
SPECIAL SECTION ON SUSTAINABLE INFRASTRUCTURES, PROTOCOLS,
AND RESEARCH CHALLENGES FOR FOG COMPUTING

Received February 27, 2019, accepted March 26, 2019, date of publication April 11, 2019, date of current version April 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910584

Data Capsule: Representation of Heterogeneous
Data in Cloud-Edge Computing
ION-DORINEL FILIP1, ANDREI VLAD POSTOACA1, RADU-DUMITRU STOCHITOIU1,
DARIUS-FLORENTIN NEATU1, CATALIN NEGRU1,
AND FLORIN POP 1,2, (Senior Member, IEEE)
1Computer Science and Engineering Department, University Politehnica of Bucharest, 060042 Bucharest, Romania
2National Institute for Research and Development in Informatics (ICI), 011455 Bucharest, Romania

Corresponding author: Florin Pop (florin.pop@cs.pub.ro)

This work was supported in part by the ROBIN under Grant PN-III-P1-1.2-PCCDI-2017-0734, in part by the Decentralized Storage
System for Edge Computing–StorEdge under Grant GNaC 2018 ARUT - AU11-18-07, in part by the NETIO ForestMon under Grant
53/05.09.2016 and Grant SMIS2014 + 105976, and in part by the SPERO under Grant PN-III-P2-2.1-SOL-2016-03-0046, 3Sol/2017.

ABSTRACT Nowadays, robots (including non-humanoid ones, like self-driving cars) are part of the most
promising technologies, and they rise various computing requirements. Some of those requirements came
from the fact that the robots are involved in highly dynamic environments and have to execute complex
decision algorithms in real-time, while other requirements ask for batch processing of big data compatible
datasets. In this paper, we propose a cloud architecture for optimizing data processing using a cloud-edge
infrastructure. Besides the computational architecture, we develop a mathematical model for each type of
entity in our proposal and a formal description of a data capsule, which represents a generic and flexible
representation for unstructured units of data in time series databases. The architecture includes multiple
processing platforms. We evaluate the proposed model in edge-cloud computing platforms designed for
robots that run machine learning tasks.

INDEX TERMS Edge computing, data communication, data representation, cloud computing, big data
applications, data aggregation.

I. INTRODUCTION
In the recent years, the huge growth of one of the most
promising technologies of the present, the Internet of
Things (IoT), has contributed to the development of a new
computing paradigm called Edge Computing in which data
is processed at the edge of the network. In this class of
applications, various smart devices collect data from the sur-
roundings, can run computations locally and if needed can
offload work to the Cloud.

Currently, centralized models for data acquisition and
storage typically ensure data integrity. However, faced with
the exponential increase in Big Data volume, the central-
ized model faces several problems. First, the single point
of failure problem occurs affecting data availability. Second,
a centralized server provides low performance in interac-
tion with multiple users who send a high number of data
access requests (i.e., reads, writes). Third, the processing
model requires data close to the working nodes, as the

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Aazam.

transfer cost can significantly increase for complex Big Data
applications [18].

A centralized solution clearly cannot scale with respect
to the data size, producing slow search and retrieval mech-
anisms. In this context, we envision a reliable distributed
infrastructure able to support the management of hetero-
geneous data from many distributed sources that gradually
produce increasingly more information that needs to be col-
lected, processed in real-time and delivered to user’ applica-
tions. To be successful, the platform incorporates advanced
real-time data processing techniques, supported by a reliable,
secure and interoperable middleware.

Such an infrastructure has the purpose of creating software
modules and services to manage robots in a digital society.
In this model, the robots are equipped with sensors from
which data is collected and analyzed. The robots are capable
to collaborate and can request additional data computed on
Cloud. Some systems of collecting and processing data, such
as a mounted camera, need enhanced processing and storage
capabilities which is a reason to use, when possible, the Cloud
support.

49558
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4566-1545

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

Multiple and variable aspects of both past and present
context are important for autonomous robots (e.g. Social
Robots, Game Bots, Delivery Robot, etc.), so they generate
large amounts of heterogeneous and usually unstructured
data. Having all of those aspects combined with a dynamic
environment which is observed through multiple sensors and
algorithms, we talk about a gigantic amount of data coming
from an undefined number of sources that should be stored
and indexed for future efficient retrieval and update.

Considering autonomous robots, various processing plat-
forms are suitable depending on the specific algorithm to
be run and potentially offloaded to Cloud. Batch processing
platforms (e.g. Hadoop) use processing techniques such as
MapReduce in order to run computations on large data sets
and thus offer high result accuracy by processing all the
data. On the other hand, the stream processing platforms
(e.g. Storm) focus on processing data streams in real time and
thus attempt to minimize latency and provide partial results
faster [25]. There are processing platforms that employ both
techniques (e.g Spark) and they can usually be used in parallel
in a lambda architecture which merges the results in a serving
layer.

Large data sets are produced at the exponential rate bymul-
tiple and diverse sources, like sensor networks for environ-
mental data monitoring, traffic management, smart phones,
video surveillance cameras and so on [11], [21]. Moreover,
the number of Edge devices is growing at high speed rate and
is forecasted that by 2020 there will be generated 43 trillion
gigabytes of data per year [7]. It will lead to an explosion
of network traffic to Cloud datacenters. This traffic can be
reduced by performing task execution and storage on Edge
devices with such capabilities. By using nodes that are a hop
away in the network we can reduce significantly or distribute
optimally the network traffic [29].

