
Received March 11, 2019, accepted April 4, 2019, date of publication April 11, 2019, date of current version April 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910326

Toward Supporting Unplanned Dynamic Changes
of Service-Based Business Processes
CHANG-AI SUN 1,2, (Senior Member, IEEE), ZHEN WANG1, ZAIXING ZHANG1,
PAN WANG1, XIAO HE1, AND JUN HAN3
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Science and Technology on Aerospace Intelligent Control Laboratory, Beijing 100854, China
3School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia

Corresponding author: Chang-Ai Sun (casun@ustb.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872039 and Grant 61370061, in part
by the Beijing Natural Science Foundation of China under Grant 4162040, in part by the Aeronautical Science Foundation of China under
Grant 2016ZD74004, and in part by the Fundamental Research Funds for the Central Universities under Grant FRF-GF-17-B29. The work
of J. Han was supported by the Australian Research Council under Grant LP150100892.

ABSTRACT Service-oriented architecture (SOA) has become an application development paradigm widely
recognized both in academia and in industry. Although SOA-based applications may vertically imple-
ment business processes through the composition of loosely coupled services, they have to face frequent
changes, such as unavailability of service (due to the uncontrollable, dynamic, and distributed environments)
or dynamic replacement of service (due to specific user requirements). This indicates that the service
compositions are expected to be adaptable enough to cater to such changing situations. In this paper,
we propose an approach to supporting unplanned dynamic changes of service compositions by combining
variability management and dynamic binding. The proposed approach introduces the concept of abstract
proxy services in a variability-supporting service composition language, namely VxBPEL, and provides a
mechanism to support variation design and dynamic binding for unplanned changes at run time. To realize the
proposed approach, we have developed a service composition engine that supports abstract proxy services
and their run-time replacement via service discovery or user intervention. Finally, a case study has been
conducted to demonstrate the feasibility of the proposed approach and quantify the performance overhead
resulting from runtime variability management and dynamic binding. The experimental results show that
the proposed approach overcomes the limitation of imperative variability-based approaches in handling
unplanned dynamic changes and further enhances the dynamic adaptability of VxBPEL-based service
compositions.

INDEX TERMS Service oriented architectures, variability management, dynamic binding, adaptive service
composition, business process execution language for Web services.

I. INTRODUCTION
Service-Oriented Architecture (SOA) [1] is a software devel-
opment paradigm that is widely adopted both in academia
and industry. Various organizations are increasingly provid-
ing their service following the Software-as-a-Service (SaaS)
model [2]. A service is a software system designed to sup-
port interoperable machine-to-machine interactions over a
network [3], which inmost situations is isolated and only pro-
vides simple and basic functionality. Accordingly, these ser-
vices are expected to be composed to meet complex business

The associate editor coordinating the review of this manuscript and
approving it for publication was Resul Das.

requirements. The process that coordinates a set of loosely
coupled services (termed as component services) together
is called service composition [4]. The component services
may be implemented in different ways, such as SOAP Web
Services [3], RESTful Web Services [5], and Apps [6]. The
resulting composite service can act as a component service
in another composite service of a larger granularity. As such,
service compositions provide an efficient way for application
development [7].

When a composite service is expected to provide continu-
ous service, especially for a long-running business process,
it must be adaptable sufficiently at run-time. (i) The oper-
ational environments of the component services are highly

48982
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-3696-6176

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

dynamic and unpredictable. The qualities of the compo-
nent services in the composite service cannot be assured
by the service providers. For instance, a Web service may
temporarily fail or terminate, or its quality of service may
suddenly deteriorate due to changes in network bandwidth.
When one of the component services does not behave as
expected, the composite service must be able to replace it
with an alternative service. (ii) The business requirements
may change frequently. The changes in the requirements need
to be propagated to the component services dynamically.
In order to quickly respond to all these changes, a composite
service is expected to have adaptability [8].

Making a composite service adaptable at run-time becomes
possible in the context of SOA due to the loosely coupled
nature of the component services. On the one hand, SOA
enables the vertical composition of services due to the con-
vergence between business goals and technical services. For
example, an operation of a Web service usually implements
an independent business functionality. If the expected func-
tionality changes at run-time, a replacement of the Web ser-
vice deployed in a remote site can make sense. On the other
hand, the current service composition techniques have not
paid enough attention to the dynamic adaptability of service
compositions. For instance, the Business Process Execution
Language for Web Services (WS-BPEL) [9] is a widely rec-
ognized service composition language, which has significant
limitations in terms of adaptability [10].

To address the adaptability of composite services, some
research efforts are reported [11]. The key issue is how to
handle the changes of the composite service. The exist-
ing approaches can be divided into two categories, namely,
imperative and declarative [12]. The imperative method
focuses on the procedure of constructing a process, and
defining sequences of commands. For instance, Provop is a
framework to capture all process variants in a single process
model, which defines the optional elements to implement
the changes of the basic process model [13]. The declar-
ative method focuses on expressing the logic of a pro-
cess without describing its control flow. For example, Pesic
et al. [14] proposed an approach to support variability of
workflow systems via constraint-based models. However,
most of the existing approaches work at the instance level,
i.e., the changes are considered on the basis of a specific
service composition instance rather than using generic lan-
guage abstractions. Therefore, the resulting service com-
positions suffer low understandability, maintainability, and
evolvability [15].

In our previous work [10], [11], [15], [16], we have pro-
posed to address the adaptability problem of compos-
ite services in terms of variability management. We have
designed a variability-supporting service composition lan-
guage, namely VxBPEL [10], which is an extension to the
standard WS-BPEL [9]. With VxBPEL, one can treat the
changes within the composite service as first-class objects.
We have also developed an integrated supporting platform
that enables the design, execution, deployment and run-time

management of VxBEPL-based service compositions [17].
Unlike the existing approaches based on adaptation to
process instances [18]–[20], our approach is a generic
method based on a specification language. Accordingly,
the resulting service compositions are easy to understand and
maintain.

Although the previous approach is able to handle various
changes within VxBPEL-based service compositions [11],
it still has limitation in supporting unplanned changes at run-
time, which is also shared by all other imperative methods.
For instance, a predefined component service (as a variant)
may become unavailable in a long running process. If this
happens, the process variant defined using VxBPEL will
consequently fail, since the current approach does not allow
switching to a new alternative that may be discovered auto-
matically or specified by the user, all at run-time.

To handle unplanned dynamic changes, we propose
a new adaptive service composition approach in this
paper. We introduce the concept of abstract proxy service
in VxBPEL-based service compositions, and develop an
enabling technique, including a service composition language
and its supporting engine and tool. When an unplanned
dynamic change occurs, our approach is able to find a sub-
stitute service, which could be newly discovered or specified
by the user, to replace the original service at run-time, without
terminating and restarting the whole application.

The main contributions of this work are as follows:

1) An adaptive service composition approach that enables
unplanned dynamic changes of VxBPEL-based service
compositions by combining variability management
and dynamic binding. Our approach extends VxBPEL
with the concept of abstract proxy service (APS) and
provides a mechanism for integrating variability design
and dynamic binding.

2) A process engine which was developed to support
the extended VxBPEL by extending an open source
WS-BPEL engine, namely, Apache ODE [21]. It sup-
ports the dynamic binding of Web services to process
instances in two modes. One is done by run-time ser-
vice discovery, and the other is done by the user. The
dynamic binding is implemented based on the aspect-
oriented programming technique.

3) A case study which was conducted to validate the pro-
posed approach and quantify the performance overhead
resulting from using the variability management and
dynamic binding.

The rest of this paper is organized as follows. Section II
presents our approach to supporting unplanned dynamic
changes of service compositions. Section III discusses the
design and implementation of the supporting processes
engine. Section IV reports a case study that is used to evaluate
the feasibility and performance of the proposed approach.
Section V discusses related work and provides a comparison
of them with our approach. Section VI concludes the paper
and outlines future work.

