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ABSTRACT This paper addresses the problem of six-degree-of-freedom (6-DOF) relative position and
attitude-tracking control for noncooperative space targets subject to multiple constraints, including input
and full-state constraints. First, a novel 6-DOF integrated relative motion dynamics with control command
coupling is established for the final approaching stage of a rendezvous task. Second, a Barrier Lyapunov
function (BLF)-based controller is developed to guarantee the relative position, attitude, and velocity
constraints of the spacecraft at all times. The requirement of less restrictive initial conditions compared
with the quadratic Lyapunov function is presented via a detailed theoretical analysis. Third, a novel 6-DOF
integrated multi-constrained adaptive tracking control scheme is proposed to simultaneously deal with input
constraints, full-state constraints, unknown disturbances, and uncertainties. In particular, a solution to the
chattering phenomenon, arising from the existence of sign function, is explored in an adaptive manner.
Detailed controller design procedures and rigorous theoretical proof of all related closed-loop uniform
ultimate bounded (UUB) stability are provided. In addition, the numerical simulation results are also
exhibited to demonstrate the effectiveness and superior control performance of the proposed control scheme.

INDEX TERMS 6-DOF spacecraft control, adaptive tracking control, full-state constraints, input constraints,
noncooperative space target, on-orbit service, rendezvous and docking.

I. INTRODUCTION
On-orbit service is attracting increasing attention due to
its extensive applications in space [1], including space-
craft refurbishment/refueling, large structure construction,
and orbital detritus management. The basis of on-orbit ser-
vicing missions is space rendezvous and docking or captur-
ing the service target at a near distance, which requires the
knowledge of a target a priori. Ideally, target information,
including mass, moment of inertia, and attitude information,
is derived from satellite communications, or with the use of
known tracking points on the target. However, most satellites
which require service in orbit are noncooperative targets,
meaning artificial patterns are not used for cooperative mea-
surement, and grappling fixtures applied for the capture are
not mounted on the target [2]. In other words, when the targets
are noncooperative, the problem of rendezvous at a near
distance becomes farmore complicated as theremay be insuf-
ficient or no a priori information about the motion or structure
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of the target. This situation presents new challenges to the
modeling and control of on-orbit servicing spacecraft in such
missions.

The background of this paper accounts for the problem
of forcing an on-orbit servicing spacecraft, namely servicer,
to approach a noncooperative target at a near distance, and
simultaneously enables the CCD camera of the servicer to
point to the feature point on the target. Early studies generally
considered the translation and rotationmotions of the servicer
independently [3]–[6]. However, the relative position and atti-
tude subsystems are highly coupled in this stage, which is pri-
marily due to the dependence of the desired relative position
and attitude tracking command on the target attitude in real
time, that is, control command coupling. Hence, as opposed
to the independent control strategy, it is necessary to take
the coupling effect between translation and rotation motions
into account to derive a systematic precise control strategy
for the servicer in the final approaching stage. Various mod-
eling and nonlinear control schemes have been carried out
recently to solve this challenging problem, including adap-
tive fuzzy control [7], sliding mode control [8], nonlinear
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optimal control [9], and model predictive control [10]. It is
worth mentioning that, all of these six-degree-of-freedom
(6-DOF) integrated control schemes assume that the target
is cooperative, in which the translation motions are usually
modeled based on C-W equation or T-H equation [11]–[13].
Nevertheless, the two equations require the orbital param-
eters of the target, which is not suitable in noncooperative
scenarios. On the other hand, in the final approaching stage,
it is no longer possible to consider the servicer and target
as particles because the servicer needs to aim at a certain
point on the target, especially a spinning target. Line-of-Sight
(LOS) coordinate-based relative position modeling method
has been put forward in recent years [14]–[17]. Compared
with C-W and T-H equations, the LOS coordinate-based
6-DOFmodeling method describes the relative position using
only the distance and LOS angles between the servicer and
target. This method is more applicable to complex space
missions such as rendezvous, approaching, and capturing for
noncooperative targets with spin.

Note that system constraints were not considered in
the above literature. In practice, constraints are frequently
encountered due to the limitations of hardware, and the viola-
tion of constraints may result in a series of potential problems
(e.g., safety and reliability). One of the most general restric-
tions is control input constraints, namely input saturation. The
existence of input constraints will result in the degradation of
closed-loop control performance, or even destroy the system
stability. In [18], to deal with input constraints and parameter
uncertainties, Lv proposed a novel command filtered back-
stepping controller for 6-DOF spacecraft formation flying
based on anti-windup technique. Reference [19] investigated
a 6-DOF control scheme of probe hovering for an asteroid,
in which a radial basis function (RBF) neural network based
compensator was introduced to tackle the actuator limita-
tions. The authors in [20] designed a 6-DOF robust state feed-
back saturated controller for relative position tracking and
attitude synchronization problems which was incorporated
with a linear compensator subsystem. In [21], in the presence
of actuator misalignment, a robust adaptive integrated relative
position and attitude control scheme was proposed by anti-
windup technique and backstepping philosophy.