In the case of geographically distributed applications,
Cloud Computing [2] model may not always be the best
choice. In order to improve the delivered service, the pro-
cessing and data storage need to be performed closer
to the data source. For instance, real-time applications
have small response time in the order of milliseconds
(25ms to 50ms) [1]. Processing in Cloud will introduce a sig-
nificant latency between the device and the Cloud infrastruc-
ture. The round trip time between two locations can exceed
far the response time for real-time applications (e.g. RTT
between Canberra and Berkeley is around 175ms [23]). Other
application examples are video streaming and on-demand
gaming. Some alternatives are Edge nodes with computation
and storage capabilities (e.g. set-top-box machines, routers,
etc.) which are one hop away from data source and can be
used to reduce network latency.

In this paper, we address the problem of heteroge-
neous data set representation in Edge-Cloud platforms,
to counter the problem of efficient data handling [19] with
the goal of high performance, high availability and cost
minimization. The main contributions of this paper are as
follow:

• we create a summary of problems that should be consid-
ered when designing a Data Representation format for
Cloud-Edge Computing;

• we describe a formal description for such a representa-
tional format called Data Capsule;

• we propose a Cloud-Edge Computing architecture to
handle processing offloading over heterogeneous data
represented as Data Capsules;

• we design a PoC for the proposed computing chain based
on an autonomous robot running different machine
learning algorithms while offloading them to Cloud or
Edge;

• we asses the performance of three different serialization
methods for the proposed PoC.

The paper is structured as follows. We present in Section II
an overview of the related work. In Section III we formally
present our problem, followed by the new proposed architec-
ture in Section IV. SectionVI presents a performance analysis
when serializing data capsules using different technologies.
Lastly, Section VII presents the conclusions derived from our
work.

II. RELATED WORK
As great as IoT expansion and capabilities of its devices
sound, the amount of generated data is increasing. It is a
known fact that the entire digital data on the planet is doubling
its size every 2 years, and if in 2010 the size of the total
data in the world was estimated at 4.4ZB, in 2020 there
will be around 44ZB. A scale factor of 2 in every year is a
big challenge for data storing mechanisms. Clearly, the new
focus on distributed computing field is to prepare the existing
technologies to face such a scale factor.

In the past, the problems of traditional clusters with
physical machines regarding administration, sustainabil-
ity, managing and consumption of energy on ‘‘not totally
used’’ resources were solved by the migration the Cloud
Services [9], [17], [20]. In the past 12 years, the Cloud was
exploited as much as it was possible, therefore this ‘‘boom’’
of data appeared.

In 2014, Cisco proposed a new way of thinking about
mobile devices and how can they be used in a more com-
plex and efficient generic architecture, known as Cloud-Edge
Computing [6]. This new approach proposed a hierarchy of
levels with different types of devices, starting from lower
levels where end devices like phones, tables, smart watches
are placed and finishing with the highest level where the
Cloud machines exist [12].

From the moment Cisco introduced the possibility of
designing the Cloud-Edge Computing architecture, many
opportunities were analyzed by researchers [8]. Most of them
address the problem of the data scale factor and the proportion
of useful data.

The idea behind Cloud-Edge Computing paradigm is to
move data closer to the user and at the same time store only
important data. With powerful enough nodes on intermediate
levels it is possible to process data at each layer and discard

VOLUME 7, 2019 49559

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

all the useless data [5]. The impact of the approach of the
Cloud-Edge paradigm with 4 layers in the context of smart
cities and huge number of sensors was measured. As sensors
generate data at a very high rate, they managed to reduce the
quantity of data that is stored by 20 times using the ideas of
behind the Cloud-Edge [24], [26].

All the benefits that were presented are from the point
of view where the minimum response time is not a crucial
service agreement [16]. The end devices might require data
that can be served directly by the first layer of Edge devices
and if the nodes from that layer don’t have the required data,
they ask the following nodes on the hierarchical path. Data
sent by end devices can be batched at each intermediate level
of nodes, up to the Cloud nodes, alongside with a local update
on current existing data. This approach can be also improved
by distributing the data to end user devices, obtaining a fine
grained data distribution [15], [24]. Now these nodes can
route data requests to other user devices, moving the load
from edge to user devices that are capable of such operations
(e.g. smartphones, tables and watches).

III. DATA CAPSULE MODEL
This section formally describes the model used throughout
this paper, comprising the robots, Cloud machine and Data
Capsule.

We design that format to ensure a uniform, Cloud-portable
way to store relevant meta-data around multiple time-series
data collections. Each collection is identified by a key com-
posed by multiple hierarchical tokens and each element
of a collection includes, beside the data blob, the relevant
time-stamps and user/application-defined meta-data.

That format responds to the requirements of a storage sys-
tem that aims granular data and processing offloading from
user-agents to a Cloud-Edge platform. Data retrieval (search)
operators are of high importance for such a system and easy
to define using the chosen storage format.