VOLUME 7, 2019 48983

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

II. ADAPTIVE SERVICE COMPOSITIONS SUPPORTING
DYNAMIC UNPLANNED CHANGES
The standard WS-BPEL only provides basic constructs to
describe interactions among activities in business processes.
It is inadequate to accommodate frequent and rapid changes
in service compositions. In this paper, we present a generic
approach to supporting unplanned dynamic changes of ser-
vice compositions through the combination of variability
management and dynamic binding.

We first discuss the limitations of existing approaches,
and then propose a new approach followed by the detailed
discussions of its key issues.

A. LIMITATIONS OF EXISTING APPROACHES
Most of existing representative approaches are based on the
proxy mechanism to support the adaptation of WS-BPEL
service compositions. TRAP/BPEL [18] is a framework that
aims to make an aggregate Web service continue to function
even after one or more of its constituent Web services have
failed. It monitors events such as faults and timeouts from
within the adapted process. When faults occur, a generic
proxy is used to replace the failed services with predefined
or newly discovered alternatives. wsBus is another typical
framework which is capable of realizing Quality of Ser-
vice (QoS) adaptation of Web service compositions [19].
This framework introduces the concept of a virtual endpoint
where a policy may be attached, and plays a role of broker
which selects appropriate services for execution at run-time.
Similarly, Ardagna and Pernici [20] proposed to select Web
services to satisfy the predefined QoS constraints by using
the linear planning technique. All these typical proxy-based
approaches achieve adaptation of service compositions at the
implementation layer and are for individual process instances
at run-time.

The other category of adaptive service composition
approaches is based on variability management. In our pre-
vious work, we investigated how to systematically deal with
the adaptation issue of service composition from the per-
spective of variability management [10], [11], [15]–[17]. The
proposed approach treats changes of service composition
as first class citizens, and provides a systematic treatment
for such changes, including a framework and a supporting
platform [17]. The former includes a variability-supporting
service composition language (i.e. VxBPEL), a variability
modelling profile and execution process [11], while the latter
includes an VxBPEL analysis tool (i.e. ValySec [16]), two
versions of VxBPEL engine (i.e. VxBPEL_engine [22] and
VxBPEL_ODE [23]), a visual VxBPEL designer tool (i.e.
VxBPEL_Designer [17]), and a run-time VxBPEL manage-
ment tool (i.e. MX4B [17]). This approach considers the
adaptation issue of service composition at the specification
layer, providing a language and its corresponding execution
environment.

One may observe that both the above-mentioned cate-
gories of adaptive service composition approaches have their

limitations. (i) The proxy-based approaches have such dis-
advantages as the resulting service compositions being dif-
ficult to maintain (due to changes being explicitly treated),
and having low efficiency (once some changes happen, both
the service composition and proxy have to be rewritten).
(ii) The variability management-based approaches are not
able to handle unplanned run-time changes since variants
have to be predefined at the design phase, although it has
such advantages as easy to understand and maintain. In this
context, a question arises as follows: is it possible to combine
the two categories of approaches to complement each other?

In this work, we introduce the proxy mechanism into
the variability management-based adaptive service com-
position approach. The goal is to address the limitation
of the VxBPEL-based service compositions in supporting
unplanned dynamic changes. The proposed approach and the
supporting platform is reported below.

B. OVERVIEW OF APPROACH
The proposed approach is illustrated in Fig. 1. The basic
idea behind our approach is to introduce the proxy mech-
anism into variability management-based service composi-
tions. An abstract proxy service (APS) is an abstract service
at the design time, and has to be a concrete one at run-time.
We introduce the concept of abstract proxy services (APS)
into VxBPEL since the predefined variants at the design time
are unable to cover all changes that may happen at run-time.
Accordingly, the binding of an APS with a concrete service
can be realized through either run-time service discovery or
a request from the user. To enable the proposed approach,
we extend VxBPEL with a new language construct dybind
to support the declaration of APS, and develop a support plat-
form to interpret APS and realize automatic run-time service
discovery and user-requested service replacement.

We discuss below how the proposed approach works and
its related key issues.

C. DECLARING APS
For the given application requirements, one can construct
a service-based process by coordinating a set of functional
services that are likely to be deployed and run on remote sites.
This construction process is often known as service compo-
sition. To make service composition adaptive, one method is
to introduce variability management [24]. As a representative
method, we have proposed to design adaptive service com-
positions using VxBPEL [17]. VxBPEL supports the main
concepts of variability design [10], including variation points
and variants. A variation point declares a variable part in the
service composition, which may contain multiple variants.
A variant defines an alternative implementation within a
variation point.

In VxBPEL, the syntax of variant is as follows:

<vxbpel:Variant name=‘‘default’’>
(WS-BPEL code or VariationPoint elements)
</vxbpel:Variant>

48984 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 1. Overview of approach.

Within the Variant element, any valid WS-BPEL code can
be inserted.

The syntax of VariationPoint is defined as follows:

<vxbpel:VariationPoint name=‘‘...’’>
<vxbpel:Variants>
<vxbpel:Variant name=‘‘v1’’>
/*...definition of variant v1...*/
</vxbpel:Variant>
<vxbpel:Variant name=‘‘v2’’>
/*...definition of variant v2...*/
</vxbpel:Variant>
...
</vxbpel:Variants>
</vxbpel:VariationPoint>

Although VxBPEL enhancesWS-BPEL by providing a set
of variability design constructs that can be used to specify
the predefined variants within service compositions at design
time, it is impossible to predict all possible changes that may
happen at run-time. Therefore, VxBPEL is still not able to
deal with unplanned changes at run-time.

To overcome this limitation, we further declare an APS as a
variant of the variation point through the dybind construct.
The syntax of dybind is as follows:

<vxbpel:dybind selector="..."/>

An APS must be declared within an invoke element.
It indicates that the target service to be invoked can only
be determined at run-time. As an illustration, the following
VxBPEL code means that the target service (associated with
the partner link FoodPL) will be finalized at run-time.

<bpel:invoke name="InvokeFood"
partnerLink="FoodPL"
operation="findFood"

inputVariable="FoodPLRequest"
outputVariable="FoodPLResponse">
<vxbpel:dybind selector="..."/>
</bpel:invoke>

Furthermore, we identify two classes of unplanned
dynamic changes in service compositions. One is related
to environment changes (EC in short), such as corruption
or unavailability of a service being invoked by a service
composition (i.e., due to maintenance or bad network con-
ditions); the other is related to requirements changes (RC,
in short), such as the functionality or Quality of Service
of the current service being invoked is not satisfactory.
The dybind construct with different selector attributes
are provided to distinguish these two classes of unplanned
changes. That is, the selector attribute having value
‘‘mkchange’’ means that the APS is used to respond to RC;
otherwise, the selector attribute having any other value
means that the APS is used to respond to EC, such as one
service being invoked becomes unavailable. For both cases,
we further provide interfaces for binding a concrete service
to the APS.

D. PREPROCESSING APS
After the above treatment at the design time, we can now
have VxBPEL-based service compositions with APS decla-
rations. The resulting service compositions contain not only
variability constructs such as variation points and variants,
but also the dybind constructs for APS. Preprocessing the
VxBPEL-based service compositions with APS declarations
mainly include parsing the VxBPEL specification, creating
an object model for the execution, and serializing all relevant
objects in a binary file.

During the parsing phase, it generates objects for stan-
dard BPEL elements, and records the information about

VOLUME 7, 2019 48985

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 2. Conceptual model of dynamic binding table.

variation definitions and configurations. To handle the activ-
ities associated with APSs (namely, those containing the
dybind elements), we need to create a Dynamic Binding
Table (DBT) for each activity. A DBT contains a set of table
entries, each of which corresponds to an APS and further cap-
tures its owner invoke element and service binding infor-
mation. For dynamic service discovery, the binding informa-
tion is stored in DyBindMap, while for the dynamic service
replacement required by the user, the binding information is
stored in U_ConfigMap. The conceptual model of the DBT
is illustrated in Fig. 2. At the end of this phase, the expected
resources and variability configuration schema are ready for
execution.