In addition to input constraints, another important consid-
eration is state constraints. In the final approaching range,
to guarantee the target always stay within the LOS cone
of the CCD camera, the LOS angles should be kept in a
prescribed range, which indicates that the servicer attitude
error between the pointing direction and desired direction
should be constrained as well. Furthermore, it is essential
that the velocity and angular velocity are constrained in a
secure range because any violation of velocity will lead to
severe performance degradation, or even a risk of losing
control. Therefore, it is of practical value to study space-
craft control with full-state constraints. Reference [22] pre-
sented a novel feedback control law to deal with attitude
constraints through a repulsive potential function. Using the
technique of Barrier Lyapunov Function (BLF), a distributed

attitude coordinated spacecraft control schemes with attitude
constraints was addressed, then the controller was improved
in the case without angular velocity sensors in [23]. In [24],
a model predictive controller for spacecraft rendezvous and
docking problem was investigated, in which the LOS cone
and thrust magnitude constraints were taken into consid-
eration. In order to meet the need of collision avoidance
of a leader-follower formation system, the LOS range and
angle tracking errors were constrained by Barrier Lyapunov
Function [25]. In [26], a saturated full-state constrained
adaptive backstepping control scheme was proposed for a
6-DOF rendezvous and proximity mission. The afore-
mentioned literature only considered the relative position
and attitude individually, or designed controllers for them
respectively.

Thus, the technical difficulties of this study are listed as
follows:

1) When the target is noncooperative, how to build the
6-DOF integrated relative position and attitude dynam-
ics without the utilization of the target’s information?

2) How to consider the input constraints, relative position
constraint, attitude constraint, and velocity constraint
for the 6-DOF dynamic model simultaneously during
the final approaching stage of a rendezvous?

3) For the 6-DOF dynamic model with input constraints,
how to design the reasonable control scheme to reduce
performance degradation of the closed-loop system?

By aiming at fulfilling this gap, we concentrate on developing
a 6-DOF integrated relative position and attitude adaptive
tracking control scheme for a noncooperative space target
subject to multiple constraints during the final approaching
stage of a rendezvous. Compared with the existing works, this
paper contains the following contributions:

1) Compared with [7]–[10], which investigated 6-DOF
control problems for cooperative space target,
we establish a novel 6-DOF integrated relative position
and attitude dynamic model with control command
coupling for the problem of tracking a noncooperative
space target in the final approaching stage through LOS
coordinate-based modeling method.

2) By incorporating Barrier Lyapunov Function in the
controller design, we present a basic 6-DOF integrated
tracking controller to handle the relative position ad
attitude motion constraints. Compared with conven-
tional quadratic Lyapunov function, we explore the
requirement of less restrictive initial conditions for our
control scheme via theoretical and numerical simula-
tion analysis.

3) Compared with [22]–[25], which only considered
one or two kinds of physical constraints mentioned
above, a novel 6-DOF integrated adaptive tracking
controller with input and full-state constraints is pro-
posed. An auxiliary design subsystem is incorporated
to mitigate the negative impact on the closed-loop
performance caused by input constraints. Furthermore,
the adaptive controller output is smooth by estimating
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the square of unknown constant without introducing the
sign function, which practically avoids the chattering
phenomenon.

The rest of this paper is organized as follows. Section II
covers the mathematical model and control problem state-
ment which includes necessary lemmas and assumptions.
The Barrier Lyapunov Function based controller design with
unknown disturbances, input and full-state constraints is
illustrated in Section III. Section IV displays the simulations
results of this paper, and Section V presents a conclusion.

FIGURE 1. Description of LOS and inertial coordinates.

II. MATHEMATICAL MODEL AND CONTROL
PROBLEM STATEMENT
A. THE DYNAMICS OF RELATIVE POSITION AND ATTITUDE
In the following, it is assumed that the servicer and the target
are all rigid body, and there is no maneuvering acceleration
on the target. As depicted in Fig. 1, to demonstrate the relative
position relationship between the servicer and target, two
principal coordinate frames are defined as follows: (1) Ci =
{Xi,Yi,Zi}T is the inertial coordinate frame whose origin
is the earth; (2) Cl = {xl, yl, zl}T is a moving coordinate
which is attached to the servicer with the line of sight olxl
pointing to the target, olyl located in the plane composed
by the axis xl and yi, and is perpendicular to the axis xl ,
and xl − yl − zl forms a right hand frame. The sight-line
deflection and inclination are defined as qβ ∈ (−π, π) and
qε ∈ (−π/2, π/2), respectively.
The orbital equations of motion for the target and servicer

are:

r̈t = −
µ

‖rt‖3
rt , r̈s = −

µ

‖rs‖3
rs + as (1)

where rt and rs are the position vector of the target and
servicer, respectively, ‖·‖ denotes the 2-norm of vector, µ
is the earth gravitational parameter, and as represents the
control acceleration of the servicer. Defining ρ is the relative
position vector between the target and servicer, then from (1),
the following formula can be obtained:

d2ρ
dt2
= 1g− as (2)

where 1g = −
(
µ/ ‖rt‖3

)
rt +

(
µ/ ‖rs‖3

)
rs ∈ R3. The left

hand side of (2) can be rewritten as:

d2ρ
dt2
=
δ2ρ

δt2
+ ω̇×l ρ + 2ω×l

δρ

δt
+ ω×l ω

×

l ρ (3)

where δ/δt denotes the relative derivative with respect to
Cl , ωl is the angular velocity of Cl relative to Ci, and × is
the cross product operator. Let ρ be the LOS range, then
according to the transformation relation between coordinate
frames, we have:

ρ = [ρ 0 0]T

ωl = [q̇β sin qε q̇β cos qε q̇ε]T

ω̇l = [q̈β sin qε + q̇β cos qε q̈β cos qε − q̇β sin qε q̈ε]T (4)

Substituting (4) into (3) leads to:

δ2ρ

δt2
+ ω̇×l ρ + 2ω×l

δρ

δt
+ ω×l ω

×

l ρ

=

 ρ̈ − ρ
(
q̇2ε + q̇

2
β cos

2 qε
)

ρq̈ε + 2ρ̇q̇ε + ρq̇2β sin qε cos qε
−ρq̈β cos qε + 2ρq̇β q̇ε sin qε − 2ρ̇q̇β cos qε

 (5)

In other words, by combining (2) and (5), and considering
the disturbance acceleration acting on the servicer ad =
[adx , ady, adz]T, the nonlinear relative position dynamics of
the servicer and the target with respect to Cl is given as:
ρ̈−ρ

(
q̇2ε+q̇

2
β cos

2 qε
)
=1gx−asx+adx

ρq̈ε+2ρ̇q̇ε+ρq̇2β sin qε cos qε=1gy−asy+ady
−ρq̈β cos qε+2ρq̇β q̇ε sin qε−2ρ̇q̇β cos qε=1gz−asz+adz

(6)

Remark 1: The first equation in (6) is called the longitu-
dinal motion equation, which describes the variation of the
relative distance. The second and third equations are called
transverse motion equations, which describe the variation of
LOS angle. The relative motion is described by the measur-
able distance ρ and LOS angles qβ and qε, which have an
explicit physical interpretation and are significant in practical
engineering applications.

For convenience of controller design, we define p =
[ρ, qε, qβ ]T, then the dynamics (6) is rewritten into a compact
affine form:

p̈ = f 1(p)+ g1(p)(as + ad ) (7)

The attitude dynamics and kinematics of the servicer are
respectively given as

Jsω̇s + ω×s Jsωs = T s + Td (8)

�̇ = Rωs (9)

where Js ∈ R3×3 denotes the momentum of inertia, ωs ∈ R3

is the projection of the servicer body angular velocity in
inertia space onto the body frame, T s ∈ R3 and Td ∈ R3

serve as the control and disturbance torque for rotational
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motion of attitude, � = [ϕ, θ, ψ]T is the three axis Euler
angle, and R is described by:

R =

 cos θ 0 − sin θ cosϕ
0 1 sinϕ

sin θ 0 cos θ cosϕ

−1 (10)

The notation a× is used to describe a cross product of the
vector a = [a1, a2, a3]T:

a×

 0 −a3 a2
a3 0 −a1
−a2 a1 0


B. 6-DOF INTEGRATED RELATIVE POSITION AND
ATTITUDE DYNAMICS
The above relative position and attitude dynamics are inde-
pendent from each other because there is no coupling effect
between the motion of translation and rotation. However,
while approaching a slow tumbling target at a close range,
the desired attitude and relative position of the servicer
changes with the variation of the target’s attitude. The relative
motion between the servicer and target in the final approach-
ing stage is depicted in Fig. 2.

FIGURE 2. Relative motion between the servicer and target in the final
approaching stage of rendezvous.

As shown in Fig. 2, nb is defined as the direction vector
of the target’s characteristic point in its body frame. Hence,
the desired LOS direction of the servicer is −nb. Assuming
that ρd is the final operation distance between the servicer
and target, provides:

ρi =
[
xi yi zi

]T
= Cbt

i (−nbρd ) (11)

ρi = C l
iρl (12)

where ρl and ρi are the desired relative position in Cl , and
its projection in Ci, Cbt

i and C l
i are the transition matrix

from the target’s body frame and Cl to Ci, respectively. From
the definition of Cl in Section A, Cl can be derived by
rotating Ci twice with the sequence of 2-3, that is, Cl = RT

23.

Then we have: xi
yi
zi

=
 cos qε cos qβ sin qε − cos qε sin qβ
− sin qε cos qβ cos qε sin qε sin qβ

sin qβ 0 cos qβ

T

×

 ρd0
0

 (13)

Then the desired sight-line deflection and inclination
qβd and qεd can be calculated in real time by (13).
Defining ωbt,i is the projection of target’s angular velocity

in Ci, and is determined by

ωbt,i = Cbt
i ωbt (14)

where ωbt is the projection of the target’s angular velocity
which is relative to Ci in its body frame. Hence, q̇βd and q̇εd
can be calculated by

ρ̇i =
[
ẋi ẏi żi

]T
=
(
ωbt,i

)× [ xi yi zi
]T (15)

Thus, the desire translation state pd = [ρd , qεd , qβd ]T and ṗd
can be derived.

