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ABSTRACT Kinematic calibration performance is heavily dependent on two factors–the ability of calibra-
tion configurationsmapping kinematic parameter errors, and the un-modeled errors including joint clearance,
thermal expansion, and measurement noise. Therefore, this paper deals with the calibration configuration
optimization to reduce the impact of the two factors on calibration performance. We pay particular attention
to establish an index for evaluating calibration configuration’s quality. Different from other works, the pro-
posed comprehensive quality index can simultaneously reflect configurations’ observability and globality.
Furthermore, the numerical methods are used to analyze the relationships between the comprehensive quality
index and configuration number, and the relationships between calibration performance and configuration
number. Based on the above relationships, we provide a feasible solution for determining the calibration
configuration number of a specific manipulator. Based on the above work, configuration optimization model
is established and solved by particle swarm optimization. The simulation of an eight degree-of-freedom
manipulator illustrates the advantages of the proposed method. In 100 calibration simulations, optimized
configurations perform better than random configurations, with the position accuracy increased by 43.86%
and the attitude accuracy increased by 14.29%.

INDEX TERMS Calibration configuration, comprehensive quality index, kinematic calibration, particle
swarm optimization.

I. INTRODUCTION
In the study of manipulator, scholars have carried out many
studies to reduce kinematic parameter errors, and kinematic
calibration methods with increasingly maturity have become
a universal solution [1]–[3]. Based on existing studies, kine-
matic calibration can improve the positioning accuracy of a
manipulator about an order of magnitude [4]–[6]. However,
the position/attitude accuracy after calibration is sometimes
still difficult to meet the requirements of typical operation
tasks such as precision machining and microsurgery. This
phenomenon is caused by two factors. One of the factors is
the existence of un-modeled errors [7], including joint clear-
ance [8], thermal expansion [9], and measurement noise [10].
Although these un-modeled errors occupy a small proportion
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in the positioning error of manipulator, they will signifi-
cantly affect calibration performance [11]. In fact, the un-
modeled errors are difficult to eliminate. Considering the
effects of the un-modeled errors are different when using
different configurations in calibration, we can reduce the
impact of the un-modeled errors by choosing appropriate
calibration configurations. Another factor is the difference
in the ability of different calibration configurations to map
kinematic parameter errors. Good configurations can evenly
map all kinematic parameter errors to end position/attitude
errors, which are beneficial to improve calibration perfor-
mance. For the above two reasons, it is necessary to find an
optimal configuration set to reduce negative effects of the
un-modeled errors and to map kinematic parameter errors
better.

In order to optimize calibration configurations, schol-
ars established many indexes to evaluate the quality of
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configurations, and developed algorithms that are suitable for
configuration optimization.

The end position/attitude errors of a manipulator will form
an ellipsoid when parameter errors are constant, and singu-
lar values of error Jacobian matrix determine the ellipsoid’s
boundary. Therefore, the singular values can measure the
configurations’ observability on kinematic parameters [12].
Based on the singular value decomposition (SVD) of error
Jacobian matrix, most of the indexes for evaluating cali-
bration configurations are established. There are six most
common indexes. One of the indexes is observability index
(expressed as O1 ) [13]. O1 is calculated by geometric mean
of singular values. It reflects the overall observability of con-
figurations. The second index is condition number (expressed
asO2) [14]; it reflects the average observability of configura-
tions. The third index is minimum singular value (expressed
as O3) [15]; it reflects the worst observability of configura-
tions. The forth index is noise amplification index (expressed
as O4) [16]; it combines the performance of O2 and O3.
The fifth index is based on A-optimal design (expressed
asO5) [17]; it also reflects the overall observability of config-
urations. The newest index is improved 8p-optimality index
(is expressed as O6) [11], and both O1, O3, and O5, can be
regarded as special cases of O6.
From the above studies, we could find that there are

many indexes to evaluate calibration configurations’ quality.
However, each existing index focuses on partial aspects of
configurations’ observability. Actually, calibration requires a
set of configurations that has the best comprehensive ability
to observe kinematic parameter errors. Therefore, we need
to integrate existing indexes to select configurations with the
best observability. In addition to observability, we also need
to consider another performance that is called configurations’
globality. The manipulator’s residual end position/attitude
errors of different configurations can be calculated by cali-
brated parameters. These residual end position/attitude errors
are calibration residuals. The calibration residuals are small-
est for the calibration configurations, but are bigger for other
configurations. It is because the essence of kinematic calibra-
tion is to approximate the actual value of kinematic param-
eters using calibration configurations as sample points. The
selection of the sample points determines the accuracy of the
calibrated parameters. The above characteristic of calibration
configurations is the configurations’ globality. Therefore,
in order to improve calibration performance, it is also nec-
essary to improve the globality of calibration configurations.
By establishing an index that can simultaneously evaluate
observability and the globality of calibration configurations,
we can select out a set of configurations that have the best
calibration performance.

After establishing index to evaluate configurations’ qual-
ity, the next step is to design configuration optimization algo-
rithm. Scholars have applied many algorithms to optimize
configurations, including DETMAX [18]–[20], simulated
annealing (SA) [21], genetic algorithm (GA) [22]–[23], par-
ticle swarm optimization (PSO) [11], etc. DETMAX [24] is

one of themost widely used algorithms for calibration config-
uration optimization. However, because DETMAX needs to
perform operations such as ‘‘add-compare-exchange-delete’’
one by one for alternative configurations, the calculation is
complicated and the efficiency is low, especially when the
number of alternative configurations is large. To improve
efficiency, one of the methods uses configuration perturba-
tion to optimize configurations, and uses a small amount of
DETMAX’s operations to avoid local optimal solution [25].
However, this method is complicated to implement. Another
method uses GA with gradient search; it uses parallel com-
puting to accelerate optimization process, and uses repetitive
configurations to reduce the dimension of calculation [23].
However, repetitive configurations are easy to make error
Jacobian matrix be singular. As a kind of swarm intelligence
algorithm, PSO has the characteristics of fast convergence,
simple modeling, and easy implementation. Compared with
other optimization algorithms, PSO requires fewer parame-
ters and can achieve better results in a faster and low-cost
way [11]. Therefore, in order to optimize configurations
efficiently, this paper chooses the PSO to solve optimization
model of calibration configuration.