E. RUN-TIME ADAPTATION
A normal VxBPEL-based service composition only con-
tains a variety of variability configuration schema, and each
schema specifies which variants should be selected for each
variation point. The services to be invoked in all variants are
predefined and thus they are not able to be changed at run-
time. To execute VxBPEL-based service compositions with
APS declarations, we have to extend the VxBPEL engine
to interpret the new construct dybind related to APS and
support the dynamic binding of APS to concrete services
identified.

To implement the unplanned dynamic changes mentioned
in Section II-C, the APS can be triggered in two modes.
For EC, the APS is triggered in an automatic way when an
exception happens with the owner invoke element (e.g.,
the target service to be invoked become unavailable), and a
newly discovered service will be used for run-time service
replacement of the APS; for RC, the APS is triggered in a
manual way and a target service explicitly specified by users
will be used for run-time service replacement of the APS.
The binding process of APS is illustrated in Fig. 3. When
the VxBPEL engine encounters an exception, it first decides
whether the exception is related to run-time service replace-
ment or not (1). If so, it then retrieves relevant information
about the target service, such as port, service name, service
type, which is either provided via service discovery (2) or
specified by the user (2’). The target service is then bound
into the business process (3 or 3’), and the engine continues
the execution of the remaining process (4).

FIGURE 3. Concrete realization of APS within the dybind element.

For both modes of run-time service replacement, we fur-
ther develop an integration tool which provides an infrastruc-
ture to enable both run-time service discovery and service
replacement required by the user. More details about the
extended VxBPEL engine and the integration tool will be
discussed in Section III.

1) HANDLING UNPLANNED EXCEPTIONS
When a VxBPEL-based service composition is being exe-
cuted, our approach will monitor every external service invo-
cation starting from an invoke element. If an exception
happens (for example, due to network failure), the extended
engine (i.e., the VxBPEL_ODE engine in Fig. 3) will inter-
cept it, and search the APS that is associated with the
invoke element in the DBT. If such an entry does not exist,
the extended engine will re-throw the exception, so that the
original engine (i.e., the WS-BPEL ODE engine) can handle
it. If such an entry exists in the DBT and the selector
attribute is not ‘‘mkchange’’, the Integration Layer in the
extended engine will trigger the Service Discovery process to
find a new alternative service; otherwise, the process handling
unplanned changes of requirements will be triggered (see the
next subsection).

The Service Discovery process (i.e., the Alternative ser-
vice via Service Discovery in Fig. 3) will first retrieve the
information of the APS from its owner invoke element
and the corresponding partner link definition. Then, it will
query alternative services with the interface information from
a UDDI proxy. If the UDDI proxy returns some candidate
services and one of them will be selected as the alternative
candidate service (either by default or by some selection
condition).

Next, the original target service will be replaced with the
selected alternative service. The extended engine will update
the execution context of the invoked service, where the ser-
vice binding information is stored, and then resend the service
invocation message to the new target service. It is worth
noting that there may be a mismatch between the old message
and the new one. For instance, assume that the old service that
becomes unavailable has the following information:

targetNamespace: http://food.five.
ustb.org;
Web service name: FoodSuggestService;

48986 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

operation name: findFood;
port name: FoodSuggest;
port location: http://localhost:8080/...
/services/FoodSuggest.

while the alternative service includes the following informa-
tion:

targetNamespace: http://foodc.five.
ustb.org;
Web service name: FoodCSuggestService;
operation name: findFoodC;
port name: FoodCSuggest;
port location:http://localhost:8080/...
/services/FoodCSuggest.

The differences between the old and new messages may
appear in targetNamespace, operation name, port location,
and required parameters. In order to ensure that the alter-
native service can successfully receive an invocation mes-
sage, the old invocation message is to be converted into
the new one, which has been automated by means of pars-
ing the WSDL file of the involved Web services. As such,
the business process can run continuously during dynamic
service replacement; otherwise, it has to be paused and then
restarted. Note that Web services concerned in our approach
are stateless, and repeated invocations of the same service
are thus independent. Furthermore, it is expected to rollback
the previous operations in case of an exception, which is not
supported in the current treatment.

2) HANDLING UNPLANNED CHANGES OF REQUIREMENTS
Due to the dynamic changes in user requirements, a com-
ponent service previously bound may need to be replaced
by another after the VxBPEL-based service composition is
deployed. Let us consider a travel agency application com-
prising of two component services, which are expected to
provide accommodation and food services, respectively. The
original requirements of the application are set to cheap hotels
and fast-food restaurants. However, after the composition is
deployed, the requirements evolve into cheap hotels and best
restaurants. In this situation, the old service that is expected to
provide the fast-food service has to be replaced by a new one
that provides the best food service. In order to cater for such
unplanned dynamic requirement changes, the process should
be updated online without any interruption. Our approach
supports this by the user actively triggering the APS through
a management interface.

The treatment is similar to that for handling unplanned
exceptions except that the alternative service is specified
by the user. As discussed in Section II-E.1, our approach
intercepts each external invocation to the invoke elements.
when an invocation of an APS is encountered, the extended
engine will look up the DBT. If this APS is associated with
an invoke element in the DBT and its selector attribute
is ‘‘mkchange’’, a process is trigged to expose a management
interface to the user (i.e. Alternative service via user in Fig. 3),

who is responsible for specifying a new alternative service
(otherwise, a Service Discovery process will be triggered).
After an alternative service is specified, our approach will
forward the invocation message to the new target service and
a similar message conversion is applied.

F. SUMMARY
We have presented a language-based generic approach to
address unplanned dynamic changes in service composi-
tions. VxBPEL, which supports variability in WS-BPEL ser-
vice compositions, is further extended with a new construct,
dybind. One can employ the extended VxBPEL to declare
an abstract service proxy in service compositions. Such an
APS introduces the opportunity of handling unplanned run-
time changes of the resulting compositions, which has been
extensively discussed above. To summarize, the proposed
approach provides a systematic way to handle unplanned
dynamic changes, including those related to environments
and those related to requirements.

III. IMPLEMENTATION
In this section, we report on the implementation of
an extended VxBPEL engine called VxBPEL_Dyn_ODE,
which provides an enabling infrastructure for preprocessing
the APS in the extended VxBPEL and supporting run-time
adaptation via APS.

A. ARCHITECTURE OF VXBPEL_DYN_ODE
The implementation of VxBPEL_Dyn_ODE takes a two-
phase interpreter style, which first compiles VxBPEL pro-
cess definitions into a standard process object pool and then
individually interprets the compiled objects at run-time. The
run-time interpretation is further refined into three parts:
core interpretation activities via an ODE BPEL Runtime,
invocation of external Web services via an ODE Integra-
tion Layer, and dynamic service searching & binding of
APS via a Dynamic Binding Module. The architecture of
VxBPEL_Dyn_ODE is shown in Fig 4. VxBPEL_Dyn_ODE
is developed by extending VxBPEL_ODE, a VxBPEL engine
that was developed in our previous work [23]. Comparedwith
VxBPEL_ODE, the Dynamic Bind Module is newly added
and the VxBPELCompiler is extended with the preprocessing
of APS.

Wefirst introduce each component of VxBPEL_Dyn_ODE
individually and then discuss how these components interact,
especially focusing on the interaction betweenDynamic Bind
Module and ODE Integration Layer.