Two assumptions are respectively made to determine the
desired attitude of the servicer. First, the camera is fixed
to the body frame of the servicer, with a direction of cen-
ter line is coincident with the xbs axis of the body frame;
Second, the sunlight vector is parallel with the OiXi axis
of Ci. To ensure the best lighting conditions, xbs, zbs, and the
sunlight vector should be in the same plane. This indicates
that ybs is perpendicular with both xbs and ρi. Then we can
obtain the desired body frame unit vectors of the servicer:

xbsd =
ρi

ρd
, ybsd =

ρ×i ŝ∥∥∥∥×ρi ŝ
∥∥∥∥
2

, zbsd = x×bsdybsd (16)

where ŝ denotes the projection of the sunlight vector in Ci.
Then Cbs

i =
[
xbsd ybsd zbsd

]
forms the transformation

matrix from Ci to the body frame of the servicer. From the
identical equation C i

bsC
bs
i = I3, we can obtain the desired

Euler angles �d = [ϕd θd ψd ]T. Taking the derivative of
(16) and combining (9), the desired angular velocity ωsd can
be derived.
Remark 2. Note that Cbt

i , ωbt,i in (12) and (14) contain
the attitude information, so when the attitude of the target
changes, the desired relative position will also change accord-
ingly, which is called control command coupling.

Defining x1 = [pT, �T]T, x2 = [ṗT, �̇
T
]T, xd = [pTd ,

�T
d ]
{T , e1 = x1 − xd = [eρ eqε eqβ eϕ eθ eψ ]T, ande2 =

x2− ẋd = [ėρ ėqε ėqβ ėϕ ėθ ėψ ]T, and in view of (7), (8) and
(9), the 6-DOF integrated relative position and attitude error
dynamics can be determined as:{

ė1 = e2
ė2 = F(x)+ G(x)U + D

(17)

where e1, e2, x1, x2 ∈ R6, F(x) andG(x) are smooth, nonsin-
gular functions, and F(x) = [f T1 (p), f

T
2 (�)]

T
∈ R6. f 1(·) and
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f 2(·) can be derived from (7)-(9), G(x) = diag(g1, g2), g1 =

diag(− 1,−1/ρ, 1/ρ cos qε), g2 = RJ−1s . U =
[
aTs ,T

T
s
]T
∈

R6 is the control input, D = d + 1d is the unknown
disturbances with d = G

[
aTd ,T

T
d

]T
, and 1d includes model

uncertainties, the second order derivatives of desired states
and disturbances caused by actuator misalignment.
Remark 3. It is worth mentioning that the control gain

matrix G = diag(g1, g2) is invertible. The singularity points
of g1 are ρ = 0 and qε = ± π/2, which can be avoided
through appropriate mission design. In addition, the singular-
ity of g2occurs when Euler angle ϕ = ± π/2. This situation
also could be circumvented as the small-angle maneuver is
enough for the final approaching stage. Moreover, the state
constraints are taken into account in this paper, which can
further ensure the invertibility of matrix G.

C. CONTROL PROBLEM STATEMENT
In this research, a 6-DOF integrated relative position and
attitude tracking control problem with multiple constraints is
considered. The control objective is to design an appropriate
controller to ensure that the system state x1 and x2 will
converge to the desired xd and ẋd in the presence of input
constraints. In addition, the state x1 and x2 are bounded, and
the full-state constraints are not violated, that is, ∀t ≥ 0,
|x1i| ≤ bai and |x2i| ≤ bcii = 1, 2, . . . , 6 holds. In order
to achieve this control objective, following assumptions are
imposed in the system (17):
Assumption 1: For the time-varying and unknown distur-

banceD, there exists a constant dm ∈ R+ such that ‖D‖ ≤ dm.
Assumption 2: It is assumed that the desired state xd (t) and

its first, second order derivatives ẋd (t), ẍd (t) are continuous
and satisfy |xdi| ≤ A0i, |ẋdi| ≤ A1i, and |ẍdi| ≤ A2i, where
A0i, A1i, and A2i are positive constants and i = 1, 2, . . . , 6.
Assumption 3: There exists a positive constant g, which

satisfies 0 < ‖G‖ ≤ g.

III. CONTROLLER DESIGN
A. CONTROLLER DESIGN WITH FULL-STATE CONSTRAINTS
In this section, a basic controller with full-state constraints is
considered. To introduce the main results of this paper, some
preliminary definitions and lemmas are required.
Definition 1 [27]: For the system ẋ = f (x, t), which is

defined on an open region D containing the origin, a Barrier
Lyapunov Function is a positive and continuous scalar func-
tion and has continuous first-order partial derivatives at every
point of D. When x approaches the bound of D, V (x)→∞,
and for x(0) ∈ D, and a certain positive constant b, the solu-
tion along system ẋ = f (x, t) satisfies V (x(t)) ≤ b, ∀t > 0.
Lemma 1 [27]: For any positive constant bi, i =

1, 2, . . . , n and let Z := {z ∈ Rn
: |zi| < bi, i = 1, 2, . . . ,

n} ⊂ Rn, Zi := {zi ∈ R : |zi| < bi} ⊂ R, i = 1, 2, . . . , n,
and N := Rl

× Z → Rl+1 is an open set. Considering the
following system

η̇ = h(t, η) (18)

where η := [w, z] ∈ N is system state, h : R+ × N → Rl+1

is piecewise continuous with respect to t , locally Lipchitz
with respect to zi and uniformly continuous with respect to
R+ × N . Assume that two positive definite functions U :
Rl
→ R+ and Vi : Zi→ R+, i = 1, 2, . . . , n exist, which are

continuously differentiable in their own domains, such that

Vi(zi) → ∞ as |zi| → bi (19)