In summary, we need to find an optimal calibration con-
figuration set to reduce effects of the un-modeled errors and
yield the best observability of kinematic parameter errors.
In order to achieve the goal, it is necessary to establish an
index to evaluate the quality of calibration configurations.
The existing indexes only evaluate configurations’ observ-
ability from some single perspective, and they never discuss
the globality of configurations. For this reason, this paper
explores a method to evaluate configurations’ globality, and
establish a comprehensive quality index. Based on the index,
this paper considers constraints of configuration number and
joint angle limits, and uses PSO to solve optimization model
of calibration configuration. The contributions of this paper
mainly include the following points:
• We establish configurations’ dispersion index and even-
ness index by considering distribution of manipulator’s
end points in workspace. These indexes can be used to
obtain configurations with a better globality.

• By combining the existing observability indexes with
globality indexes, we propose a comprehensive quality
index, which can simultaneously reflect the calibration
configurations’ observability and globality.

• Numerical methods are used to analyze the relation-
ships between comprehensive quality index and config-
uration number, and the relationships between calibra-
tion accuracy and configuration number. Based on the
relationships, we provide a feasible solution for deter-
mining calibration configuration number for a specific
manipulator.

The rest of this paper is organized as follows:
Section II analyzes factors that affect calibration perfor-
mance. Section III establishes the comprehensive quality
index to evaluate configurations. Section IV designs amethod
to optimize configurations based on PSO. Section V shows
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simulation results of proposed methods. Section VI summa-
rizes research results and provides future research directions.

II. FACTORS AFFECTING CALIBRATION PERFORMANCE
Kinematic calibration performance is heavily dependent on
the ability of calibration configurations mapping kinematic
parameter errors, and the effects of the un-modeled errors.
Before optimize configurations, we first need to analyze how
these factors influence the calibration performance.

A. EVALUATE CALIBRATION PERFORMANCE
The kinematic model of manipulator is the basis for kine-
matic calibration. We can use kinematic model to obtain
end position/attitude in any configuration of a manipulator.
(In order to make the analysis process more concise, this
section replaces the complete expressions of the kinematic
model and kinematic error model of the manipulator with the
simplified expressions. The modeling process and complete
expressions are shown in Appendix.)

The end position/attitude can be expressed as a function of
kinematic parameters and joint angles, as shown in (1).

PN
= f (�N, θ ) (1)

where PN
∈ <

6 is the nominal value of end position/attitude;
�N
∈ <

np is the nominal value of kinematic parameters; n is
degrees-of-freedom (DOF); p is the number of parameters
used to describe the relationship between two adjacent link
coordinate systems; θ = [θ1, θ2, · · · , θn] ∈ <n is a set of
joint angles.

However, actual value of kinematic parameters is often
different from nominal value, because the existence of man-
ufacturing errors, assembly errors, environmental changes
and other factors. This deviation leads to a change in end
position/attitude. We can express actual value of end posi-
tion/attitude PA as

PA
= f (�A, θ ) (2)

where �A
∈ <

np is actual value of kinematic parameters,
which cannot be measured.

The kinematic error model can be established by (1)
and (2). The model reflects relationship between end posi-
tion/attitude errors and kinematic parameter errors, as shown
in (3).

lim
1�→0

1P
1�
=

dPN

d�N (3)

where 1P = PA
− PN is deviation between actual value

and nominal value of end position/attitude;1� = �A
−�N

is deviation between actual value and nominal value of kine-
matic parameters.

The right side of (3) is error Jacobian matrix, and it can be
expressed as J (J ∈ <6×np), as shown in (4).

J =
dPN

d�N (4)

Then, kinematic calibration can be described as follows.
We continuously calculate kinematic parameter errors
through multiple iterations, until the deviation between cal-
culated value and measured value of end position/attitude is
less than an expected threshold, as shown in (5).

f (1�) =
m∑
i=1

‖1P i − J i ·1�‖2 ≤ ε (5)

where 1P i is end position/attitude errors of the i-th con-
figuration obtained by measurement; J i is error Jacobian
matrix of the i-th configuration; m is configuration number,
which usually depends on the calibration requirements; ε is
an expected threshold.

In order to implement the above process, we can use
least squares method to solve kinematic parameter errors.
Let J̄ =

[
JT1 , J

T
2 , · · · , J

T
m
]T

(J̄ ∈ <
6m×np), 1P̄ =[

1PT
1 ,1P

T
2 , · · · ,1P

T
m
]T

(1P̄ ∈ <6m), then kinematic cali-
bration equation can be expressed as

1�′ =
(
J̄
T
J̄
)−1
· J̄

T
·1P̄ (6)

where 1�′ is calibrated kinematic parameter errors.
The calibrated kinematic parameters �C can be

expressed as

�C
= �N

+1�′ = �N
+

(
J̄
T
J̄
)−1
· J̄

T
·1P̄ (7)

The residual deviation between actual value and calibrated
value of kinematic parameters δ� is

δ� = �A
−�C

= 1�−1�′ (8)

This deviation is a direct index to evaluate calibration
performance. However, we cannot obtain exact value of the
residual deviation, because we cannot measure actual kine-
matic parameters. The end position/attitude corrected by cal-
ibrated parameters also has a deviation from actual value.
Therefore, we can measure calibration performance by the
end position/attitude errors after calibration.

For a configuration θ (θ = [θ1, θ2, · · · , θn] ∈ <n) of
manipulator, the end position/attitude corrected by calibrated
parameters is

PC
= f (�C, θ ) (9)

where PC
∈ <

6 is corrected nominal value of end posi-
tion/attitude.

We call deviation between actual value and corrected
nominal value of end position/attitude as the calibration
residuals δP, which can be expressed as (10).

δP = PA
− PC

= PA
− f (�C, θ ) (10)

Then, we can evaluate calibration performance using (10).
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B. FACTORS AFFECTING CALIBRATION PERFORMANCE
Equation (7) shows that calibrated parameters are calculated
by end position/attitude errors and error Jacobian matrix.
(1), (2) and (4) show that end position/attitude errors and
error Jacobianmatrix are both functions of calibration config-
urations. Therefore, from (10) we can know that calibration
residuals are a function of calibration configurations.

δP = f (θ̄ ) (11)

where θ̄ = {θ1, θ2, · · · , θm} is a collection of calibration
configurations.

A set of configurations contains two pieces of information.
One is the number of configurations, and the other is the joint
angles. They all affect calibration residuals.

First, we discuss the impact of configuration number on
calibration. The end position/attitude is a six-dimensional
vector, so we have 6m kinematic calibration’s equations when
the configuration number is m. If kinematic model describes
relationship between two manipulator’s link coordinate sys-
tems with p parameters, an n-DOF manipulator contains
np kinematic parameters (i.e., np unknown variables). Only
when 6m ≥ np (i.e. the number of equations equals or is
greater than the number of unknowns) can we obtain the
unique solution or least square solution of the kinematic
parameter error. Therefore, it is necessary to determining
appropriate number of configurations for kinematic calibra-
tion process.