– Compilation consists of the ODE BPEL Compiler,
VxBPEL Compiler, and Configuration Management.
The ODE BPEL Compiler is responsible for convert-
ing standard BPEL elements into a compiled represen-
tation. The VxBPEL Compiler is responsible for the
compilation ofVxBPEL-specific elements (such as vari-
ants, variation points, APSs, and so on). It first creates
an object model for all VxBPEL elements similar in

VOLUME 7, 2019 48987

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 4. Architecture of VxBPEL_Dyn_ODE.

structure to the object model of BPEL elements, then
maps all variants of a variation point to BPEL activities,
and finally stores the association of variation points
and variants. The Configuration Management manages
variants associated with a variation point and maintains
a current variation configuration. After the compila-
tion, the generated objects contain process and variation
attributes. The Configuration Management selects the
specified variants based on a variation configuration
scheme and the variant selection process repeats until all
variation points are processed. After this process, only
BPEL process objects remain because variants associ-
ated with a variation point become standard BPEL ele-
ments. Finally, all process relevant objects are serialized
into a binary file.

– ODE BPEL Runtime is used to interpret the compiled
process definitions, including creating a new process
instance, implementing the various BPEL constructs,
and delivering an incoming message to the appropri-
ate process instance. Inside the ODE BPEL Runtime,
the ODE Data Access Objects (ODE DAOs) mediates
the interaction between the ODE BPEL Runtime and
DBMS, and JACOB provides an application concurrency
mechanism, including a transparent treatment of process
interrupts and persistence of execution state.

– DBMS is an underlying database management system
which stores information about active process instances,
routing messages, values of BPEL variables for each
instance, values of BPEL partner links for each instance,
and process execution states.

– ODE Integration Layer provides an execution envi-
ronment, including communication channels to interact
with Web services or AOP Integration Layer, thread

scheduling mechanisms, and the lifecycle management
for the ODE BPEL Runtime.

– Dynamic Binding Module is responsible for communi-
cation with the ODE Integration Layer. It monitors all
invocations related to the APS from theODE Integration
Layer, binds an alternative service returned via run-time
service discovery or specified by the user, converts the
invocation and response messages for the alternative ser-
vice, and returns the control back to theODE Integration
Layer.

Fig. 5 depicts the main workflow of VxBPEL_Dyn_ODE.
After the VxBPEL-based process is compiled, the ODE
BPEL Runtime will take over the interpretation of the com-
piled process definition. When an invoke activity is encoun-
tered (Step 1), theODE BPEL Runtime extracts the execution
context from the ODE DAOs for the current object (Step 2)
and transfer the invocation of an external Web service to the
ODE Integration Layer (Step 3), which will be in charge
of the communication with the Dynamic Binding Module.
The AOP Integration Layer within the Dynamic Binding
Module is responsible for catching the invocation exceptions
(Step 4) and mediating the subsequent service run-time
replacement flows. The DyBindMap checks whether there is
an entry related to the invoke object in the DBT (Step 5) and
returns the query result (Step 6). If the invoke object is not
associated with an APS, the AOP Integration Layer will re-
throw the exception. Otherwise, if the query result indicates
that the selector is not set to ‘‘mkchange’’ (Step 7),
the DyBindMap will invoke the UDDIProxy to search alter-
native services (Step 8∼ Step 9), create the execution context
for the returned alternative service (Step 10), invoke the
Message Conversion to convert the invocation and response
SOAP messages for the alternative service (Step 11), and

48988 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 5. Interactions between Dynamic Binding Module and ODE Integration Layer.

return the control back toODE Integration Layer (Step 12); if
the selector is set to ‘‘mkchange’’, theU_ConfigMapwill
specify an alternative service and create the execution context
for the alternative service (Step 7’ ∼ Step 8’), invoke the
Message Conversion to convert the invocation and response
SOAP messages for the alternative service (Step 11), and
return the control back to ODE Integration Layer (Step 12).

B. IMPLEMENTATION OF THE DYNAMIC BINDING
MODULE
In order to enable run-time adaptation, we have to extend the
previous VxBPEL engine, VxBPEL_ODE, with the capabil-
ity of replacing a service with a newly discovered or specified
one at run-time. As we discussed above, theDynamic Binding
Module is a newly added component which is mainly respon-
sible for run-time service replacement. One key issue is how
to effectively integrate the Dynamic Binding Module with
the ODE Integration Layer. Furthermore, such an integration
should demand as little modifications to the existing ODE
Integration Layer as possible. Fortunately, AOP provides a
perfect technical solution to cater for this need [25], and
we accordingly adopt AspectJ [26], a popular aspect pro-
gramming framework, to develop the AOP Integration Layer,
which is the core component of Dynamic Binding Module.

When implementing the AOP Integration Layer, we design
an aspect called AspectBinding, which contains a set of point-
cuts and advices. Next, we explain individually how each
pointcut and its associated advice (and its involved compo-
nents) are implemented.

• Pointcut invoke is specified at invoke () to intercept a
run-time exception when invoking an external partner,
and the invoke (x) advice associated with this pointcut
first checks whether the object that triggers the invoca-
tion exception has an entry in the DBT (i.e., CheckAPS
in DyBindMap), and then decides to execute which kind
of run-time service replacement: (i) If this object belongs

to DBT and its associated selector attribute is not
equal to ‘‘mkchange’’, the advice calls UDDIProxy
in the Service Discovery to locate an alternative ser-
vice. The implementation of UDDIProxy is based on
UDDI4J,1 which is a Java class library that provides
an API to interact with a UDDI (Universal Description,
Discovery and Integration) registry;
(ii) If this object belongs to DBT and its associ-
ated selector attribute is equal to ‘‘mkchange’’,
the advice calls a JMX interface exposed by theConfigu-
ration Management for specifying an alternative service
(U_ConfigMap). JMX is an extension to Java, allowing
Java objects to expose certain functionality (possibly to
external tools) [27];
(iii) Otherwise, this object does not belong to the DBT,
and the advice re-throws the exception via ‘‘proceed
(x)’’, which will be handled by the original ODE BPEL
Runtime.

• Pointcut setEPR is specified at the invocation of setUrl
() within invoke () to intercept the binding address, and
its associated advice, setEPR (url), and sets the binding
address (i.e., url) of the alternative service that is speci-
fied via the U_ConfigMap or discovered via the Service
Discovery, as discussed in the invoke (x) advice.

• Pointcut createSoapRequest is specified at the invoca-
tion of createSoapRequest ()within invoke () to intercept
its SOAP request (including the message context mctx,
message msg, and operation name opr). The associated
advice, createSoapRequest (mctx, msg, opr), is respon-
sible for the conversion of the SOAP request. In order
to do that, this advice first derives the requested oper-
ation, name space, and relevant parameters from the
intercepted request message msg through WSDL4J,2

and then creates a new SOAP request for the alternative

1http://uddi4j.sourceforge.net/
2https://sourceforge.net/projects/wsdl4j/

VOLUME 7, 2019 48989

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

service that is specified via theU_ConfigMap or discov-
ered via the Service Discovery.

• Pointcut reply is specified at the invocation of reply
() within invoke () to intercept its response message,
and its associated advice, extract (message, soapBody,
bodyDef, msg, rpcWrapper), the converts the response
message of the alternative service into the required form.

From the above discussion, one can observe that the
presented implementation only introduces minor modifica-
tions to the ODE Integration Layer in order to support
run-time service replacement. In particular, we only add
a package to implement the AspectBinding aspect inside
org.apache.ode.axis2, which is responsible for the imple-
mentation of the ODE Integration Layer. For AspectBinding,
we specify a total of four pointcuts, and for each pointcut,
one advice is specified. Among the four pointcuts, the first
one intercepts the exception (i.e., AxisFault) thrown by the
invocation of invoke () inside ODE Integration Layer when
invoking an external Web service, the other ones intercept
necessary information for service binding and message con-
version during the procedure of invoke (), including binding
address, request message, and response message. The advices
associated with these pointcuts execute the actions following
the interactions shown in Fig. 5.

IV. EVALUATION
We have conducted a case study to demonstrate the effective-
ness of the proposed approach and quantify its performance
overhead. We have used the Travel Reservation System [28]
as our subject program, and all Web services in the system
are implemented in Java. We first briefly describe the Travel
Reservation System and the research questions, then eval-
uate the effectiveness and performance of our approach in
handling unplanned exceptions and changes in user require-
ments, followed by a discuss of the answers to the research
questions.