γ1 (‖w‖) ≤ U (w) ≤ γ2 (‖w‖) (20)

where γ1 and γ2 are class K∞ functions. Let V (η) :=
n∑
i=1

Vi(zi) + U (w) and zi(0) ∈ Zi. If the following inequality

holds

V̇ =
∂V
∂η

h ≤ 0 (21)

then zi(t) remains in the open set zi ∈ (−bi, bi), ∀t ∈
[0,+∞).
Lemma 2 [28]: For bound initial conditions, if there exists

a continuous positive Lyapunov function V (x) and class K∞
functions π1, π2 : Rn

→ R satisfying
(1)π1 (‖x‖) ≤ V (x) ≤ π2 (‖x‖)
(2)V̇ (x) ≤ −c1V (x)+ c2
then the system state x(t) is uniformly bounded, where c1

and c2 are positive constants.
Lemma 3 [29]: For any positive constant vector kb ∈ Rn,

the following inequality holds for any vector x ∈ Rn in the
interval |x| < kb :

ln
kTbkb

kTbkb − xTx
≤

xTx

kTbkb − xTx
(22)

First, for the convenience of development, the auxiliary error
variables are defined as z1 = e1, z2 = e2 − α, where α is a
virtual control to be designed. Hence, the closed-loop system
can be obtained as{

ż1 = z2 + α
ż2 = F(x)+ G(x)U + D− α̇

(23)

Step 1: The Barrier Lyapunov candidate is chosen as

V1 =
6∑
i=1

1
2
ln

b21i
b21i − z

2
1i

(24)

where b1 = ba−A0 = [b11, b12, . . . , b16]T is the bound of z1.
It is obviously that V1 is positive definite and continuous in
the interval |z1i| ≤ b1i.

The time derivative of (24) is given as:

V̇1 =
6∑
i=1

z1iż1i
b21i − z

2
1i

(25)

To stabilize z1, the virtual control α is designed as α =
−K1z1, where K1 = diag(k11, k12, . . . , k16) is a diagonal
matrix with positive constant k1i as diagonal elements. Sub-
stituting (23) into (25) yields

V̇1 = −
6∑
i=1

k1iz21i
b21i − z

2
1i

+

6∑
i=1

z1iz2i
b21i − z

2
1i

(26)
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From (26), we can obtain that V̇1 = −
6∑
i=1

k1iz21i
b21i−z

2
1i
≤ 0 holds

as z2 = 0, which means z1 → 0 as t →∞. The next task is
to stabilize z1 and z2 by designing the control U .
Step 2: Another Barrier Lyapunov candidate is selected as

V2 = V1 +
6∑
i=1

1
2
ln

b22i
b22i − z

2
2i

(27)

Its time derivative is

V̇2 = V̇1 +
6∑
i=1

z2iż2i
b22i − z

2
2i

(28)

In order to stabilize z1 and z2, the ideal control U can be
finally designed as

U = G−1
[
−F(x)+α̇−K2z2−

6∑
i=1

b22i−z
2
2i

b21i−z
2
1i

z1−k3sgn(z2)

]
(29)

where k3 > dm. The following theorem can thus be stated as
follows:
Theorem 1: Considering the 6-DOF integrated relative

position and attitude system (17) with the initial conditions
z1i(0) ∈ �01 ∈ {|z1i| < b1i, i = 1, 2, . . . , 6}, z2i(0) ∈ �02 ∈

{|z2i| < b2i, i = 1, 2, . . . , 6}, and Assumption 1 holds. The
proposed controller (29) guarantees the asymptotic conver-
gence to the desired xd , ẋd of system state x1, x2. Further-
more, for any t ≥ 0, |x1i| ≤ bai, |x2i| ≤ bai, i = 1, 2, . . . , 6
holds.

Proof: Substituting the proposed controller (29) into
(28) yields

V̇2 = −
6∑
i=1

k1iz21i
b21i − z

2
1i

−

6∑
i=1

k2iz22i
b22i − z

2
2i

≤ 0 (30)

Then according to Lemma 1, state error z1 and z2 will always
remain in the set |z1i| < b1i for any t ≥ 0. Furthermore, from
x1 = z1 + xd and x2 = z2 + ẋd + α, we can obtain that
|x1i| < b1i + A0bai and |x2i| < b2i + A1i + k1ib1ibci holds for
any t ≥ 0.

Integrating the above inequality (30) provides V2(t) ≤
V2(0), which means z1, ż1, z2, and ż2 are all bounded. Thus,
V̈2 is also bounded and V̇2 is uniformly continuous. From
Barbalat’s Lemma, it can be obtained that z1→ 0 and z2→ 0
as t →∞. Thus, Theorem 1 is proven.
Remark 4: Compared with an conventional quadratic Lya-

punov function (QLF), the proposed controller based on Bar-
rier Lyapunov Function has a less restrictive condition for
initial values z1(0) and z2(0). This is explained in detail as
follows.

Similar to Barrier Lyapunov method, first the quadratic
Lyapunov function can be selected as

V1q =
1
2
z21 (31)

FIGURE 3. Comparison of optional initial value areas between Barrier
Lyapunov and quadratic Lyapunov based methods. (a) When

∣∣b1i
∣∣ > ∣∣b2i

∣∣
satisfies. (b) When

∣∣b1i
∣∣ < ∣∣b2i

∣∣ satisfies.