A. ROBOTS
We define R as the robot set modeling N heterogeneous
agents with different characteristics such as sensors, process-
ing power with where N = |R|. A robot r ∈ R has the
following formal description:

r = (id, S,C), (1)

where:

• id is a number that uniquely identifies a robot;
• S is the set on sensors that the robot is equipped with;
• C = (C1, . . . ,CN) is the resource capacity vector of
the robot r ∈ R, where Ci is the amount of resource i
available on the robot with Ci > 0.

B. DATA CAPSULE
Data flow management is one of the most important features
of our proposed model. In this section we describe a struc-
tured format for data representation and storage of data, called

Data Capsule. We define this format in the way to obtain an
generic representational specification for a data unit in a time
series database of unstructured data.
We define a set of data capsules as following:

D = {Di|Di = (ti, ci,mi, di)}, (2)
where:
• ti is the time-stamp for the current data capsule;
• ci is an ordered tuple of strings (sub-contexts) that
defines the context of the data capsule;

• mi is a set of (key, value) tuples of comparable key and
values that defines data capsule meta-data;

• di is the data content that wewant to store inside the Data
Capsule.

We defined a Data Capsule such that it allows retrieving
Data Capsules based on context match, time-stamp intervals
and meta-data based selections. Let us define an operator that
selects the Data Capsules in a context. We consider that oper-
ator to be defined to take account of a special sub-context (∗)
that matches any existing sub-context on a specific hierarchy
level. Let that operator be:

SearchContext(Dset , cmatch) = = {Di ∈ Dset | ∀sj ∈ ci
and ∀sk ∈ cmatch st. (j = k)

and (sj = sk or sk = ∗)},

(3)
where:
• Dset is the set of Data Capsules that we are searching on;
• cmatch is a context that should be matched and may
contain some wild-card (∗) sub-contexts;

• ci is the context of Di;
• ∗ is a special sub-context that matches any sub-context.
Let us define an operator that extracts certain Data Cap-

sules by meta-data:

SearchMeta(Dset ,mmatch)=

= {Di ∈ Dset | ∀(keyj, valuej) ∈ mi
∃(keyk , valuek) ∈ mmatch st. keyj
= keyk and valuej = valuek}, (4)

where:
• Dset is the set of Data Capsules that we are searching on;
• mmatch is a a set of meta values that should be matched;
• mi is the meta-data of Di.
Since we aim to describe some time series of data, an oper-

ator that selects all the Data Capsules for a context in a
specified time interval is needed. Let that operator be:

SearchInterval

(Dset , cmatch, tmin, tmax)=

= {Di ∈ SearchContext(Dset , cmatch)|

tmin ≤ ti < tmax}, (5)

where:
• Dset is the set of Data Capsules that we are searching on;
• cmatch is a context that should be matched and may
contain some wildcard (∗) sub-contexts;

49560 VOLUME 7, 2019

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

• tmin and tmax are the bounds of the time interval;
• ti is the time-stamp for the Di data capsule;
• SearchContext is the operator that we described in
Equation 3.

IV. ARCHITECTURE
The objective of the Robin-Cloud project is to create a support
platform to collect data from sensors integrated in robots
and to offer processing mechanisms by combining local pro-
cessing with Cloud offloading and offering a wide range of
algorithms that analyze the data.

A. EDGE LAYER
The Edge layer consists of robots that collect data from
the surrounding environment and format it to Data Capsules
which are sent to access points based on context. Data col-
lected by the robots can be one of the following type: sensor
data, GIS data, multimedia, machine generated data, online
social interactions and documents. In this model it is possible
that robots can cooperate with one another in other to solve
more demanding tasks or to offload tasks to other robots.

B. FOG LAYER
The Fog layer consists of access points which are responsible
to receive data or tasks from the robots and to forward them
to the Cloud. After the data or task has been handled in the
Cloud, the access points must forward the response to the
robot that sent the original request. If needed, access points
can run processing locally as they can be configured with a
container based orchestration solution deployment and can
run simple microservices. Alternatively, the access points can
forward the data to other access points, as they are connected
in a peer to peer network.

C. CLOUD LAYER
The Cloud layer consists of multiple components: a message
processing queue component which stores data and tasks
received from access points, an auto-scalable microservices
component which manages interaction between the message
processing queue component and the upper components of
storage and processing. The data received from the robots
is stored in the storage component which is a distributed
database and is handled by the processing platform which
analyze the data using different algorithms.

The message queue processing component consists of two
brokers which are responsible for managing multiple queues
for different applications and data types. There is a data bro-
ker that handles data received from the robots and there is a
processing broker which handles tasks that are received from
robots. Both the brokers should at least support asynchronous
messaging with multiple protocols, message queueing, deliv-
ery acknowledgement and flexible routing to queues.

The auto-scalable microservices component consists of a
container based orchestration solution deployment for man-
aging microservices. Microservices continuously poll the
queues from the two brokers, analyze the data or tasks that

are received and interact accordingly with the storage or
processing stack.