A. SUBJECT PROGRAM AND RESEARCH QUESTIONS
The Travel Reservation System [28] provides a series of travel
services, including Vehicle Reservation, Hotel Reservation,
Ticket Reservation, and Insurance Purchase. Through this
system, customers are able to book tickets for their preferred
transportation, and reserve hotel and tour tickets according to
their travel plans. When doing these, they may also purchase
insurance.

Following the main steps of the proposed approach in
Section II, we have implemented a Travel Reservation Sys-
tem through VxBPEL-based service compositions. Note that
there are likelymultiple alternative services available for each
type of service in the real business scenarios. For instance,
a number of hotels may provide their services for Hotel
Reservation. For simplicity of the demonstration, we only
consider two variants (i.e., alternative services or business
fragments) at each variation point during the implementation.
Accordingly, Table 1 illustrates the variability configuration

TABLE 1. Variability Configuration of Travel Reservation System.

of the Travel Reservation System. Note that we assume the
Travel Reservation System can provide customers with either
Flight or Train reservation, either Business or EconomyHotel
reservation, either Scenic or Exploration reservation, and
either Insurance A or Insurance B service.

Now, let us consider the following common scenarios that
could happen at run-time and the corresponding research
questions for evaluation.
Scenario 1: After the system is deployed, a component

service may become unavailable due to various environment-
related exceptions. For instance, Business associated with
Hotel Reservation becomes unavailable, and then any invo-
cation of this service will result in a run-time exception.
For this case, the system should find an alternative service
that can provide the required accommodation service, say,
Chain Hotel, to meet the customer’s requirements in a timely
manner. In order to do that, one normally has to re-design
the system to replace Business with Chain Hotel, and re-
deploy the system. Such a maintenance process usually takes
some time and design efforts, which usually does not meet the
user’s expectations. In this regard, we are interested in eval-
uating whether our approach can effectively handle this case
in a more effective manner, and one research question arises:
‘‘Can the proposed approach support the run-time service
replacement when a predefined service becomes unavailable
due to environmental changes?’’ (RQ1)
Scenario 2: User requirements may also dynamically

change after the system is deployed, and the system should
be adaptable to these changes. For instance, a customer is
not satisfied with the insurance services currently provided
by the system, instead, she would like to specify her pre-
ferred insurance service through run-time search of a newly
available insurance service, say, Insurance C. Again, to cater
for the dynamic changes of user requirements, the system
has to undergo a maintenance process, which includes the
binding of the Insurance Purchase service with Insurance C
and redeployment of the system. In this case, we are interested
in evaluating whether our approach is able to implement
the dynamic changes related to user requirements in a more
effective manner, and the research question is as follows:
‘‘Can the proposed approach support a newly discovered
service specified by the user at run-time without redesign and
redeployment of the system?’’ (RQ2)

If the unplanned dynamic changes related to either the
environment or user requirements can be effectively handled
by our approach, we are further interested in the perfor-
mance overhead due to the dynamic binding introduced in
our approach compared with the original VxBPEL process.

48990 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 6. VxBPEL fragment of Business invocation.

FIGURE 7. An execution log sketch of Scenario 1.

Accordingly, a research question arises as follows: ‘‘Does
the proposed approach introduce a significant performance
overhead?’’ (RQ3)

B. EVALUATION RESULTS
The above case study was used to answer the above research
questions. The evaluation was carried out using a PC with a
Windows 7 64-bit operating system, 2 CPUs and a memory
of 4GB. We evaluate the effectiveness and performance of
our approach when it was used to handle unplanned environ-
ment exceptions in Scenario 1 and dynamic changes of user
requirements in Scenario 2.

1) HANDLING UNPLANNED EXCEPTIONS
(I) Effectiveness evaluation. In Scenario 1, we simulate
unplanned exceptions through a failed invocation to Business
hotel, to evaluate the effectiveness of our approach. As dis-
cussed in Section II-C, we need to declare an APS within the
invoke activity to cover the case that the associated service
is unavailable at run-time. In this example, we declare an
APS within the invoke activity of the Business hotel service.
Fig. 6 illustrates the VxBPEL fragment of the Business hotel
invocation, from which we observe that a dybind element
is inserted into the invoke activity of an alternative (i.e.,
Business variant) of the Hotel Reservation, and the value
of the selector attribute is set to any value other than
‘‘mkchange’’ (in this case, we set it to ‘‘Yes’’).

At run-time, we close theBusiness hotel service to simulate
an unavailable exception and at the same time, we deploy
Chain hotel as an alternative registered in UDDI. In this
context, any invocation of Business in the original VxBPEL-
based service composition will result in a run-time exception.
However, when the above extended VxBPE-based service
composition with APS is executed, it is expected that an APS
will be triggered when the unavailable Business is invoked
and a new target service, say, Chain Hotel, will be discovered
from UDDI and dynamically bound for continual execution.

Fig. 7 shows the execution log sketch of Scenario 1. Dur-
ing the execution, VxBPEL_Dyn_ODE first catched a ser-
vice invocation exception and reported it (Lines 1-5). Then,
the engine searched the APS associated with the Business and
checked the value of the selector attribute. In this case,
the value is not ‘‘mkchange’’, and the dynamic binding mech-
anism was trigged (Line 6). The integration layer triggered
the Service Discovery process to find an alternative service
from UDDI. When the UDDI proxy returned a candidate ser-
vice, the engine replaced the invalid service (Lines 7-11), and
created the corresponding request message for the new target
service (Lines 12-13). Then, the dynamic binding mechanism
was closed (Line 14).

(II) Performance overhead evaluation. To evaluate
the performance overhead of supporting unplanned excep-
tions, we measure the deployment and execution time of
the original VxBPEL-based service composition and the
extended VxBPEL-based service composition of the Travel

VOLUME 7, 2019 48991

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 8. Deployment and execution time of the Travel Reservation System under different variation
configurations.

TABLE 2. Variation Configuration Schema of Travel Reservation System.

Reservation System, respectively. Accordingly, VxBPEL_
ODE and VxBPEL_Dyn_ODE are used to execute two
versions of the Travel Reservation Systemwith different vari-
ation configurations. Table 2 lists all sample configuration
schema, labeled with Vi (1 ≤ i ≤ 8). For instance, V1
represents that Flight, Business, Scenic, and Insurance A are
chosen for each variation point of the Travel Reservation
System. In this scenario, Business hotel is used to simulate
unplanned exceptions and thus is fixed in all configuration
schema.

Fig. 8 shows the performance comparison of the origi-
nal VxBPEL-based service composition and the extended
VxBPEL-based service composition of Travel Reservation
System. Performance includes deployment and execution
time for each configuration. Since both the VxBPEL service
composition and the extended VxBPEL service composition
contain variation design, the specifications for all variation
configurations need to be deployed only once, while the
specifications have to be run individually for each varia-
tion configuration scheme. From Fig. 8, we observe that for
all variation configuration schema, there is no significant

FIGURE 9. VxBPEL fragment of Insurance A invocation.

performance difference between the original VxBPEL-based
service composition and the extended VxBPEL-based ser-
vice composition. This further indicates that the performance
overhead introduced by supporting unplanned exceptions is
negligible.

2) HANDLING CHANGES IN USER REQUIREMENTS
(I) Effectiveness evaluation. At the design phase, it is dif-
ficult to predicate all possible requirements. That is, there
is a possibility that new requirements emerge after service
compositions have been developed and deployed. In Sce-
nario 2, we simulate unplanned requirement changes at run-
time. In particular, we assume that a customer is not satisfied
with all the insurance services currently provided by the
Travel Reservation System, and she intends to dynamically
search a suitable insurance service (for instance, Insurance C)
for Insurance Purchase. When the extended VxBPEL is used
to implement such a service composition, we need to consider
the uncertainty of selecting insurance services at the Insur-
ance Purchase. Fig. 9 illustrates the VxBPEL fragment of
the Insurance A invocation, where an APS is inserted into the
invoke activity of an alternative (i.e., the Insurance A variant)
of the Insurance Purchase and the value of the selector
attribute is set as ‘‘mkchange’’.