Its time derivative is

V̇1q = z1ż1 (32)

Defining virtual control αq = −K1z1, then we can obtain

V̇1q = −K1z21 + z1z2 (33)

Selecting the second Lyapunov function as

V2q =
1
2
z21 +

1
2
z22 (34)

Then the controller can be designed as

U = G−1 [−F(x)+ α̇ − K2z2 − z1 − k3 sgn(z2)] (35)

Hence, the following inequality is obtained

V̇2q = −K1z21 − K2z22 ≤ 0 (36)

Integrating (30), we have V2q(t) ≤ V2q(0), which leads to
|z1(t)| ≤

√
2V2q(0). According to the definition of z1 and

the inequality of absolute value, we can obtain |x1i(t)| ≤
|xdi(t)| +

√
2V2q(0). Taking the state constraint |x1i| ≤ bai

into consideration, |xdi(t)| +
√
2V2q(0) ≤ bai holds. This

then provides
√
2V2q(0) ≤ bai − A0i in accordance with

Assumption 2, which implies that when the following initial
condition satisfies,

z21i(0)+ z
2
2i(0) ≤ (bai − A0i)2 = b21i21 (37)

the state constraint |x1i| ≤ bai holds.
Similarly, it can be derived that when

z21i(0)+ z
2
2i(0) ≤ (bci − A1i + K1ib1i)2 = b22i22 (38)

|x2i| ≤ bci holds. Taking (37) and (38) together, only when
the following condition satisfies

z21i(0)+ z
2
2i(0) ∈ 21 ∩22 (39)

the full-state constraints holds. In contrast, the initial
condition of Barrier Lyapunov based method is

|z1i(0)| ≤ b1i
|z2i(0)| ≤ b2i (40)

Fig. 3 illustrates (39) and (40) intuitively. The round shaded
area represents the optional initial value of quadratic Lya-
punov function based method, and the rectangle shaded area
represents the one for Barrier Lyapunov based method.
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FIGURE 4. Structure of the closed-loop system.

It is clear that the Barrier Lyapunov based method has
less restrictive initial conditions than the quadratic Lyapunov
based method under the same state constraints, in other
words, it has a broader area of optional initial value.
Remark 5: The controller proposed in (29) is able to ensure

the Lyapunov stability of the closed-loop system (23) under
the state constraints. However, no input saturation is taken
into account, which is reasonably important for practical
application. Furthermore, the constant k3 in (29) is hard to
choose because the upper bound of D is unknown. In the
next section, a novel adaptive controller with input and state
constraints will be presented.

B. ADAPTIVE CONTROLLER DESIGN WITH INPUT
AND FULL-STATE CONSTRAINTS
The saturation of actuators can be expressed here as

sat(U) = [sat(U1), sat(U2), . . . , sat(U6)]T (41)

where sat(Ui) = sgn(Ui) min{Uimax, |Ui|}, i = 1, 2, . . . , 6,
Uimax is a known constant associated with the output capabil-
ity of actuators. It is obvious that the control command U is
possibly larger than the actual control input sat(U) provided
by actuators. Hence, a difference 1U will exist between the
desired control command and actual control input which is
denoted as

1U = sat(U)− U (42)

Assumption 4: For the control input constraints formed as
(41) and (42), there exists a non-negative constantϑ such that:

‖1U‖ ≤ ϑ (43)

Remark 6: Once the input constraints happens, i.e.
1U 6= 0, the auxiliary system (44) begins to work and
the excess part will be compensated by the term C2ξ2 in
controller (51), and then 1U will converge to zero rapidly.

Furthermore, the magnitude ofU will decreases as the system
states converge to the desired trajectories, which ensures
that lim

t→∞
1U = 0. On the other hand, when control input

constraints occurs, 1U is definitely bounded, otherwise the
closed-loop system will lose control and the controller design
will not make any sense. Thus, Assumption 4 is reasonable
both mathematically and practically.

To attenuate the effect of input constraints, the following
auxiliary subsystem is designed first on the basis of anti-
windup technique:{

ξ̇1 = −C1ξ1 + ξ2

ξ̇2 = −C2ξ2 + G1U
(44)

whereC1 andC2 are diagonal matrices with positive diagonal
elements, ξ1 = [ξ11, . . . , ξ16]T and ξ2 = [ξ21, . . . , ξ26]T are
the auxiliary subsystem output. Then the error states can be
redefined as z1 = e1 − ξ1 and z2 = e2 − ξ2 − α. The closed-
loop system turns into{

ż1 = z2 + ξ2 + α − ξ̇1
ż2 = F(x)+ G(x)U + D− α̇ + C2ξ2

(45)

and the block diagram of closed-loop control system is shown
in Fig. 4.
Step 1: The Lyapunov candidate can be chosen as

V1 =
6∑
i=1

1
2
ln

b21i
b21i − z

2
1i

+
1
2
ξT1 ξ1 (46)

and the time derivative of (46) is

V̇1 =
6∑
i=1

z1i(z2i + ξ2i + αi − ξ̇1i)

b21i − z
2
1i

+ ξT1 ξ̇1 (47)
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According to (47), the virtual control α is denoted as α =
−K1z1 − C1ξ1. Substituting (44) into (47) yields