The storage component consists of a NoSQL database.
We choose this storage model as the data or task represen-
tation is based on key-value pairs in documents and tradition-
ally NoSQL database management systems are designed to
handle large amounts of data across many machines while
providing scalability and high availability. Each entry in the
database abides to the following data format:

DataFormat = (id, robotid, time, location, context, data)

(6)

The processing platform component consists of multi-
ple specialized distributed processing frameworks that have
implemented multiple algorithms. Classical batch processing
techniques can be employed using MapReduce based dis-
tributed processing frameworks and stream processing can
also be when latency becomes a constraint and real time
results are needed. The approaches from the batch and stream
processing techniques can be combined in a lambda architec-
ture which can provide the results in a view. The processing
platforms that employ these techniques can be coupled with
a distributed filesystems and can interact with the NoSQL
database.

D. CLOUD SOLUTIONS FOR PoC IMPLEMENTATION
Open-Source solutions are available for each functional
responsibility in the proposed architecture. In this section we
identify some of them and we bind them to the high-level
components in Figure 1.

The technologies used to build the proposed architecture
consist of RabbitMQ which is the broker responsible for
message queuing, Kubernetes for the container based orches-
tration component, Cassandra for the NoSQL storage and
finally for the processing stack there are multiple distributed
processing frameworks deployed such as Hadoop and Spark.

RabbitMQ is an open source message broker which sup-
ports asynchronous messaging with multiple protocols and
supports deployment as clusters for high availability and
throughput [28].

Kubernetes is an open-source system for automating
deployment, scaling, andmanagement of containerized appli-
cations. It groups containers that make up an application
into logical units for easy management and discovery called
pods and each pod runs multiple microservices as containers.
Microservices can have various roles which can range from
interacting with the message queues, service discovery or
starting jobs on the processing platform [4].

Cassandra is a distributed NoSQL database management
system designed to handle large amounts of data across many
machines while providing scalability and high availability.
It is based on a decentralized architecture with no central
point of failure and it ensures fault tolerance by having data
replication to multiple nodes [13].

Apache Hadoop is an open-source framework that allows
the distributed processing of large datasets over a cluster

VOLUME 7, 2019 49561

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

FIGURE 1. Proposed architecture.

of machines. Hadoop consists of the Hadoop Distributed
File System (HDFS), YARN which is the solution for
resource management and job scheduling and MapRe-
duce which is a parallel programming model for data
processing [27].

Apache Spark is a fast platform for large-scale data pro-
cessing. It has an advanced DAG execution engine that sup-
ports acyclic data flow and in-memory computing based on
the RDD abstraction. Spark can be used for machine learning,
data analytics, SQL and streaming [30].

As an alternative in-memory computing platform to Spark,
Apache Ignite can be used. Ignite is an in-memory distributed
database, caching and processing platform for transactional,
analytical and streaming workloads which is capable of deliv-
ering in-memory speeds at petabyte scale [10].

When there are multiple processing frameworks deployed
in a single cluster, resource sharing can be handled by Apache
Mesos. Mesos is a distributed system kernel that abstracts
compute resources such as CPU, memory, storage from the
machines in order to ensure resource sharing between mul-
tiple computing platforms. It ensures good scalability, high
availability and fault-tolerance [14].

V. BUILDING AN AUTONOMOUS ROBOT
ON A CLOUD-EDGE SYSTEM
In this section we describe the design and implementation
of an autonomous robots which implements a few machine
learning algorithms while being assisted by a Cloud-Edge
processing platform.

A. DATA COLLECTION AND FILTERING
As we describe in Section IV, there are three possible
data scopes to be used which divide data in three rep-
resentative categories: (i) local data; (ii) edge data; and
(iii) Cloud data.

Based on the robot’s processing power and its available
about resources, as well as the usefulness of the data to read,
we keep the data real-time local processes (for example, data
used for moving-coordinating algorithms) on the device and
we offload other data to a gateway which distribute the data
to Edge and Cloud nodes. That decision implies having a
Data Processing System (DPS) with the predominant func-
tion of pre-processing the data gathered in real-time-based
subsystems.

Data pre-processing is divided into multiple steps, as it
follows:
• Data cleaning - removing noise and misreads or data
that misfits from our input;

• Data integration - concatenating samples that fit
together;

• Data transformation - keeping our data in a required
threshold, such that we have a scalable system at the end;

• Data reduction - compressing the data in a readable,
simplified way to be more efficiently stored.

B. HARDWARE, EXPERIMENT PROPOSE
AND USAGE SCENARIO
As an experimental proof of concept we built a LEGO car-like
robot using Raspberry Pi 3 Model B as main control unit.
On top of that Raspberry Pi we set up a BrickPi board for the

49562 VOLUME 7, 2019

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

purpose of making the interactions with LEGO components
easier.

Raspberry Pi 3 disposes an ARMv7 Quad Core Proces-
sor which runs at a maximum speed of 1.2GHz, which
well-suited for the purpose of data collection, little processing
and sending Data Capsules to Fog. Those are the characteris-
tics that makes Raspberry Pi 3 a good baseline for a mobile
autonomous agent.

The network communication is ensured by the on-board
WiFi network adapter which allows the board to communi-
cate with different Access Points around.

Other important hardware characteristics for our robot
consist in:
• 64GB microSD card as storage;
• 1GB of on-board RAM;
• 1 Raspberry Pi CSI camera;
• 2 microphones for sound recording and noise
cancellation.

Around that commodity hardware, we build an autonomous,
car-like robot that incorporates machine learning algorithms
and external APIs to act as an intelligent surveillance and
memory capturing device.