At run-time, when the invoke activity of Insurance
A is encountered, VxBPEL_Dyn_ODE will interrupt the

48992 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

FIGURE 10. An execution log sketch of Scenario 2.

FIGURE 11. Service binding and execution time of the Travel Reservation System under different variation configurations.

execution and allow the customer to seek and specify a new
insurance service. In this scenario, we use the management
interface of JConsole to support such an dynamic service
replacement process, and accordingly a newly discovered
insurance service, namely, Insurance C is used to replace
Insurance A in the Travel Reservation System.
Fig. 10 shows the execution log sketch of scenario 2.

When the invoke activity of Insurance A was encountered
and the value of the selector attribute inside the APS is
‘‘mkchange’’ (Line 1), the management interface was pre-
sented to the user to specify a new service as an alternative
(Line 2). Then the dynamic bindingmechanismwas triggered
to modify the service binding information and create the
corresponding request message (Line 3-11). From the exe-
cution log, we observe that Insurance A has been replaced by
Insurance C during the execution of the Travel Reservation
System.

(II) Performance overhead evaluation. To evaluate the
performance overhead of supporting unplanned requirement
changes, we measure the execution time of the original

VxBPEL service composition and the extended VxBPEL ser-
vice composition of the Travel Reservation System, respec-
tively. Again, VxBPEL_ODE and VxBPEL_Dyn_ODE are
used to execute two versions of the Travel Reservation Sys-
tem with different variability configurations. Table 3 lists all
sample configuration schema, labeled with Vi (1 ≤ i ≤

8). In this scenario, we simulate an unplanned requirement
change related to Insurance A with Insurance Purchase,
while all the combinations of configuration schema with
other three variation points are examined.

Fig. 11 shows the performance comparison of
VxBPEL-based service composition and the extended
VxBPEL-based service composition of the Travel Reserva-
tion System. Similar to Scenario 1, for all variation configu-
rations, both the original VxBPEL-based and the extended
VxBPEL-based service compositions need to be deployed
only once, their deployment time is very close and thus is
not included for performance comparison. However, the exe-
cution time (including binding time) for the two versions
of service composition for the same configuration scheme

VOLUME 7, 2019 48993

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

TABLE 3. Variability Configuration Schema of Travel Reservation System.

are somewhat different: the original VxBPEL-based ser-
vice compositions do not involve newly discovered service
binding (thus unable to handle such unplanned requirement
changes), while the execution of the extended VxBPEL-
based service compositions involves a dynamic service bind-
ing and thus introduces some extra performance overhead.
From Fig. 11, we observe that the performance difference
between original VxBPEL-based service compositions and
the extendedVxBPEL-based service compositions is not very
large for all variation configuration schema. This further indi-
cates that the performance overhead introduced by dynamic
service binding to support unplanned requirement changes is
acceptable.

C. ANSWERS TO RESEARCH QUESTIONS
The experimental results demonstrate the effectiveness and
performance of the proposed approach in handling unplanned
exceptions and changes in user requirements.

Answer to RQ1: The proposed approach supports the
run-time service replacement when a predefined service
becomes unexpectedly unavailable, through declaring anAPS
in the associated invoke element, catching possible run-
time exceptions, and replacing the unavailable service with
an alternative service from the UDDI dynamically.

Answer to RQ2: The proposed approach supports run-
time requirement changes in case that some services currently
provided in the service composition cannot meet the require-
ments, through declaring an APS in the associated invoke
element, and allowing the user to specify newly discovered
services for run-time service replacement without the need
for service compositions redesign and redeployment.

Answer to RQ3: The deployment time of the original
VxBPEL-based and extended VxBPEL-based service com-
positions is almost the same, while their execution time
shows some difference, which can be negligible especially
in the context of a long running business process. There-
fore, the performance overhead introduced by supporting
unplanned dynamic changes is in general acceptable. Fur-
thermore, a service composition without using our approach
normally needs to undergo a tedious and time-consuming
redesign and redeployment process when unplanned changes
occur at run-time. In summary, the proposed approach signifi-
cantly enhances the dynamic adaptation capability of service

compositions while introducing an acceptable performance
overhead.

V. RELATED WORK
Service compositions are expected to be adaptable in case
that they need to accommodate frequent requirement changes
and environmental exceptions. Many efforts have been made
to address the adaptation issue of service compositions. We
introduce below several representative approaches and pro-
vide a comparison of them with our approach.
AOP-based adaptive service composition. This category of

approaches applies AOP to improve the adaptation of service
compositions. An early research work is AO4BPEL [29],
which extends WS-BPEL with AOP, to enhance the self-
adaption ability of WS-BPEL compositions. Newly intro-
duced business rules are specified as aspects, which is
first predefined and registered by the administrator and
then is activated/deactivated at run-time to support dynamic
changes for service compositions. VieDAME [30] is an
AOP-based extension to the ActiveBPEL engine, which
monitors and captures various QoS attributes of a running
WS-BPEL process. These AOP-based approaches only sup-
port planned dynamic changes since dynamic service replace-
ment is restricted to those predefined ones in a service
repository. In contrast, our approach supports unplanned
dynamic changes through dynamic service replacement with
those predefined at design time or newly discovered/provided
at-runtime. The potential service replacement in a service
composition is supported by a variability-supporting lan-
guage, while AOP is adopted to implement the integration of
dynamic service discovery and the process engine.
Proxy-based adaptive service composition.

Casati et al. [31] proposed eFlow to support adaptive and
dynamic service composition. TRAP/BPEL [18] uses a
generic proxy to encapsulate autonomic behavior through
self-management policies. WS Binder [32] is a framework
supporting the binding of an abstract service to a concrete
one in a service composition, in order to achieve an optimal
QoS according to functional and non-functional preferences
and/or constraints. Hammas et al. [33] proposed to detect
service dynamic changes via a monitoring module. When
a failure or unavailability occurs, the failed services will be
replaced with the corresponding backup services. However,
unplanned dynamic changes are not supported since backup
services have to be fixed at design time. Unlike the existing
approaches where abstract services are declared with respect
to service composition instances and their treatment has to
be implemented specifically and individually, our approach
supports abstract services with a generic language construct,
and their treatment is embedded in the underlying engine
(transparent to service composition designers).
Annotation-based adaptive service composition. This

category of approaches achieves the adaptation capabil-
ity of service compositions through policy annotation.
Sheng et al. [34] proposed an adaptive service composi-
tion approach where service contexts and exceptions are

48994 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

TABLE 4. Comparison summary of related approaches.

configurable to accommodate the needs of different users.
Unplanned dynamic changes are not supported since excep-
tion handling policies have to be specified at design time.
Laleh et al. [35] addressed the adaptation of service com-
positions in terms of constraints, which not only consider
internal constraints (usage restrictions imposed by service
providers), but also external constraints (usage restrictions
externally-defined at run-time). This approach only considers
the constraints concerning usage restrictions of composite
services, while dynamic changes from the environment and
user requirements are not considered.
Context-aware adaptive service composition. This cate-

gory of approaches adapts service compositions to various
contexts. Wieland et al. [36] proposed an approach to run-
time adaptation of situation-aware workflows. To simplify
the modeling of situation-aware workflows, Képes et al. [37]
proposed an approach to enabling the transformation of a
traditional workflow model into a situation-aware work-
flow model. Bucchiarone et al. [38] proposed a planning-
based approach to address the consistency issues of context-
aware dynamic service composition and execution. To
handle unplanned dynamic changes, these approaches require
the prediction of all possible situations, which would be
impractical.
Variability management-based adaptive service composi-

tion. This category of approaches addresses the adaptation
issue by dealing with the variability of service composi-
tions. Alférez et al. [39] supported dynamic adaptation of
service compositions bymodeling service features in terms of
variability. Similarly, Nguyen et al. [40] proposed a feature-
based framework to develop and provide customizable Web
services. Both these approaches and our approach achieve the
adaptation of service compositions through variability man-
agement. Unlike these approaches that focus on feature-level
variability modeling of service compositions, our approach
provides a general executable service composition language
which combines variability management and the concept of
abstract proxy, and supports unplanned dynamic changes
through run-time service replacement.