V̇1 =
6∑
i=1

z1i(z2i−K1iz1i)

b21i−z
2
1i

−ξT1C1ξ1+ξ
T
1 ξ2

≤−

6∑
i=1

k1iz21i
b21i−z

2
1i

+

6∑
i=1

z1iz2i
b21i−z

2
1i

− ξT1C1ξ1+
1
2
ξT1 ξ1+

1
2
ξT2 ξ2

≤−

6∑
i=1

k1iz21i
b21i−z

2
1i

+

6∑
i=1

z1iz2i
b21i−z

2
1i

−C̄1
∥∥ξ1∥∥2+ 1

2
ξT2 ξ2

(48)

where C̄1 = λmin(C1)− 1/2 > 0.
For the purpose of dealing with unknown disturbance,

uncertainties, and preventing unnecessary chattering caused
by sign function, an adaptive law is designed here to estimate
the square of unknown upper bound dm, which is inspired by
[30]. The estimation error is denoted as κ̃ = κ − κ̂ , where
κ = d2m.
Step 2: Another Lyapunov candidate can be selected as

V2 = V1 +
6∑
i=1

1
2
ln

b22i
b22i − z

2
2i

+
1
2
ξT2 ξ2 +

1
2γ0

κ̃2 (49)

where γ0 is a positive constant to be designed.
Taking time derivative of (49) yields

V̇2 = V̇1 +
6∑
i=1

z2iż2i
b22i − z

2
2i

+ ξT2 ξ̇2 −
1
γ0
κ̃ ˙̂κ (50)

Thus, the controller and adaptive law are designed as

U = G−1

×

[
−F(x)+α̇−K2z2−C2ξ2−

6∑
i=1

b22i−z
2
2i

b21i−z
2
1i

z1−
κ̂z2
2ε2

]
(51)

˙̂κ = γ0

6∑
i=1

z22i/2ε
2

b22i − z
2
2i

− γ0γ1κ̂ (52)

where ε, γ1, and β1 are all positive constants.
Theorem 2: Considering the 6-DOF integrated relative

position and attitude system (17) satisfies Assumption 1-4,
and the initial conditions satisfy z1i(0) ∈ �01{|z1i| < b1i, i =
1, . . . , 6} and z2i(0) ∈ �02{|z2i| < b2i, i = 1, . . . , 6}. Under
the proposed controller (51) and adaptive law (52), the closed-
loop signals z1, z2, κ̃ , ξ1, ξ2 are uniformly bounded. Further-
more, the state error z1, z2 ultimately converge to correspond-
ing compact sets �z1 and �z2, which are defined as

�z1{|z1i| ≤ b1i
√
1− e−2(V2(0)+C/β),

i = 1, . . . , 6}
√
b2 − 4ac (53)

�z2{|z2i| ≤ b2i
√
1− e−2(V2(0)+C/β) (54)

Proof: Substituting (51) and (52) into (50), and consid-
ering (44) yields

V̇2 = −
6∑
i=1

k1iz21i
b21i − z

2
1i

−

6∑
i=1

k2iz22i
b22i − z

2
2i

+

6∑
i=1

z2I i
(
D− κ̂z2/2ε2

)
b22i − z

2
2i

−C̄1
∥∥ξ1∥∥2 + 1

2
ξT2 ξ2 − ξ

T
2C2ξ2 + ξ

T
2G1U

−
1
γ0
κ̃(γ0

6∑
i=1

z22i/2ε
2

b22i − z
2
2i

− γ0γ1κ̂)

≤ −

6∑
i=1

k1iz21i
b21i − z

2
1i

−

6∑
i=1

k2iz22i
b22i − z

2
2i

+

6∑
i=1

‖z2i‖ dm − κ̂z22i/2ε
2
+ κ̃z22i/2ε

2

b22i − z
2
2i

− C̄1
∥∥ξ1∥∥2

+
1
2
ξT2 ξ2 − ξ

T
2C2ξ2 + ξ

T
2G1U + γ1κ̃ κ̂ (55)

Noting the term ξT2G1U and ‖z2i‖ dm in (55), the follow-
ing inequalities hold

ξT2G1U ≤
1
2
ξT2 ξ2 +

1
2
ḡ2ϑ2 (56)

‖z2i‖ dm ≤
κz22i
2ε2
+
ε2

2
(57)

Then substituting (56) and (57) into (55), we can obtain

V̇2 ≤ −
6∑
i=1

k1iz21i
b21i − z

2
1i

−

6∑
i=1

k2iz22i
b22i − z

2
2i

+

6∑
i=1

ε2/2

b22i − z
2
2i

− C̄1
∥∥ξ1∥∥2

+
1
2
ξT2 ξ2 − ξ

T
2C2ξ2 +

1
2
ξT2 ξ2 +

1
2
ḡ2θ2 + γ1κ̃ κ̂

≤ −

6∑
i=1

k1iz21i
b21i − z

2
1i

−

6∑
i=1

k2iz22i
b22i − z

2
2i

+

6∑
i=1

ε2/2

b22i − z
2
2i

− C̄1
∥∥ξ1∥∥2

−C̄2
∥∥ξ2∥∥2 + 1

2
ḡ2ϑ2

− γ1κ̃
2
+ γ1

(
o
2
κ̃2 +

1
2o
κ2
)
(58)

where C̄2 = λmin(C2)− 1 > 0.
In view of Lemma 3, (58) can be further simplified into

V̇2 ≤ −
6∑
i=1

1
2
ln

k1ib21i
b21i − z

2
1i

−

6∑
i=1

1
2
ln

k2ib22i
b22i − z

2
2i

− C̄1
∥∥ξ1∥∥2

−C̄2
∥∥ξ2∥∥2 − γ1κ̃2 + 6∑

i=1

ε2/2

b22i − z
2
2i

+
1
2
ḡ2ϑ2

+γ1

(
o
2
κ̃2 +

1
2o
κ2
)

≤ −βV2 + C (59)
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where

β = min {2λmin(K1), 2λmin(K2),

2C̄j, 2γ0γ1(1−
o
2
), j = 1, 2

}
,

C =
6∑
i=1

ε2/2

b22i − z
2
2i

+
1
2
ḡ2ϑ2

+ γ1

(
o
2
κ̃2 +

1
2o
κ2
)
.