We also need to discuss the impact of joint angles on cali-
bration. The calibration residuals are smallest for calibration
configurations, but are bigger for other configurations. It is
because kinematic calibration’s essence is to approximate
actual value of kinematic parameters using calibration con-
figurations. The selection of calibration configurations deter-
mines accuracy of calibrated parameters. We use globality to
define the above characteristics of calibration configurations.
If calibration configurations concentrate in an area, config-
urations’ globality will be poor, and calibrated parameters
will only improve position/attitude accuracy of manipulator
in local workspace.

Furthermore, error Jacobian matrixes corresponding to
different configurations are different. The mathematical char-
acteristics of error Jacobian matrix will affect solution of cal-
ibration equations. We use r represents rank of error Jacobian
matrix. According to whether error Jacobian matrix is full
rank or not, the following four situations occur:
• The error Jacobian matrix is full column rank
(i.e. r = np). In this case, all kinematic parameters
are linearly independent, i.e. there are no redundant
parameters. When configurations number is sufficient,
all kinematic parameters can be solved.

• The error Jacobian matrix is full row rank (i.e. r = 6m).
In this case, all configurations are linearly independent;
calibration equations have solutions (possibly multiple
set of solutions).

• The error Jacobian matrix is a full rank square matrix
(i.e. r = 6m = np). In this case, both kinematic

parameters and configurations are linearly independent,
and calibration equations only have one set of solutions.

• Both column rank and row rank of error Jacobian matrix
are rank deficient (i.e. r < 6m, r < np). In this case,
some kinematic parameters are linearly dependent, some
configurations are linearly dependent, and calibration
equations do not have solution or have multiple set of
solutions.

Based on the above analysis, we summarize impacts of
calibration configurations on calibration process as follows:
• The configuration number will affect solution of calibra-
tion equations. Only the configuration number satisfying
the condition 6m ≥ np can solve valid parameters.

• The selection of calibration configurations deter-
mines similarity of calibrated parameters and actual
parameters.

• The joint angles of configurations will affect error Jaco-
bian matrix. The solvability of calibration equations
corresponding to different error Jacobian matrices is
different.

III. COMPREHENSIVE QUALITY INDEX OF
CALIBRATION CONFIGURATIONS
Based on the above analysis, we will evaluate the calibration
configurations from both the observability and globality.

A. CONFIGURATIONS’ OBSERVABILITY INDEXES
Different configurations correspond to different error Jaco-
bian matrix, and have different observability. Therefore,
we can establish configurations’ observability index based on
the mathematical characteristics of error Jacobian matrix.

Singular values reflect mathematical characteristics of
error Jacobian matrix, so they indirectly reflect the quality of
configurations. We can obtain singular values by SVD. For
example, the SVD of an error Jacobian matrix J in q × s
dimension is expressed as

[U,6,VT] = SVD(J) (12)

where U6VT
= J ; the matrixes U ∈ <q×q and V ∈ <s×s

are orthogonal matrix; the matrix 6 ∈ <q×s is singular value
matrix of J , and it can be expressed as

6 =



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λs
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


(13)

where λ1, λ2, · · · , λs are singular values of J , and satisfy the
relationship of λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0.

Then the general formula of the existing indexes can be
expressed as

O = f (6) (14)

where O is index that evaluate configuration’s observability.

50182 VOLUME 7, 2019



G. Chen et al.: Configuration Optimization for Manipulator Kinematic Calibration

Based on singular values of error Jacobian matrix,
we obtain the following indexes:
• The observability index O1: This index is calculated by
geometric mean of singular values. It performs as vol-
ume of the space created by discrete data, and can mea-
sure overall observability of configurations. The larger
the O1, the better the overall observability on kinematic
parameter errors.

O1 =
(λ1λ2 · · · λs)

1/s
√
s

(15)

• The condition number O2: This index is calculated from
ratio of the minimum singular value to the maximum
singular value. It reflects uniformity of discrete data
in all directions, and can measure average observabil-
ity of configurations. The larger the O2, the better the
average observability on kinematic parameter errors;
When O2 = 1, configurations have the best average
observability.

O2 =
λs

λ1
(16)

• The minimum singular value O3: This index reflects
the worst observability of all configurations. The larger
the O3, the better the observability on kinematic param-
eter errors.

O3 = λs (17)

Based on definitions of the above three observability
indexes, when homogeneity [26] of selected configurations
is good, O1, O2, O3 are close to a fixed value.

The above observability indexes evaluate configurations’
observability from different aspects, and we need to integrate
existing indexes to select a set of configurations with the best
comprehensive observability.

B. CONFIGURATIONS’ GLOBALITY INDEXES
In addition to observability, we also need to consider con-
figurations’ globality. The globality can be evaluated by
the spatial distribution of the configurations. On the one
side, a set of configurations should be dispersive in space,
because parameters calibrated by dispersive configurations
are more applicable in the entire workspace. On the other
side, a set of configurations should be even in space, because
parameters calibrated by even configurations can improve
position/attitude accuracy evenly in the entire workspace.
For these reasons, we establish the following dispersion and
evenness index.

1) CONFIGURATIONS’ DISPERSION INDEX
The configuration’s dispersion index can be calculated by
dispersion of manipulator’s end points. Variance can measure
the dispersion of a finite points set.

Suppose A =
{
x1, x2, · · · , xNA

}
is a point set in

d-dimensional space Sd (i.e. xi ∈ Sd ). NA is points number.

The center point xC of the points set A (i.e. arithmetic mean
of coordinates of points) is

xC =
1
NA

NA∑
i=1

xi (18)

Then, variance of points set A is

D(A) =
1
NA

NA∑
i=1

(xi − xC)T (xi − xC) (19)

D(A) is the dispersion of points set A. The bigger theD(A),
the better the dispersion of the point set.

The end point set corresponding to configuration set θ̄ =
{θ1, θ2, · · · , θm} is

{
Pd1 ,Pd2 , · · · ,Pdm

}
(Pd_i ∈ <3). Then

the dispersion of configurations θ̄ can be calculated as

D(θ̄ ) =
1
m

m∑
i=1

(
Pd_i − Pd_C

)T (Pd_i − Pd_C)
=

1
m

m∑
i=1

(
Pd_i(θ i)−

1
m

m∑
i=1

Pd_i(θ i)

)T

×

(
Pd_i(θ i)−

1
m

m∑
i=1

Pd_i(θ i)

)
(20)

We can evaluate configurations’ dispersion by (20). The
bigger the D(θ̄ ), the better the dispersion of configurations.