Model-based adaptive service composition. Yau et al. [41]
proposed a multi-objective optimization approach to address
the QoS-oriented adaptation of service compositions. Unlike
this approach which focuses on the QoS-oriented adaption
of service compositions, our approach aims to improve the
adaptation capability of service compositions in handling
unplanned dynamic changes in the environment and user
requirements.

A comparison of the above-mentioned approaches is sum-
marized in Table 4. The ‘‘Level’’ column indicates whether
the concerned approach works at a specification or instance
level, the ‘‘Perspective’’ column refers to the solution used by
the concerned approach, the ‘‘Tool support’’ column indicates
the availability of supporting tools, and the ‘‘Validation’’
column indicates whether the concerned approach is vali-
dated. From Table 4, we can see that all existing approaches
somehow support dynamic adaptation of service composi-
tions at the instance level, whereas only our approach at the
specification level. Besides, our approach is aided with tool
support and validated with a case study.

VI. CONCLUSION
We have presented a novel adaptive service composition
approach to supporting unplanned dynamic changes to ser-
vice compositions by combining two typical adaptive service
composition methods, namely, proxy-based and variability
management-basedmethods. The proposed approach extends
VxBPEL developed in our previous work with the concept
of abstract proxy service. This extension is key to declar-
ing those services that are dynamically discovered or spec-
ified by the user, to complement the predefined variants
within VxBPEL-based service compositions. It overcomes
the limitation shared by all existing imperative variability
management-based adaptive service approaches. To exer-
cise the proposed approach, we have further developed an
extended VxBPEL engine to support the abstract proxy ser-
vices and facilitate two ways of dynamic service bindings
(namely, run-time service discovery and user specification).
Finally, we have conducted a case study to validate the

VOLUME 7, 2019 48995

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

effectiveness of the proposed approach and quantify the per-
formance overhead resulting from variability management
and dynamic binding.

The work presented in this paper advances the state of art
of adaptive service compositions from the following perspec-
tives. First, a language-based generic approach is proposed
to address unplanned dynamic changes in service compo-
sitions, where a language construct is used to express the
concept of abstract proxy service and a mechanism to enable
the execution of abstract proxy services and the binding
of newly discovered or specified services. The approach is
further facilitated by a supporting platform and thus pro-
vides a systematic and practical solution rather than only
a proof of concept. Second, the approach overcomes the
limitations of variability management-based adaptive service
composition approaches in supporting unplanned dynamic
changes. In particular, the proposed approach enhances the
dynamic adaptability of VxBPEL-based service composi-
tions. Third, the approach overcomes the limitations of proxy-
based adaptive service composition approaches while intro-
ducing the proxymechanism, achieving lowmaintenance and
efficiency.

For future work, we intend to evaluate our approach with
more complex scenarios, and integrate with advanced ser-
vice discovery and recommendation techniques to achieve
’’smarter’’ or more automated service compositions. We are
also interested in exploring the possibility of adapting our
approach to specific application domains such as Cyber-
Physical Systems (CPS), or development paradigms such as
DevOps.

REFERENCES
[1] C. Peltz, ‘‘Web services orchestration and choreography,’’ Computer,

vol. 36, no. 10, pp. 46–52, Oct. 2003.
[2] Software & Information Industry Association. (2001). Software

As A Service: Strategic Backgrounder. [Online]. Available:
http://www.siia.net/estore/pubs/SSB-01.pdf

[3] W3C. Web Services Glossary. Accessed: 2004. [Online]. Available:
http://www.w3.org/TR/ws-gloss/

[4] Peltz. (2003). Web Services Orchestration: A Review of Emerg-
ing Technologies. [Online]. Available: http://xml.coverpages.org/HP-
WSOrchestration.pdf

[5] R. T. Fielding. (2000). Architectural Styles and the Design of Network-
based Software Architectures. [Online]. Available: http://www.
ics.uci.edu/simfielding/pubs/dissertation/rest_arch_style.htm

[6] Wikipedia. (2017). Mobile App. [Online]. Available: https://en.
wikipedia.org/wiki/Mobile_app

[7] Z. Wu, Y. He, and D. Liu, ‘‘An approach to support semantic-enabled Web
service,’’ in Proc. Joint Int. Comput. Conf. (JICC), 2005, pp. 177–182.

[8] Z. Xiao, D. Cao, C. You, and H. Mei, ‘‘Towards a constraint-based frame-
work for dynamic business process adaptation,’’ in Proc. IEEE Int. Conf.
Services Comput. (SCC), Jul. 2011, pp. 685–692.

[9] D. Jordan et al., ‘‘Web services business process execution language
version 2.0,’’ OASIS Standard, vol. 11, no. 120, p. 5, 2007.

[10] M. Koning, C.-A. Sun, M. Sinnema, and P. Avgeriou, ‘‘VxBPEL: Support-
ing variability for Web services in BPEL,’’ Inf. Softw. Technol., vol. 51,
no. 2, pp. 258–269, 2009.

[11] C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello, ‘‘Modeling
and managing the variability of Web service-based systems,’’ J. Syst.
Softw., vol. 83, no. 3, pp. 502–516, 2010.

[12] M. Aiello, P. Bulanov, and H. Groefsema, ‘‘Requirements and tools for
variability management,’’ in Proc. IEEE 34th Annu. Comput. Softw. Appl.
Conf. Workshops (COMPSACW), Jul. 2010, pp. 245–250.

[13] A. Hallerbach, T. Bauer, and M. Reichert, ‘‘Managing process variants in
the process lifecycle,’’ in Proc. 10th Int. Conf. Enterprise Inf. Syst., 2008,
pp. 154–161.

[14] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der Aalst,
‘‘Constraint-based workflow models: Change made easy,’’ in On the Move
to Meaningful Internet Systems (Lecture Notes in Computer Science).
Berlin, Germany: Springer, 2007, pp. 77–94.

[15] C.-A. Sun and M. Aiello, ‘‘Towards variable service compositions using
VxBPEL,’’ in Proc. 10th Int. Conf. Softw. Reuse, High Confidence Softw.
Reuse Large Syst. Berlin, Germany: Springer-Verlag, 2008, pp. 257–261.

[16] C.-A. Sun, T. Xue, and M. Aiello, ‘‘ValySeC: A variability analysis tool
for service compositions using VxBPEL,’’ in Proc. 5th IEEE Asia–Pacific
Services Comput. Conf., Dec. 2010, pp. 307–314.

[17] C.-A. Sun, Z. Wang, K. Wang, T. Xue, and M. Aiello, ‘‘Adaptive BPEL
service compositions via variability management: A methodology and
supporting platform,’’ Int. J. Web Services Res., vol. 16, no. 1, pp. 37–69,
2019.

[18] O. Ezenwoye and S. Sadjadi, ‘‘TRAP/BPEL: A framework for dynamic
adaptation of composite services,’’ in Proc. WEBIST, 2007, pp. 216–221.

[19] A. Erradi and P. Maheshwari, ‘‘wsBus: QoS-aware middleware for reli-
able Web services interaction,’’ in Proc. IEEE Int. Conf. e-Technol.,
e-Commerce e-Service, Hong Kong, Mar./Apr. 2005, pp. 634–639.

[20] D. Ardagna and B. Pernici, ‘‘Adaptive service composition in flexible
processes,’’ IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 369–384, Jun. 2007.

