use of
the CNN descriptor, the related time values are higher
(around 0.4 sec).
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FIGURE 6. Results of the localization task when the sunny illumination conditions affect the Freiburg environment. Average localization error (cm) vs.
number of clusters and descriptor size. Different description methods (FS, HOG, gist and CNN) and distances (correlation, cosine and Euclidean) are

considered.

In conclusion, among the different global appearance
descriptors studied to solve the localization task in envi-
ronments which present changes of illumination, CNN will
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be the optimal option. FS and gist localization values are
relatively worse. HOG presents better results in the Freiburg
environment, but in the Saarbriicken environment, results for
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considered.

illumination changes, HOG is less affected by the sunny
conditions than the rest of descriptors. Regarding which
type of distance measure is better to calculate the distance

HOG are poor, whereas CNN keeps being also good. Despite
the computing time is not as low as the HOG one, it is
not substantially higher than the HOG results. As for the
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FIGURE 8. Block diagram regarding the steps to carry out the hierarchical localization task through compact models.

between descriptors, both corrrelation and cosine present
similar outputs.

B. HIERARCHICAL LOCALIZATION

In subsection IV-A, the localization has been solved using
only the compact map (i.e., only the high level layer is used,
and the result is a coarse localization). It has allowed us to
analyze how different compression levels have an influence
on the localization error (i.e. the tradeoff map granularity -
localization accuracy).

In this subsection, we go one step beyond, and the local-
ization is addressed hierarchically. First, a coarse localization
is performed, as in subsection IV-A. Once the nearest cluster
has been retrieved, a second step is carried out to refine the
estimation.

VOLUME 7, 2019

Therefore, the hierarchical localization task consists of
the following processes: first, the robot describes the image
captured at time instant ¢ (test image) im, — d;. After that,
the distances vector is again obtained I, = {l;1, ..., ;s }.
Next, the most likely cluster is selected as the one which
presents the minimum value of /;. At this step, a new compar-
ison is carried out between the descriptor of the test image d;
and the descriptors of the images which belong to the chosen
cluster. From this step, a new distances vector is obtained
qr = {411, -, qum;} Where m; is the number of images within
the selected cluster i. Finally, the minimum value of ¢; indi-
cates the most similar image and hence, it corresponds to the
current position of the robot with a higher accuracy. Fig. 8
shows the block diagram about these steps. It should be men-
tioned that more than one cluster may be selected. The higher
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FIGURE 9. Results of the complete hierarchical localization task when the night condition of
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of clusters and descriptor size. Pre-selection of either (a) one (c = 1) or (b) two (c = 2) clusters
as the most likely options.
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FIGURE 10. Results of the complete hierarchical localization task when the sunny condition of illumination
is affecting the Freiburg environment. Average localization error (cm) vs. number of clusters and descriptor
size. Pre-selection of one cluster as the most likely option.

the number of selected clusters, the more comparisons with
images will be tackled.

1) EXPERIMENTS

As in the sub-subsection IV-A.1, the experiments were car-
ried out through the use of the COLD database with the same
characteristics previously commented. Again, the starting
point of the localization experiment is the compact model
through gist (k3 = 32 and nygss = 16).

Since the Euclidean distance presented the worst local-
ization error results in the experiment 1, this distance is
discarded. Furthermore, neither FS nor gist descriptor related
results are shown in this experiment because, as was shown
in the previous subsection, those results are worse for
localization purposes. Therefore, to sum up, the hierarchical
localization is evaluated in the Freiburg and Saarbriicken
environments under two illumination conditions (night and
sunny) calculating two types of distances (correlation and
cosine) and using two kind of descriptors (HOG and CNN).

Fig. 9 shows the average localization error (cm) vs. the
number of clusters n. obtained in the Freiburg environment
when the test dataset was night and either one or two clusters
are selected to carry out the fine localization. Fig. 10 shows
the average localization error (cm) obtained in the Freiburg
environment results when the test dataset was sunny and one
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cluster is selected for fine localization; fig. 11 shows the
average localization error (cm) vs. the number of clusters
n. obtained in the Saarbriicken environment when the test
dataset was night and one and two clusters are selected to
carry out the fine localization.

The evaluation of these results is carried out from three
points of view. Firstly, a comparison of the results obtained
through hierarchical localization against the localization
tackled in the subsection IV-A.l is performed. In general,
the localization error obtained through hierarchical localiza-
tion clearly improves when the number of clusters is low (see
fig. 9, 10 and 11). However, when the number of clusters
increases, no improvements are noticed. This behaviour is
due to the fact that a low number of clusters implies a very
rough initial localization. This way, the second step really
permits refining this estimation. However if the number of
clusters is relatively high, the initial estimation is quite fine
and the improvement achieved in the second step is not
substantial. This allows us to conclude that the high-level
layer can be built with a high degree of compression and the
localization can be refined with the low-level layer, through
an efficient process.

Secondly, after proving that hierarchical localization
presents improvements when a high compression is carried
out, an analysis about how illumination conditions affect to
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49592 VOLUME 7, 2019



S. Cebollada et al.: Hierarchical Localization in Topological Models Under Varying Illumination

IEEE Access

TABLE 3. Summary of the minimum localization error values obtained through the two localization methods and the four descriptors evaluated

throughout this work.