Fig. 1 shows different values of dispersion in two-
dimensional space. Fig. 1(a) shows when end points cor-
responding to configurations are all focus on one point,
the dispersion reaches the minimum value 0. Fig. 1(b) shows
when end points are located at boundary of workspace,
the dispersion reaches the maximum value rS (i.e. radius
of workspace). Fig. 1(c) shows when configuration number
approaches infinity and end points fill entire workspace,
the dispersion approaches a constant value rS

/
2.

2) CONFIGURATIONS’ EVENNESS INDEX
The configuration’s evenness index can be calculated by
evenness of the manipulator’s end points. The following
method can measure evenness of a finite point set [27].

The average distance dave between each point and center
point xC in points set A is standard deviation of points’
coordinates, shown as (21)

dave =
√
D(A) (21)

Take a random point y in space Sd . We can calculate the
minimum distance between y and all points in points set A.
The minimum distance can be expressed as dmin.

dmin = min
1≤k≤n

d (y, xk) (22)

where d (y, xk) represents the distance between y and xk .
By traversing all points in space Sd by unit length, we

obtain the upper bound of the minimum distance, which can
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FIGURE 1. A schematic diagram for different values of dispersion in a two-dimensional space. (a) Minimum value of
dispersion. (b) Maximum value of dispersion. (c) Constant value of dispersion.

FIGURE 2. A schematic diagram of configurations’ spatial distribution in two-dimensional space. (a) Points are
dispersive but uneven. (b) Points are concentrated but even. (c) Points are dispersive and even.

be expressed as dsup.

dsup = sup
y∈Sd

dmin = sup
y∈Sd

(
min
1≤k≤n

d (y, xk)
)

(23)

dsup can be understood as the radius of the largest sphere
that can be accommodated in Sd after removing the space
formed by A.

Then the evenness of the point set A is

U (A) =
dave
dsup
=

√
1
n

n∑
i=1
(xi − xC)T (xi − xC)

sup
y∈Sd

(
min
1≤k≤n

d (y, xk)
) (24)

The bigger the U (A), the better the evenness of the points
set A.
Then evenness of configurations θ̄ can be calculated

as (25), shown at the bottom of the next page, where P ′ is
a random point in manipulator’s workspace. We can evalu-
ate configurations’ evenness by (25). The bigger the U (θ̄ ),
the better the evenness of configurations.

We can analyze range of evenness by taking a
two-dimensional circular workspace (shows in Fig. 1) as
an example. The range of the molecular of evenness is[
0,
√
rS
]
. When configuration number approaches infinity

and end points corresponding to the configurations fill the

entire workspace, the molecular of (25) approaches a fixed

value
√
rS
/
2. The denominator of evenness (25) as config-

uration number increases, and the minimum value is zero.
Therefore, configurations’ evenness increases as configura-
tion number increases, and the maximum value is gigantic.

The spatial distribution of end points can intuitively dis-
play the configurations’ spatial distribution. We take a two-
dimensional space as an example; Fig. 2 shows three types of
the configurations’ spatial distribution.

Fig. 2 shows the dispersive and even configurations can
cover workspace best; and we can obtain a set of configura-
tions that have the best globality by using dispersion index
and evenness index.

C. COMPREHENSIVE QUALITY INDEX
OF CONFIGURATIONS
Since the observability indexes and globality indexes evaluate
configurations’ quality from different aspects, we need to
integrate these indexes.

The first step is to normalize observability indexes and
globality indexes because they have different ranges. The
most common normalization method is linear transforma-
tion method (also known as min-max normalization), which
requires ranges of data.

However, linear transformation method is not suitable for
our situation, because it is hard to calculate the ranges of the
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above indexes. Assuming that each joint angle’s range of an
n-DOF manipulator is ±180◦, we traverse at intervals of 10◦

to get M = 36n configurations. If calibration configuration
number is m, then m calibration configurations are selected
amongM configurations, and the number of the possible sit-
uations isM !

/
[m! (M − m)!].We have to calculate the above

indexes in all situations to get ranges of the indexes. However,
the number of possible situations will be very large when
DOF is high, traversal intervals are small, or the calibration
configuration number is large. Therefore, it is unrealistic to
calculate indexes’ ranges. For this reason, this paper uses
a normalization method based on inverse tangent function
as (26).

xNorm =
2
π
· arctan (x) , if and only if x > 0. (26)

where xNorm is normalized value of x.
This normalization method is a kind of nonlinear normal-

ization method which uses the inverse tangent function to
map the original values. The feature of this method guaran-
tees it can avoid a large number of traversal operations in
linear transformation, and it is suitable for scenes where data
is scattered. Therefore, we choose this method to improve the
normalization efficiency. And after transformation of (26),
we can map each index into the interval (−1, 1).

Then comprehensive quality index can be calculated as

OC =
2
π

(
arctanD+ arctanU +

3∑
i=1

arctanOi

)
(27)

This section establishes the observability indexes and glob-
ality indexes of calibration configurations. The observabil-
ity indexes can evaluate the overall observability, average
observability, and the worst observability of configurations.
The dispersion index and evenness index can evaluate con-
figurations’ spatial distribution. By combining the existing
observability indexes with dispersion index and evenness
index, we proposed a comprehensive quality index (OC ) to
evaluate calibration configurations’ quality. OC can simul-
taneously reflect configurations’ observability and globality,
so it is more effective than the existing indexes.

IV. CALIBRATION CONFIGURATIONS OPTIMIZATION
To optimize calibration configurations, we establish an opti-
mization model base on the proposed comprehensive quality
index and constraints including configuration number and
joint angles ranges. Then, we use PSO to solve configuration
optimization model.

A. OPTIMIZATION MODEL
The optimization model includes two parts: objective func-
tion, and constraints.

1) OBJECTIVE FUNCTION
The optimization objective is the proposed comprehensive
quality index, shown in (28).

f (θ̄ ) =
2
π

(
arctanD(θ̄ )+ arctanU (θ̄)+

3∑
i=1

arctanOi(θ̄ )

)
(28)

The benefit of using the proposed comprehensive index
instead of multiple single indexes (including three observ-
ability indexes and two globality indexes) is to avoid the
complexity of multi-objective optimization problems.