[21] Apache ODE. Accessed: 2011. [Online]. Available: http://ode.apache.
org/developerguide/architectural-overview.html

[22] C.-A. Sun, T.-H. Xue, and C.-J. Hu, ‘‘VxBPELEngine: A change-driven
adaptive service composition engine,’’ Chin. J. Comput., vol. 36, no. 12,
pp. 2441–2454, 2013.

[23] C.-A. Sun, P. Wang, X. Zhang, and M. Aiello, ‘‘VxBPEL_ODE: A vari-
ability enhanced service composition engine,’’ in Proc. APWebWorkshops,
in Lecture Notes in Computer Science, vol. 8710. Cham, Switzerland:
Springer, 2014, pp. 69–81.

[24] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture
Process and Organization for Business Success. Boston, MA, USA:
Press/Addison, 1997.

[25] G. Kiczales et al., ‘‘Aspect-oriented programming,’’ in Proc. 11th Eur.
Conf. Object-Oriented Program. (ECOOP), in Lecture Notes in Computer
Science, vol. 1241. Berlin, Germany: Springer-Verlag, 1997, pp. 220–242.

[26] J. D. Gradecki and Nicholas Lesiecki,Mastering AspectJ: Aspect-Oriented
Programming in Java, 1st ed. Hoboken, NJ, USA: Wiley, 2003.

[27] SunMicrosystems. (2016). Java Management Extensions. [Online]. Avail-
able: http://java.sun.com/products/JavaManagement/

[28] Y. Xing, F. Gu, and H. Mei, ‘‘Feature model driven Web services composi-
tion approach and its support tool,’’ J. Softw., vol. 18, no. 7, pp. 1582–1591,
2007.

[29] A. Charfi and M. Mezini, ‘‘Aspect-oriented Web service composition
with AO4BPEL,’’ in Web Services. Berlin, Germany: Springer, 2004,
pp. 168–182.

[30] O. Moser, F. Rosenberg, and S. Dustdar, ‘‘Non-intrusive monitoring and
service adaptation for WS-BPEL,’’ in Proc. World Wide Web Conf., 2008,
pp. 815–824.

[31] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan, ‘‘Adap-
tive and dynamic service composition in eFlow,’’ in Proc. CAISE, in Lec-
ture Notes in Computer Science, vol. 1789. Berlin, Germany: Springer,
2000, pp. 13–31.

[32] M. Di Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo, and
E. Di Nitto, ‘‘WS Binder: A framework to enable dynamic binding of
composite Web services,’’ in Proc. Int. Workshop Service-Oriented Softw.
Eng., 2006, pp. 74–80.

[33] O. Hammas, S. B. Yahia, and S. B. Ahmed, ‘‘Adaptive Web service
composition insuring global QoS optimization,’’ in Proc. IEEE Int. Symp.
Netw., Comput. Commun., May 2015, pp. 1–6.

[34] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. H. Ngu, ‘‘Configurable
composition and adaptive provisioning of Web services,’’ IEEE Trans.
Services Comput., vol. 2, no. 1, pp. 34–49, Jan. 2009.

[35] T. Laleh, J. Paquet, S. Mokhov, and Y. Yan, ‘‘Constraint adaptation in Web
service composition,’’ in Proc. IEEE 14th Int. Conf. Services Comput.,
Jun. 2017, pp. 156–163.

[36] M. Wieland, H. Schwarz, and U. Breitenbücher, and F. Leymann,
‘‘Towards situation-aware adaptive workflows: SitOPT—A general pur-
pose situation-aware workflow management system,’’ in Proc. IEEE Int.
Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops),
Mar. 2015, pp. 32–37.

48996 VOLUME 7, 2019

C.-A. Sun et al.: Toward Supporting Unplanned Dynamic Changes of Service-Based Business Processes

[37] K. Képes, U. Breitenbücher, S. G. Sáez, J. Guth, F. Leymann, and
M. Wieland, ‘‘Situation-aware execution and dynamic adaptation of tradi-
tional workflow models,’’ in Proc. 5th Eur. Conf. Service-Oriented Cloud
Comput. (ESOCC), 2016, pp. 69–83.

[38] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik, ‘‘A context-aware
framework for dynamic composition of process fragments in the Internet
of services,’’ J. Internet Services Appl., vol. 8, no. 1, p. 6, 2017.

[39] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, ‘‘Dynamic
adaptation of service compositions with variability models,’’ J. Syst. Softw.,
vol. 91, no. 5, pp. 24–47, 2014.

[40] T. Nguyen, A. Colman, and J. Han, ‘‘A feature-based framework for
developing and provisioning customizable Web services,’’ IEEE Trans.
Services Comput., vol. 9, no. 4, pp. 496–510, Jul./Aug. 2016.

[41] S. S. Yau et al., ‘‘Toward development of adaptive service-based software
systems,’’ IEEE Trans. Services Comput., vol. 2, no. 3, pp. 247–260,
Jul. 2009.

CHANG-AI SUN received the bachelor’s degree in
computer science from the University of Science
and Technology Beijing (USTB), China, and the
Ph.D. degree in computer science from Beihang
University. He was an Assistant Professor with
Beijing Jiaotong University, China, and a Post-
Doctoral Fellow with the Swinburne University
of Technology, Australia, and the University of
Groningen, The Netherlands. He is currently a
Full Professor with the School of Computer and

Communication Engineering, USTB. His research interests include service-
oriented computing and software testing.

ZHEN WANG received the bachelor’s degree in
computer science from the University of Science
and Technology Beijing, where she is currently
pursuing the Ph.D. degree with the School of
Computer and Communication Engineering. Her
current research interests include service-oriented
computing and software architecture.

ZAIXING ZHANG received the bachelor’s degree
in computer science from theUniversity of Science
and Technology Beijing, where he is currently
pursuing the master’s degree with the School of
Computer and Communication Engineering. His
current research interest includes service-oriented
computing.

PAN WANG received the bachelor’s degree in
computer science from the University of Science
and Technology Beijing, where he is currently
pursuing the master’s degree with the School of
Computer and Communication Engineering. His
current research interest includes service-oriented
computing.

XIAO HE received the Ph.D. degree in computer
science from Peking University, China. He was
a Visiting Professor with the Johann Bernoulli
Institute, University of Groningen, The Nether-
lands. He is currently an Associate Professor
with the School of Computer and Communi-
cation Engineering, University of Science and
Technology Beijing. His main research interests
include model transformation languages, model
generation, metamodeling, and domain-specific
modeling.

JUN HAN received the Ph.D. degree in computer
science from the University of Queensland, Aus-
tralia. Since 2003, he has been a Full Professor
of software engineering with the Swinburne Uni-
versity of Technology, Australia. He has published
more than 250 peer-reviewed articles. His cur-
rent research interests include service and cloud
systems engineering, adaptive and context-aware
software systems, and software architecture and
quality.

VOLUME 7, 2019 48997

	INTRODUCTION
	ADAPTIVE SERVICE COMPOSITIONS SUPPORTING DYNAMIC UNPLANNED CHANGES
	LIMITATIONS OF EXISTING APPROACHES
	OVERVIEW OF APPROACH
	DECLARING APS
	PREPROCESSING APS
	RUN-TIME ADAPTATION
	HANDLING UNPLANNED EXCEPTIONS
	HANDLING UNPLANNED CHANGES OF REQUIREMENTS

	SUMMARY

	IMPLEMENTATION
	ARCHITECTURE OF VXBPEL_DYN_ODE
	IMPLEMENTATION OF THE DYNAMIC BINDING MODULE

	EVALUATION
	SUBJECT PROGRAM AND RESEARCH QUESTIONS
	EVALUATION RESULTS
	HANDLING UNPLANNED EXCEPTIONS
	HANDLING CHANGES IN USER REQUIREMENTS

	ANSWERS TO RESEARCH QUESTIONS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	CHANG-AI SUN
	ZHEN WANG
	ZAIXING ZHANG
	PAN WANG
	XIAO HE
	JUN HAN