. . Minimum localization error (cm)

Localiz. Metthod Descriptor =20 Tn. =40 | n, =60 | n, =80 | ng =100
Fs 403.25 331.88 350.88 351.81 267.60

Localization through compact models HOG 149.75 128.19 118.53 112.20 90.85
gist 201.33 125.77 149.45 125.92 153.38
CNN 133.54 71.39 76.23 78.27 66.51
Fs 360.73 308.40 327.13 328.32 252.17

Hierarchical Localization HOG 61.41 81.27 54.89 33.59 42.52
gist 136.27 99.10 136.58 85.02 125.31
CNN 69.52 38.68 50.57 49.01 50.73

hierarchical localization is tackled. Comparing the results
obtained when a hierarchical localization process is devel-
oped under night conditions (see fig. 9, ¢ = 1) and sunny
conditions (see fig. 10); several conclusions can be extracted.
For a localization task carried out through the use of HOG
descriptor and correlation distance in Freiburg under night
conditions, the average localization error is between less than
50 and 250 cm, whereas, under sunny conditions, this value
is between 70 and 400 cm. This analysis can be extended
to the CNN descriptor, which is again highly affected by
the sunny conditions. Therefore, collecting results from both
experiments, the conclusion is that the sunny condition affects
to a greater extent the localization task.

Thirdly, an evaluation about varying the number of clusters
selected to carry out the fine localization is done. If we
compare the hierarchical localization results in Freiburg for
one selected cluster and the results for two selected clusters
(see fig. 9), a slight improvement is appreciated in the case
¢ = 2 when the number of clusters is low. This behavior
means that for few clusters, selecting the right one can be
more challenging. Hence, selecting more than one cluster
for fine localization may result beneficial when a huge com-
pression was carried out. For the Saarbriicken environment,
no improvements have been noticed between selecting one
and selecting two clusters (see fig.11). This lack of improve-
ment means that the instances are very well represented
even when there is a high level of compression and thus,
selecting more than one cluster does not provide a higher
probability to find the more accurate position of the test
image.

C. DISCUSSION OF RESULTS

The scope of these experiments is to evaluate the robust-
ness of global appearance descriptors to solve the localiza-
tion problem using hierarchical maps either (1) by using
a localization method which estimates the position through
compact models, or (2) by solving also a fine localization
step (hierarchical localization method). For the sake of com-
pleteness, the experimental section considers several meth-
ods to obtain the global appearance descriptors (FS, HOG,
gist and CNN), different configuration parameters of these
descriptors and also a variety of illumination conditions.
Regarding the localization method through compact models,
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the average accuracy improves as less compression is tackled.
As for the hierarchical localization, this method produces
an efficient process to refine the localization in the low-
level layer. Nevertheless, this method only improves when
the number of clusters is low but no substantial differences
exist when the number of clusters is relatively high. Selecting
more than one cluster to carry out the fine localization is
only interesting when a huge compression is carried out,
otherwise, selecting only one cluster produces more efficient
results because its computing time is relatively low.

Concerning the global appearance descriptors, FS always
outputs the worst results and HOG usually leads to the best
solutions. We have found out that the CNN-based descrip-
tor also presents good results. Nevertheless, CNN is more
affected by the sunny illumination conditions than HOG is
and CNN also needs more computing time to calculate the
descriptor than HOG. In general, the sunny illumination con-
ditions affect more negatively the performance of the methods
than the night conditions.

V. CONCLUSION

In this work, a study is carried out about the utility to solve
the localization task hierarchically in mobile robotics when
substantial illumination changes are present. This task is
tackled once a compact model of the environment is created.
Two indoor sets of 519 and 566 panoramic images have been
respectively used. A clustering approach through Spectral
Clustering with a number of clusters between 10 and the total
number of instances was considered. Therefore, a reduction
between 1.77% and 17.67% of information contained in the
initial set of images is considered. Additionally, we also
analyze the localization when no compression is done, as a
reference.

The work has shown that it is possible to keep a good
localization error departing from a compact model. The issue
is solved through the use of global appearance of panoramic
scenes. A comparative evaluation between four methods to
globally describe images has been carried out: FS, HOG,
gist and a CNN-based descriptor. The CNN-based descriptor
and cosine distance has been proved to be the best choice.
The table 3 summarizes the localization error obtained along
this work. Through this table, it is easy to conclude that the
CNN-based descriptor provides the best results to carry out
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the localization task for both localization methods although
HOG also presents good results when the localization is
addressed hierarchically.

This work has also shown the efficiency of this local-
ization framework under severe changes of illumination.
Moreover, it has proved that the test images under sunny
conditions affect more negatively the results than the night
conditions.

As for the use of hierarchical localization, it may result
interesting for high levels of compression and just selecting
one cluster as candidate may be enough for most cases.

Future works will include the study of other methods to
compress the models and the study of other disadvantageous
issues which may be presented in real operating conditions,
such as occlusions, changes of furniture, etc.
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