2) CONSTRAINTS OF OPTIMIZATION
Whenwe optimize calibration configurations, we also need to
consider constrains of configuration number and joint angles.

a: CONSTRAINT OF CONFIGURATION NUMBER
We use p parameters to describe relationship between two
link coordinate systems. Then kinematic model of an n-DOF
manipulator will have (n+ 1) p kinematic parameters when
coordinate system of tool is considered. The kinematic cal-
ibration equations established by one configuration contains
only 6 equations. In order to ensure equations has a unique
solution (or a least square solution), the equation number
needs to equal or be greater than the number of unknown
variables. Therefore, configuration number should satisfy the
following inequality.

6m ≥ (n+ 1) p,m ∈ N+ (29)

where N+ is positive integer.
Then the constraint of configuration number is

m ≥
⌈
(n+ 1) p

6

⌉
(30)

b: CONSTRAINT OF JOINT ANGLES RANGES
Any produced configuration during the optimization process
should meet limits of joint angles ranges.

θ1 ∈
[
θ1_min, θ1_max

]
θ2 ∈

[
θ2_min, θ2_max

]
...

θn ∈
[
θn_min, θn_max

] (31)

U (θ̄ ) =

√
1
m

m∑
i=1

(
Pd_i(θ i)− 1

m

m∑
i=1

Pd_i(θ i)
)T (

Pd_i(θ i)− 1
m

m∑
i=1

Pd_i(θ i)
)

sup
P ′∈<3

(
min

1≤k≤m
d
(
P ′,Pdk (θk )

)) (25)
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where θ1, θ2, · · · , θn are joint angles of the i-th configuration,
i.e. θ i = [θ1, θ2, · · · , θn]; and [θ_imin, θ_imax] is joint angle
range of i-th joint.
Based on objective function and two types of constraints,

we can convert optimization of calibration configurations into
the maximization of the comprehensive quality index under
the constraints of configuration number and joint angles
ranges. If we use θ̄ = [θ1, θ2, · · · , θm] represent a configu-
ration set that have m configurations, the above optimization
can be described as

max f (θ̄ ) =
2
π

(
arctanD(θ̄ )+ arctanU (θ̄ )

+

3∑
i=1

arctanOi(θ̄)

)

s.t. m ≥
⌈
(n+ 1) p

6

⌉

s.t.


θ1 ∈ [θ_1min, θ_1max]
θ2 ∈ [θ_2min, θ_2max]
...

θn ∈ [θ_nmin, θ_nmax]

(32)

B. OPTIMIZATION ALGORITHM BASED ON PSO
Based on the optimization model, this paper uses the PSO to
optimize calibration configurations.

1) INITIALIZE PARTICLES
When we optimize m configurations for an n-DOF manipu-
lator, dimension of search space (i.e. dimension of particle)
is d = m · n. Each configuration can be expressed as θ i =[
θi_1, θi_2, · · · , θi_n

]
∈ <

n, where i = 1, 2, · · · ,m. Then
decision vector (i.e. a particle) of algorithm is

θ̄ = [θ1, θ2, · · · , θm] (33)

where θ̄ ∈ <d .
Velocity vector of each particle has same dimension as

particle, i.e. v̄ ∈ <d , and it can be expressed as

v̄ = [v1, v2, · · · , vm] (34)

where vi =
[
vi_1, vi_2, · · · , vi_n

]
is velocity of joint angles of

the i-th configuration.
A particle swarm has NSwrm particles; each particle has a

structure as in (33), and represents m configurations. Initial
value (θ̄ ini) and initial velocity (v̄ini) of each particle is ran-
domly selected within joint angles ranges.

2) FITNESS FUNCTION
Fitness function can be determined by the objective function,
as (35).

max f (θ̄)
2
π

(
arctanD(θ̄ )+ arctanU (θ̄)+

3∑
i=1

arctanOi(θ̄)

)
(35)

3) UPDATE PARTICLES’ VELOCITY AND POSITION
Assume that optimization needs to be iterated NIter times.
For the j-th (j = 1, 2, · · · ,NSwrm) particle in the k-th
(k = 1, 2, · · · ,NIter) iteration, We use θ̄

k
j and v̄kj rep-

resent particle’s position and velocity, and use pkj_best and
pkS_best represent particle’s best-known position and swarm’s
best-known position. Then particle’s position and velocity in
next iteration isv̄

k+1
j = ωv̄kj + c1σ

(
pkj_best − θ̄

k
j

)
+ c2η

(
pkS_best − θ̄

k
j

)
θ̄
k+1
j = θ̄

k
j + ξ v̄

k+1
j

(36)

where ω determines dependence of particles on initial val-
ues, i.e. particles’ ability to explore global solution space.
σ is randomly distributed on [0, 1], which together with
c1 determines dependence of particle’s best-known position.
η is randomly distributed on [0, 1], which together with
c2 determines dependence of swarm’s best-known position.
ξ determines dependence of updated velocity.
ω is linearly decreasing, and the change rule is

ω = ωmax −
k

NIter
(ωmax − ωmin) (37)

where ωmax and ωmin are upper and lower bond of the ω.
Change rules of c1 and c2 isc1 = 4− e

−τ

∣∣∣mean
(
OC
(
pk1
)
,OC

(
pk2
)
,··· ,OC

(
pkq
))
−OC

(
pks
)∣∣∣

c2 = 4− c1
(38)

where τ = 1, and mean (·) represents calculating average.
Optimization process continuously updates particle’s posi-

tion and velocity according (36). When every particle’s
velocity is zero and particle’s position no longer changes,
or iterations reaches upper bond, optimization complete, and
decision vector’ s end value is swarm’s current best-known
position. Then optimized configurations can be obtained by
splitting the decision vector into m sub-vectors.

The ideas of this paper can be summarized as follows.
Firstly, we analyze factors affecting calibration performance.
Secondly, we proposed dispersion index and evenness index
of configurations, and combined these indexes with config-
urations’ observability indexes to construct a comprehensive
quality index. Finally, we design a configuration optimiza-
tion algorithm based on PSO. The process of configuration
optimization is shown in Fig. 3.

V. SIMULATION
To validate the proposed comprehensive quality index and
optimization method, we design four simulations. The first
simulation analyzes relationship between configurations’
globality index and calibration performance. The second sim-
ulation analyzes relationship between comprehensive quality
index and calibration performance. The third simulation is to
determining configuration number for a specific manipulator.
The forth simulation carries out optimization of calibration
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FIGURE 3. Process of calibration configuration optimization.

configurations, and contrasts calibration performance before
and after optimization.