The main features of this robot consist in:
• being able to autonomously navigate in a room;
• recognizing a set of authorized persons through face
recognition;

• identifying simple vocal commands in real-time through
voice to text algorithms;

• recording surveillance footage while offloading data to
cloud.

Since we only have limited processing capabilities on the
autonomous agent, all the Machine Learning (ML) algo-
rithms get offloaded to the Edge and we drive that pilot
not just to prof the feasibility of our proposed data model
for a given use-case, but also to asses the performance of 3
different serialization methods.

In deep analysis of each algorithm is on great interest for
those aiming to implement and optimize them, but we keep
theirs description to the minimum that is useful for our study.

We also describe additional steps that are necessary in data
collection, enrichment and filtering since they emphasis the
usefulness of being able to process unstructured data in a
advanced way.

For the software level implementation of RPC (Remote
Procedure Call) we demonstrate the implementation of them
using gRPC.

C. VOICE RECOGNITION
High-fidelity voice recognition are available online through
public Cloud, but a voice-controlled robot should not stop
working if Internet connection is unavailable, so that is why
we also integrated some offline alternatives.

D. NOISE REDUCTION
The LEGO motors that we used are really loud and that
interferes with the voice recognition process if we do not
separate the noise from the potential voice source.

We solve this problem by a very natural idea: separating
the audio sample into relevant and not so relevant com-
ponents. That is the main principle of a PCA (Principal
Component Analysis) Machine which is a mathematical
(or statistical) procedure used to transform a set of human
or machine-discovered observations into a set of principal
components.

Let’s consider X a matrix representing the audio data.
It has nv lines representing the variables and no columns
representing the observed data for each variable. We note P
as the PCA matrix which is made of nv lines and nev columns
that represent the selected eigenvectors. Let’s consider C the
coefficient matrix representing weight of each eigenvector
regarding each observation, so we can considerCjk the weight
of the jth eigenvector regarding the k th observation. X notes
the columns of the matrix X stacked upon each other. Its
covariance is kept in V and W has the same size as X and
represents the weights of the matrix if the noise measurement
would be independent [3]. Our main target is to minimize the
sum in Equation 7. ∑

variable i,observation j

[Xij − PC]i,j2 (7)

E. TEXT TO SPEECH
In order to achieve both offline and online text-to-speech
functionality we use pyttsx3, which is a Python TTS (Text
to Speach) library. We use Python3 and we welcome the fact
that this Open-Source library has a very small delay.

F. FACIAL RECOGNITION AND OBJECT CAPTIONING
The purpose is to recognize faces and objects so it can act
according to its prediction in an assistive way. We use the
official TensorFlow models to train our DNNs.

As our proof of concept, GIGEL, captures video data,
we use a machine learning trained neural network to analyze
every 32 frames per second.

G. IMPLEMENTATION OF DATA CAPSULE
IN EDGE DEVICES
We defined the Data Capsule in Equation 6. Now we need a
programming language and platform neutral mechanism for
serializing heterogeneous data. With this in mind, we can
consider multiple solutions and one of the most reliable is
ProtoBuffer which is a technology created and maintained
by Google which implements portable data serialization
based on a very efficient byte-level representation. It can be
used in C/C++, Java, Python, and many other programming
languages. It is easy to integrate with gRPC, which is also
maintained by Google.

message DataCapsule {
required Timestamp timestamp $=$ 1;
required Location location $=$ 2;
required Metadata metadata $=$ 3;
required RawData data $=$ 4;
message Timestamp {

VOLUME 7, 2019 49563

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

int64~seconds $=$ 1;
int32~nanos $=$ 2;
}
message Location {
double latitude $=$ 1;
double longitude $=$ 2;
}
message Metadata {
repetead string key $=$ 1;
repetead string value $=$ 2;
}
message RawData {
optional bytes data $=$ 1;
}
}

The description of a data-capsule is shown in the below
listing. Notice that we define a special message type for all the
fields we needed inside a Data Capsule. Each of the numbers
in the figure means a tag inside the message for faster lookup.
We define a timestamp as a correlation between the number
of seconds and the number of nanoseconds, the location as a
combination of latitude and longitude, the metadata as a map.
‘‘repeated’’ meaning zero or more fields of the respective
type. We define RawData as a sequence of bytes of random
length. We also need to define a gRPC service that can be
called from any robot as bellow.

message SendRequest {
required DataCapsule dataCapsule $=$ 1;
}
message SendResponse {
}
message RetrieveRequest {
optional Timestamp timestamp $=$ 1;
optional Location location $=$ 2;
}
message RetrieveResponse {
repetead DataCapsule dataCapsule $=$ 1;
}
service DataCapsuleService {
rpc Send (SendRequest)
returns (SendResponse);
rpc Retrieve (RetrieveRequest)
returns (RetrieveResponse);
}

We can populate with Data Capsules by calling ‘‘Send’’
which contains a SendRequest (made up of a DataCapsule)
and it does not respond, but we define the response for further
compatibility purposes. Also, we can retrieve one or more
Data Capsules by calling ‘‘Retrieve’’ and a timestamp or/and
a location. This list can easily be extended.