A. SUBJECT
The subject of all simulations is an 8-DOF manip-
ulator. Fig. 4 shows the 8-DOF manipulator and its
improved Denavit-Hartenberg model [28] with coordinate
systems. Table 1 shows kinematic parameters of the 8-DOF
manipulator.

B. INFLUENCE OF CONFIGURATIONS’ QUALITY
INDEXES ON CALIBRATION
In this section, we will simulate influences of globality
indexes and comprehensive quality index on calibration.

1) INFLUENCE OF CONFIGURATIONS’ GLOBALITY
INDEXES ON CALIBRATION
We carry out the following simulation to show influence
of configurations’ globality indexes on calibration. We ran-
domly generate two sets of configurations with different
globalities. Each set contains 30 configurations. Fig. 5 and
Fig. 6 show distribution of end position points of two

TABLE 1. Kinematic parameters of the 8-DOF manipulator.

configuration sets. Configuration set A is more concentrated
in one area of workspace, while configuration set B covers
workspace better.

Table 2 shows dispersion index and evenness index of
two configuration sets. We can see that dispersion index and
evenness index for the configuration set with better coverage
of workspace are both higher.
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FIGURE 5. Distribution of end points of configuration set A in workspace. (a) 3D View. (b) Points projection on
the XOY plane. (c) Points projection on the XOZ plane. (d) Points projection on the YOZ plane.

FIGURE 6. Distribution of end points of configuration set B in workspace. (a) 3D View. (b) Points projection on
the XOY plane. (c) Points projection on the XOZ plane. (d) Points projection on the YOZ plane.

Two kinematic calibration simulations are carried out using
configuration set A and configuration set B respectively.

In both of the simulations, range of kinematic parameter
errors is set to ±30mm and ±1.72◦, and measurement error
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FIGURE 4. 8-DOF manipulator and its coordinate systems.

TABLE 2. Configurations’ globality indexes of two configuration sets.

is set to ±2mm. 30 configurations are randomly selected as
a control group to verify calibration performance. Fig. 7 and
Table 3 show comparison of calibration residuals using con-
figurations with different globalities.

TABLE 3. Comparison of calibration residuals using configurations with
different globalities.

‘Max’ is the short form of ‘Maximum’, ‘Min’ is the short
form of ‘Minimum’, ‘Ave’ is the short form of ‘Average’.

Table 3 shows that using configuration set A can reduce
average position error by 82.55%, while using configuration
set B can reduce average position error by 97.89%. Using
configuration set A can reduce average attitude error by
90.00%, while using configuration set B can reduce average
attitude error by 98.18%. The results show that under the
same calibration conditions (same manipulator, same mea-
surement errors, and same calibration configuration number),

using configurations with better globality can improve cali-
bration performance.

2) INFLUENCE OF COMPREHENSIVE QUALITY
INDEX ON CALIBRATION
We carry out the following simulation to show the influ-
ence of the proposed comprehensive quality index (OC ) on
calibration.

We use multiple sets of configurations with different com-
prehensive quality to calibrate the manipulator, and each set
contains 30 configurations. In order to obtain multiple sets
of configurations with different OC , we take the following
method. We randomly generate multiple sets of configura-
tions in different joint angles ranges. Joint angles ranges are
gradually increased from ±10◦ to ±180◦ (the interval is 1◦).
Then, we calculate the OC of each configuration set and
sort them in the order of small to large. Then, we can get
171 configuration sets with increasing OC .
We use the 171 configuration sets to calibrate manipulator,

and for each calibration, the range of kinematics parameter
errors is set to ±30mm and ±1.72◦, and the measurement
error is set to ±2mm. Extra 30 configurations are randomly
selected as a control group to verify the calibration perfor-
mance. Fig. 8 shows relationship between average calibration
residuals of the verification group and OC .
By analyzing the data, we notice that as OC increases,

calibration residuals gradually decrease, and the downward
trend tend to be slow. When OC increases from the initial
0.0192 to 1.1770, end position error reduces from 98.23mm
to 1.32mm, and the position accuracy is improved by 98.68%;
end attitude error reduces from 15.84◦ to 0.04◦, and the
attitude accuracy is improved by 99.75%. The results show
that calibration performance is positively related to OC .
In other word, configurations with higher comprehensive
quality index can obtain a better calibration performance.

C. SIMULATION OF CALIBRATION
CONFIGURATION OPTIMIZATION
In this section, we will determine the most suitable config-
uration number for calibration, optimize calibration config-
urations, and use the optimal configurations to calibrate the
8-DOF manipulator.

1) DETERMINING CONFIGURATION
NUMBER FOR CALIBRATION
Too few configurations are not enough to complete calibra-
tion, while too many configurations will increase the cost
of calibration. Therefore, it is very important to choose an
appropriate number of calibration configurations.

a: INFLUENCE OF CONFIGURATION
NUMBER ON THE INDEXES
We use numerical methods to analyze relationship between
configuration number and configurations’ quality indexes.

The above Table 1 shows that kinematic model of the
8-DOF manipulator has 45 kinematic parameters. From (30)
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FIGURE 7. Comparison of calibration residuals using configurations with different globalities. (a) End
position errors. (b) End attitude errors.

we know that the minimum number of calibration configura-
tions is 8. Therefore, we calculate the four indexes (including
the existing indexesO1,O2,O3, and the proposed indexOC in
this paper) when calibration number increasing from 8 to 500.

Fig. 9 shows relationship between configuration number
and indexes. By analyzing the data, we notice that as con-
figuration number increases, values of the indexes increase
gradually, and the upward trend tend to be slow.

We can analyze the data with OC as an example.
OC increases by 103.21% when configuration number
increase from 8 to 50. This situation indicates that the
increase in configuration number in the interval [8, 50] sig-
nificantly improves quality of configuration set.OC increases
by 16.49% when configuration number increase from
50 to 100. This situation indicates that cost of upgrad-
ing the quality of configuration set is gradually increasing.
OC increases by 27.98%when configuration number increase

from 100 to 500. This situation indicates that the increase in
configuration number in the interval [100, 500] has slightly
improved quality of configuration set.

Fig. 10 shows OC ’s growth trend with configuration num-
ber. By analyzing the data, we notice that when configuration
number increases to more than 40, gradient of OC begins to
decrease; when configuration number increases to more than
120, the increase in configuration number only improve the
quality of configuration set slightly.

b: INFLUENCE OF CONFIGURATION NUMBER
ON CALIBRATION PERFORMANCE
We use numerical methods to analyze relationship between
configuration number and calibration performance. We use
multiple sets of configurations with different configuration
number to calibration. For each calibration, we randomly
generate configurations, and configuration number increases
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FIGURE 8. Relationship between calibration residuals and OC . (a) End position errors. (b) End attitude errors.

FIGURE 9. Relationship between configuration number and the indexes.

from 8 to 200. Range of kinematic parameter errors is set to
±30mm and±1.72◦, and measurement error is set to±2mm.
We calculate calibration residuals after each calibration,

and use polynomials to fit the data. Fig. 11 shows relationship
between calibration residuals and configuration number.

By analyzing the data, we notice that as configuration
number increases, calibration residuals gradually decrease,
and the downward trend tend to be slow. Table 4 shows
calibration performance when configuration number is 8, 20,
60, and 200.

Results in Fig. 11 and Table 4 show that excessive configu-
rations are not beneficial to improve calibration performance
effectively.

TABLE 4. Calibration performance when configuration number is 8, 20,
60, and 200.

The above subsections consider the factors includ-
ing comprehensive quality index, calibration performance,
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FIGURE 10. Relationship between configuration number and OC .

FIGURE 11. Relationship between configuration number and calibration residuals. (a) End position errors.
(b) End attitude errors.

and calibration efficiency. Simulation results show
that for the 8-DOF manipulator shown in Fig. 4, the
suitable range of calibration configuration number
is 40 to 60.

2) OPTIMIZATION SIMULATION OF CALIBRATION
CONFIGURATIONS BASED ON PSO
Based on the determined configuration number range
in the previous section, we choose 40 as calibration
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FIGURE 12. Distribution of end points of optimal configuration set. (a) 3D View. (b) Points projection on the
XOY plane. (c) Points projection on the XOZ plane. (d) Points projection on the YOZ plane.

configuration number. Particles can be initialized by (33),
and dimension of search space is d = 320. Table 5 shows
parameters of configuration optimization algorithm based
on PSO.

TABLE 5. Parameters of PSO algorithm for configuration optimization.

After optimization, OC of the optimal configuration set is
1.4259. Fig. 12 shows distribution of the end points of optimal
configuration set.

In the following sections we will use multiple random
configuration sets as control groups, and contrast config-
urations’ dispersion index, evenness index, comprehensive
quality index, and calibration performance before and after
optimization.

a: COMPARISON OF CONFIGURATIONS’ QUALITY
BEFORE AND AFTER OPTIMIZATION
We randomly generate 500 configuration sets; each con-
figuration set has 40 configurations. Fig. 13, Fig. 14, and
Fig. 15 shows comparison of configurations’ dispersion
index, evenness index, and comprehensive quality index,
respectively.

FIGURE 13. Comparison of configurations’ dispersion index.

Table 6 shows comparison of indexes of random configura-
tion set and optimal configuration set. The dispersion index,
evenness index, and comprehensive quality index of optimal
configuration set are all higher than average value of these
indexes of the random configuration sets. Therefore, quality
of optimal set is better than random set.
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FIGURE 14. Comparison of configurations’ evenness index.

FIGURE 15. Comparison of configurations’ comprehensive quality index.

TABLE 6. Comparison of indexes of random configuration set and
optimal configuration set.

b: COMPARISON OF CALIBRATION PERFORMANCE BEFORE
AND AFTER CONFIGURATION OPTIMIZATION
We use random configurations and optimal configurations
to carry out 100 calibration simulations. For each cal-
ibration, range of kinematics parameter errors is set to
±30mm and±1.72◦, and measurement error is set to±2mm.
Fig. 16 shows calibration residuals. Table 7 shows compari-
son of the calibration performance by using random config-
urations and optimal configurations. By analyzing the data,
we notice that calibration performance is improved by using
optimal configurations, and the improvement of position
accuracy is more obvious.

Through the above simulations, we draw the following
conclusions:
• Those configurations that cover manipulator’s work-
space better have better globality. Configurations that
have a higher comprehensive quality index can obtain
a higher calibration performance.

• Comprehensive quality index and calibration perfor-
mance both increase as configuration number increases,

FIGURE 16. Calibration residuals using random configurations and
optimal configurations. (a) End position errors. (b) End attitude errors.

TABLE 7. Compare calibration performance of random configurations
and optimal configurations.

but the growth trends of both are slow down. Consid-
ering the effect of configuration number on calibration
efficiency, we believe that too many configurations are
not beneficial to calibration.

• The proposed method in this paper can optimize con-
figurations’ observability and globality. Calibration per-
formance is improved by using optimal configurations,
with the position accuracy increased by 43.86% and the
attitude accuracy increased by 14.29%.

VI. CONCLUSION
To improve manipulator’s calibration performance, this paper
carries out a configuration optimizationmethod.We analyzed
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factors affecting calibration performance, and used statistical
theory to establish comprehensive quality index of calibration
configurations. Then, we used numerical methods to ana-
lyze relationships between comprehensive quality index and
configuration number, calibration accuracy and configuration
number, andwe gained a suitable range of configuration num-
ber. Furthermore, we established a configuration optimiza-
tion model based on the comprehensive quality index, and
constraints of configuration number and joint angles ranges.
PSO was used to solve configuration optimization model.
To validate our method, we used an 8-DOF manipulator for
simulation. The result showed that configurations optimized
by the proposed method can effectively improve calibration
performance.

The contributions of this paper mainly include the follow-
ing points:
• We established configurations’ dispersion index and
evenness index by considering the distribution of a
manipulator’s end points in workspace. These indexes
can be used to obtain configurations with a better
globality.

• By combining the existing observability indexes with
globality indexes, we proposed a comprehensive qual-
ity index, which can simultaneously reflect calibration
configurations’ observability and globality.

• Numerical methods were used to analyze relationships
between comprehensive quality index and configuration
number, calibration accuracy and configuration number.
Based on the relationships, we provided a feasible solu-
tion for determining calibration configuration number
for a specific manipulator.

The configuration optimization method proposed in this
paper can effectively optimize calibration configurations and
improve calibration performance. This method is suitable not
only for industrial manipulators, but also for manipulators in
space engineering, biomedical, etc. However, when designing
the configuration optimization method, this paper only con-
siders constraints of configuration number and joint angles
ranges. Problems such as collision between manipulator and
environment and measurability of configurations in actual
calibration process need further study.