H. DATA COLLECTION WORKFLOW
Themain workflow of a Data Capsule starts when a microser-
vice decides to send data to Cloud. At that moment, a Data

FIGURE 2. Data collection workflow.

Capsule Builder takes the raw data and transforms it into a
Data Capsule under the ProtoBuffer message model. If there
is no Cloud connectivity, the Data Capsule is saved locally
as a FIFO set and is it checked again after some delay if the
connection is up. If it is up, gRPC sends the Data Capsule to
the closest Access Point which processes or schedule it to the
cloud.

In Cloud most of the processing is especially made for
Machine Learning algorithms. The Data Capsule Storage is
periodically divided into three sets:

• Training set: used for training the weights of the Neural
Networks;

• Validation set: used to tweak the parameters of the train-
ing so it has a minimum difference between the accuracy
on predicted training examples and predicted validation
examples;

• Test set: used for the final accuracy, an unbiased result
because all of the tweaks weremade against another data
sets in different batch sizes or learning rates.

VI. EXPERIMENTAL RESULTS
A. EVALUATION METRICS
In order to evaluate the performance [22], of the serializ-
ers for the Data Capsule model, we compare the latency
between multiple technologies for both serialization and
deserialization. We have chosen three technologies: Protocol
Buffers (an extensible mechanism for serializing structured
data from Google), Wire (which is mainly used in the.NET

49564 VOLUME 7, 2019

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

FIGURE 3. Machine learning platform on Cloud.

FIGURE 4. Comparison between serializing technologies.

framework) and Jackson (a framework used in most of the
Java-based architectures including other frameworks as Java
Spring).

B. PERFORMANCE ANALYSIS
In order to analyze the performance of the Data Cap-
sule model for serialization and deserialization we have
run multiple tests using the technologies: Protocol Buffer,
Wire and Jackson. In 10000 runs, we have measured the
overhead times in nanoseconds for each serialization and

TABLE 1. Table with serializers comparison.

deserialization operation.
As it can be seen in Table 1 the latency obtained by

using Protocol Buffer is the lowest when compared with
Wire and Jackson for both serialization and deserialization.
An overview of the difference can also be seen in the Figure 4.

VII. CONCLUSION
This paper proposes a Cloud-Edge computational architec-
ture for autonomous robots, considering the fitness of differ-
ent workloads and computational models.

As a part of our work, we defined a mathematical model
that describes main entity types in out architecture and
extends the common knowledge with a formal description of
aData Capsulewitch is a time-series optimized databases for
heterogeneous unstructured data.

As a part of our architecture description, we also included a
study over different computing models and technologies and
described the fitness between of them and different workload
types/processing patterns.

We plan to continue the work in this paper, considering the
following objectives:

• Extend the Fog level of the current architecture by inte-
grating it with the proposal in NetIoT platform;

• Extend the architecture description with technology-
aware specification of the middle-ware components;

• Conduct some use-case based experiments to asses the
performance and fitness of the proposed
architecture.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their
time and expertise, constructive comments and valuable
insight.

REFERENCES
[1] S. Agarwal, M. Philipose, and P. Bahl, ‘‘Vision: The case for cellular small

cells for cloudlets,’’ in Proc. 5th Int. Workshop Mobile Cloud Comput.
Services, 2014, pp. 1–5.

[2] M. Armbrust et al., ‘‘A view of cloud computing,’’Commun. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[3] S. Bailey, ‘‘Principal component analysis with noisy and/or missing data,’’
Publications Astronomical Soc. Pacific, vol. 124, p. 1015, Sep. 2012.

[4] D. Bernstein, ‘‘Containers and cloud: From LXC to docker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[5] J. Cao, Q. Zhang, and W. Shi, ‘‘Challenges and opportunities in edge
computing,’’ in Edge Computing: A Primer. Cham, Switzerland: Springer,
2018, pp. 59–70.

[6] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, and
G. Mastorakis, ‘‘Drop computing: Ad-hoc dynamic collaborative comput-
ing,’’ Future Gener. Comput. Syst., vol. 92, pp. 889–899, Mar. 2017.

[7] S. Curtis, ‘‘Quarter of the world will be using smartphones
in 2016,’’ Telegraph, vol. 11, Dec. 2014. [Online]. Available:
https://www.telegraph.co.uk/archive/2014-12-11.html

VOLUME 7, 2019 49565

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

[8] J. A. F. F. Dias, J. J. P. C. Rodrigues, C. X. Mavromoustakis, and F. Xia,
‘‘A cooperative watchdog system to detect misbehavior nodes in vehicular
delay-tolerant networks,’’ IEEE Trans. Ind. Electron., vol. 62, no. 12,
pp. 7929–7937, Dec. 2015.

[9] C. D. Dimitriou, C. X. Mavromoustakis, G. Mastorakis, and E. Pallis,
‘‘On the performance response of delay-bounded energy-aware bandwidth
allocation scheme in wireless networks,’’ in Proc. IEEE Int. Conf. Com-
mun. Workshops (ICC), Jun. 2013, pp. 631–636.

[10] T. W. Dinsmore, ‘‘In-memory analytics: Satisfying the need for
speed,’’ in Disruptive Analytics. Berkeley, CA, USA: Apress, 2016,
pp. 97–116.