APPENDIX A
KINEMATIC MODEL
The manipulator’s kinematic model is established by the
improved Denavit-Hartenberg method. This method uses
five parameters to represent the homogeneous transformation
matrix of two adjacent coordinate systems, as follows

i−1
i T = Rot (x, αi)Trans (x, ai)Rot (z, θi)

Trans (z, di)Rot (y, βi) (39)

where i−1
i T is the homogeneous transformation matrix

between coordinate systems 6i−1 and 6i, Rot (k, γ ) means
to rotate γ around the k-axis, Trans (k, l)means to translate l
along k-axis. α is the angle at which the coordinate system

rotates around the x-axis, a is the distance the coordinate
system translates along the x-axis, θ is the angle at which
the coordinate system rotates around the z-axis, d is the
distance the coordinate system translates along the z-axis, β
is the angle at which the coordinate system rotates around the
y-axis.

For an n-DOF manipulator, the transformation matrix
between base coordinate system and end coordinate system is

0
ET =

0
1T

1
2T · · ·

n
ET (40)

APPENDIX B
KINEMATIC ERROR MODEL
We use i−1i T and i−1

i T ′ represent the nominal transformation
matrix and the actual transformation matrix respectively. The
differential motion between i−1

i T and i−1
i T ′ is

dT i = i−1
i T ′ − i−1

i T = i−1
i T ·1i (i = 0, 1, 2, · · · ) (41)

1i in (42) is the position/attitude error matrix, and it can
be represented as

1i =


0 −δiz δiy dix
δiz 0 −δix diy
−δiy δix 0 diz
0 0 0 0

 (42)

where δi =
[
δix δiy δiz

]T and d i =
[
dix diy diz

]T represent
position error and attitude error respectively.

dT i in (43) can also be approximated as

dT i =
∂ i−1i T
∂αi

1αi +
∂ i−1i T
∂ai

1ai +
∂ i−1i T i
∂θi

1θi

+
∂ i−1i T
∂di

1di +
∂ i−1i T
∂βi

1βi (43)

The position/attitude error model of the adjacent link coor-
dinate systems shown in (44) can be derived by (39), (42),
and (43),

dix
diy
diz
δix
δiy
δiz

 =
[
k1i k2i k3i k4i k5i
k6i k7i k8i k9i k10i

]
1αi
1ai
1θi
1di
1βi

 (44)

where,

k1i =

−disθicβi−dicθi
−disθisβi

 , k2i =

 cθicβi
−sθi
cθisβi

 , k3i =
 0
0
0

 ,
k4i =

−sβi0
cβi

 , k5i =

 0
0
0

 , k6i =
 cθicβi
−sθi
cθisβi

 ,
k7i =

 0
0
0

 , k8i =

−sβi0
cβi

 , k9i =
 0
0
0

 , k10i =
 0
1
0

.
We use 0

ET and 0
ET
′ represent the nominal transformation

matrix and the actual transformation matrix between end
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D =
n+1∑
i=1



(nui+1)
Tk1i + (pui+1 × n

u
i+1)

Tk6i (nui+1)
Tk2i (pui+1 × n

u
i+1)

Tk8i (nui+1)
Tk4i (pui+1 × n

u
i+1)

Tk10i
(oui+1)

Tk1i + (pui+1 × o
u
i+1)

Tk6i (oui+1)
Tk2i (pui+1 × o

u
i+1)

Tk8i (oui+1)
Tk4i (pui+1 × o

u
i+1)

Tk10i
(aui+1)

Tk1i + (pui+1 × a
u
i+1)

Tk6i (aui+1)
Tk2i (pui+1 × a

u
i+1)

Tk8i (aui+1)
Tk4i (pui+1 × a

u
i+1)

Tk10i
(nui+1)

Tk6i 0 (nui+1)
Tk8i 0 (nui+1)

Tk10i
(oui+1)

Tk6i 0 (oui+1)
Tk8i 0 (oui+1)

Tk10i
(aui+1)

Tk6i 0 (aui+1)
Tk8i 0 (aui+1)

Tk10i




1αi
1ai
1θi
1di
1βi



=

n+1∑
i=1

J i · ei = J · e (52)

coordinate system and base coordinate system respectively.
Then the differential motion between 0

ET and 0
ET
′ is

0
ET
′
=

0
ET + dT (45)

Bring (40) into (45) and ignore the high order terms, we can
get

0
ET
′
=

n+1∏
i=1

i−1
i T ′ =

n+1∏
i=1

(
i−1
i T + dT i

)

≈
0
ET +

n+1∑
i=1

i−1∏
j=1

j−1
j T

 · dT i ·
 n+1∏
j=i+1

j−1
j T

 (46)

Bring (41) into (46),

dT =
n+1∑
i=1

i−1∏
j=1

j−1
j T

 · dT i ·
 n+1∏
j=i+1

j−1
j T


=

n+1∑
i=1

0
ET ·

 n+1∏
j=i+1

j−1
j T

−1 ·1i ·

 n+1∏
j=i+1

j−1
j T

 (47)

Rewritten (47),

dT = 0
ET ·

n+1∑
i=1

 n+1∏
j=i+1

j−1
j T

−1 ·1i ·

 n+1∏
j=i+1

j−1
j T


=

0
ET ·1 (48)

Then position/attitude error matrix of 6E is

1 =

n+1∑
i=1

 n+1∏
j=i+1

j−1
j T

−1 ·1i ·

 n+1∏
j=i+1

j−1
j T

 (49)

Let U i =
i−1
i T ii+1T · · ·

n
n+1T , (i = 1, 2, · · · n+ 1),

Un+2 = I4(i.e. a 4×4 unit matrix), we can know that U i is
homogeneous transformation matrix, and it’s general formula

can be represented as U i =

[
nui o

u
i a

u
i p

u
i

0 0 0 1

]
. We bring U i

into (49), and (49) can be simplified as

1 =

n∑
i=0

(U i+1)−1 ·1i · U i+1 (50)

Then the position/attitude error model of the manipulator
can be derived from (50)

D =


dx
dy
dz
δx
δy
δz

 =
n+1∑
i=1



(nui+1)
T (pui+1 × n

u
i+1)

T

(oui+1)
T (pui+1 × o

u
i+1)

T

(aui+1)
T (pui+1 × a

u
i+1)

T

01×3 (nui+1)
T

01×3 (oui+1)
T

01×3 (aui+1)
T




dix
diy
diz
δix
δiy
δiz


(51)

Bring (44) into (51), then the complete form of posi-
tion/attitude error model is (52), as shown at the top of this
page, where J i ∈ <6×5 is error Jacobian matrix, ei ∈ <5×1 is
vector of kinematic parameter errors.
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