[11] E. A. El-Shafeiy and A. I. El-Desouky, ‘‘A big data framework for min-
ing sensor data using Hadoop,’’ Stud. Inform. Control, vol. 26, no. 3,
pp. 365–376, 2017.

[12] P. G. Lopez et al., ‘‘Edge-centric computing: Vision and challenges,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42,
2015.

[13] J. Han, E. Haihong, G. Le, and J. Du, ‘‘Survey on NoSQL database,’’
in Proc. 6th Int. Conf. Pervasive Comput. Appl. (ICPCA), Oct. 2011,
pp. 363–366.

[14] B. Hindman et al., ‘‘Mesos: A platform for fine-grained resource sharing
in the data center,’’ in Proc. NSDI, vol. 11, 2011, p. 22.

[15] G. V. Iordache, M. S. Boboila, F. Pop, C. Stratan, and V. Cristea, ‘‘A decen-
tralized strategy for genetic scheduling in heterogeneous environments,’’
Multiagent Grid Syst., vol. 3, no. 4, pp. 355–367, 2007.

[16] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, ‘‘The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing,’’ in Proc. 23rd Int. Conf. Telecom-
mun. (ICT), May 2016, pp. 1–5.

[17] M. A. Mohammed and N. Ţapus, ‘‘A novel approach of reducing energy
consumption by utilizing enthalpy in mobile cloud computing,’’ Stud.
Inform. Control, vol. 26, no. 4, pp. 425–434, 2017.

[18] C. Negru and V. Cristea, ‘‘Cost models–pillars for efficient cloud com-
puting: Position paper,’’ Int. J. Intell. Syst. Technol. Appl., vol. 12, no. 1,
pp. 28–38, 2013.

[19] C. Negru, M. Mocanu, V. Cristea, S. Sotiriadis, and N. Bessis, ‘‘Analysis
of power consumption in heterogeneous virtual machine environments,’’
Soft Comput., vol. 21, no. 16, pp. 4531–4542, 2017.

[20] C. Negru, F. Pop, V. Cristea, N. Bessisy, and J. Li, ‘‘Energy efficient cloud
storage service: Key issues and challenges,’’ in Proc. 4th Int. Conf. Emerg.
Intell. Data Web Technol., Sep. 2013, pp. 763–766.

[21] C. Negru, F. Pop, M. Mocanu, and V. Cristea, ‘‘A unified approach to data
modeling and management in big data era,’’ in Data Science and Big Data
Computing. Springer, 2016, pp. 95–116.

[22] F. Pop, C. Dobre, and V. Cristea, ‘‘Performance analysis of grid DAG
scheduling algorithms using MONARC simulation tool,’’ in Proc. Int.
Symp. Parallel Distrib. Comput., Jul. 2008, pp. 131–138.

[23] M. Satyanarayanan, V. Bahl, R. Caceres, andN.Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct./Dec. 2009.

[24] A. Sfrent and F. Pop, ‘‘Asymptotic scheduling for many task computing in
big data platforms,’’ Inf. Sci., vol. 319, pp. 71–91, Oct. 2015.

[25] S. Sotiriadis, N. Bessis, E. G. M. Petrakis, C. Amza, C. Negru,
and M. Mocanu, ‘‘Virtual machine cluster mobility in inter-cloud
platforms,’’ Future Gener. Comput. Syst., vol. 74, pp. 179–189,
Sep. 2017.

[26] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, ‘‘A hierar-
chical distributed fog computing architecture for big data analysis in smart
cities,’’ in Proc. ASE BigData SocialInformatics, 2015, p. 28.

[27] V. K. Vavilapalli et al., ‘‘Apache Hadoop YARN: Yet another resource
negotiator,’’ in Proc. 4th Annu. Symp. Cloud Comput., 2013, p. 5.

[28] A. Videla and J. J. Williams, RabbitMQ in Action: Distributed Messaging
for Everyone, 1st ed. Shelter Island, NY, USA: Manning Publications,
2012.

[29] K. Yiannos, C. X. Mavromoustakis, J. M. Batalla, G. Mastorakis, and
E. Pallis, ‘‘Resource usage prediction for optimal and balanced provision
of multimedia services,’’ in Proc. 19th IEEE Int. Workshop Comput.-
AidedModeling Anal. Design Commun. Links Netw. (CAMAD), Dec. 2014,
pp. 1–3.

[30] M. Zaharia et al., ‘‘Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,’’ in Proc. 9th USENIX Conf. Net-
worked Syst. Design Implement., 2012, p. 2.

ION-DORINEL FILIP received the Engineering
degree in computer science from the University
Politehnica of Bucharest, in 2017, where he is
currently pursuing theM.Sc. degree in parallel and
distributed computer systems. His diploma project
was on a subject related to cloud-edge scheduling.
He is an enthusiast for Computer Architectures,
Computer Networks and Parallel Programming,
and Parallel Programming and he is convinced by
the statement assigned to an Emeritus Professor

Donald Knuth—A huge gap exists between what we know is possible with
today’s machines and what we have so far been able to finish—and he aims
to develop his contribution in both teaching and research parts of academia
while finding those things that once done will improve the positive impact
of computer science in our lives and in the way we apply the usage of
computers in different fields. He is currently a member with the Distributed
System Laboratory, Computer Science and Engineering Department, Faculty
of Automatic and Computers, University Politehnica of Bucharest.

ANDREI VLAD POSTOACA is currently pursuing
the master’s degree in parallel and distributed sys-
tems with the University Politehnica of Bucharest,
where he is a member with the Distributed System
Laboratory, Computer Science and Engineering
Department, Faculty of Automatic and Computers.
He is also an Enthusiast of parallel and distributed
systems, operating systems, and artificial intelli-
gence. He has industry experience having done
multiple internships as a Software Engineer with

Microsoft and Adobe. His motto is striving to always learn and grow. His
general research interests include distributed processing, cloud computing,
scheduling in distributed systems, container orchestration, and virtualization.

RADU-DUMITRU STOCHITOIU is currently pur-
suing the master’s degree in artificial intelligence
with the University Politehnica of Bucharest. He is
a Computer Science Engineer. He is interested
in programming languages and data structures.
He has industry experience having done mul-
tiple internships as a Software Engineer with
Google and Bloomberg. He also participated in
the Google Summer of Code, in 2016. His gen-
eral research interests include machine learning,

numerical methods, distributed processing, and performance evaluation.
He received several awards from Bloomberg, NXP, and ACM ICPC.

DARIUS-FLORENTIN NEATU is currently pur-
suing the master’s degree in parallel and dis-
tributed systems with the University Politehnica
of Bucharest. He is a Computer Science Engineer.
He is a member with the Distributed System Labo-
ratory, Computer Science and Engineering Depart-
ment, Faculty of Automatic and Computers, Uni-
versity Politehnica of Bucharest. He has industry
experience having done multiple internships as a
Software Engineer with Google and Bloomberg.

His general research interests include distributed processing, cloud comput-
ing, edge computing, and performance evaluation.

49566 VOLUME 7, 2019

I.-D. Filip et al.: Data Capsule: Representation of Heterogeneous Data

CATALIN NEGRU received the Ph.D. degree in
computer science from the University Politehnica
of Bucharest, in 2016. The main subject of the
Ph.D. dissertation was Resource Management for
Cost Optimization in Cloud Storage Systems.
He is a System Engineer with the Computer
Science Department, Faculty of Automatic Con-
trol and Computers, University Politehnica of
Bucharest, and a member with the Distributed
System Laboratory. He has an experience of nine

years in research projects. He has authored or coauthored more than
30 publications (books, chapters, and papers in international journals and
well-established and ranked conferences). His research interests include data
storage, resource management, cost optimization, edge computing, tools and
applications development, and energy efficiency.

FLORIN POP (M’05–SM’18) received the Engi-
neering degree in computer science, the M.Sc.
degree in computer science, and the Ph.D. degree
(magna cum laude) in computer science from
the University Politehnica of Bucharest, in 2003,
2004, and 2008, respectively. He is currently a Pro-
fessor with the Computer Science Department and
is also an ActiveMember with the Distributed Sys-
tem Laboratory. He is also a Scientific Researcher
with the National Institute for Research and Devel-

opment in Informatics (ICI), Bucharest. He has authored or coauthored
more than 150 publications (books, chapters, and papers in international
journals and well-established and ranked conferences). His research inter-
ests include scheduling and resource management, multi-criteria optimiza-
tion methods, grid middleware tools, applications development, prediction
methods, self-organizing systems, and contextualized services in distributed
systems. He is a SeniorMember of ACMand euroCRIS. He received the IBM
Faculty Award, in 2012, or the project ‘‘CloudWay–Improving Resource
Utilization for a Smart Cloud Infrastructure,’’ the Prize for Excellence from
IBM and Oracle, in 2008 and 2009, respectively, the Best Young Researcher
in Software Services Award, the FP7 SPRERS Project, Strengthening the
Participation of Romania in European Research and Development in Soft-
ware Services, in 2011, and two best paper awards. He involved in several
international (EGEE III, SEE-GRID-SCI, ERRIC, and Data4Water) and
national research projects in the distributed systems field as a Coordinator
and as a member as well.

VOLUME 7, 2019 49567

	INTRODUCTION
	RELATED WORK
	DATA CAPSULE MODEL
	ROBOTS
	DATA CAPSULE

	ARCHITECTURE
	EDGE LAYER
	FOG LAYER
	CLOUD LAYER
	CLOUD SOLUTIONS FOR PoC IMPLEMENTATION

	BUILDING AN AUTONOMOUS ROBOT ON A CLOUD-EDGE SYSTEM
	DATA COLLECTION AND FILTERING
	HARDWARE, EXPERIMENT PROPOSE AND USAGE SCENARIO
	VOICE RECOGNITION
	NOISE REDUCTION
	TEXT TO SPEECH
	FACIAL RECOGNITION AND OBJECT CAPTIONING
	IMPLEMENTATION OF DATA CAPSULE IN EDGE DEVICES
	DATA COLLECTION WORKFLOW

	EXPERIMENTAL RESULTS
	EVALUATION METRICS
	PERFORMANCE ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	ION-DORINEL FILIP
	ANDREI VLAD POSTOACA
	RADU-DUMITRU STOCHITOIU
	DARIUS-FLORENTIN NEATU
	CATALIN NEGRU
	FLORIN POP