According to Lemma 1, if the initial conditions are satisfied,
then |z1i| < b1i, |z2i| < b2i hold for any t > 0. Furthermore,
from Lemma 2, we have z1i, z2i, κ̃, ξ1i, ξ2i(i = 1, . . . , 6)
are all bounded. Defining ‖ξ1i‖ ≤ δ1i, ‖ξ2i‖ ≤ δ2i, then
|x1i| = |z1i+ ξ1i + xdi| < b1i + δ1i + A0ibai and |x2i| =
|z2i + ξ2i+ αi + ẋdi| < b2i + δ2i + k1ib1i + A1ibci hold.
Integrating the inequality (59), we can obtain

0 ≤ V2(t) ≤
(
V2(0)−

C
β

)
e−βt +

C
β
≤ V2(0)+

C
β

(60)

In the view of the definition of V2, we get

1
2
ln

b21i
b21i − z

2
1i

≤ V2(0)+
C
β

(61)

Taking exponentials on both sides of (61) yields

|z1i| ≤ b1i
√
1− e−2(V2(0)+C/β) ≤ b1i, ∀t > 0 (62)

Similarly, for z2, there is |z2i| ≤ b2i
√
1− e−2(V2(0)+C/β)

≤ b2i, ∀t > 0. Hence, we can choose appropriate controller
parameters that the state error z1, z2 finally converge to any
a small neighborhood of zero. This completes the proof of
Theorem 2.
Remark 7: Note that the anti-windup auxiliary subsystem

(44) is a linear bounded-input, bounded-output (BIBO) sys-
tem. Theorem 2 implies that the state of auxiliary system ξ1,
ξ2 are all uniformly ultimately bounded, meaning1U is also
bounded, and explaining the rationality of Assumption 4 from
another perspective.
Remark 8: From Theorem 2, we can obtain both the

satisfactory steady accuracy and appropriate transient per-
formance by choosing the controller parameters. For exam-
ple, the response rate will be accelerated by increasing K1,
while introducing unexpected noises into the closed-loop
system. Similarly, increasingK2 will also enhance the noises.
However, the convergence rate will be much slower if K1,
K2 are chosen as too small value. Hence, the advantages and
disadvantages must be weighed, and the two aspects taken
into consideration when adjusting the parameters. Further-
more, C1 and C2 are the negative feedback gain matrices of
auxiliary subsystem (44), so it is important that the conditions
λmin(C1) − 1/2 > 0 and λmin(C2) − 1 > 0 are satisfied to
guarantee the stability of the closed-loop system.

IV. SIMULATIONS AND ANALYSES
In this section, numerical simulations are conducted to
evaluate the performance of the proposed controllers.

TABLE 1. System parameters and initial conditions.

FIGURE 5. Relative position tracking trajectory under controller (29).

FIGURE 6. Relative position tracking error under controller (29).

A. SIMULATION CONDITIONS AND
CONTROLLER PARAMETERS
The initial relative position, attitude, and system parameters
are summarized in Table. 1.

As shown in Table. 1, the servicer is assumed to have
an initial relative position and attitude ρ(0), qε(0), qβ (0)
and �(0). Additionally, the initial orbital elements of the
target is a = 42241km, e = 0, i = 0◦, ω = 0◦,
� = 0◦, and f = 0◦. The initial body frame of the target
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FIGURE 7. Relative velocity tracking error under controller (29).

FIGURE 8. Attitude tracking trajectory under controller (29).

FIGURE 9. Attitude tracking error under controller (29).

is coincident with Ci, and its angular velocity expressed in
its body frame is [−0.0020.002− 0.002]T rad/s. The unit
vector of the feature points in the target’s body frame is nb =
[
√
3/3,−

√
3/3,−

√
3/3]T , and the sunlight vector expressed

in Cl isOs = [−
√
3/3,
√
3/3,−

√
3/3]T . The disturbances

FIGURE 10. Angular velocity tracking error under controller (29).

FIGURE 11. Control force under controller (29).

FIGURE 12. Control torque under controller (29).

effect on the servicer are:

ad =

 2 cos(0.015t)
sin(0.01t)

1.5 cos(0.02t)

× 10−2 m/s2,
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FIGURE 13. Relative velocity tracking error under controller (35).

FIGURE 14. Angular velocity tracking error under controller (35).

FIGURE 15. Control force under controller (35).

Td =

 2 cos(0.015t)
sin(0.01t)

1.5 cos(0.02t)

× 10−3 N ·m

For the fairness of comparison, the full-state con-
straints, input constraints, and controller parameters are

FIGURE 16. Control torque under controller (35).

FIGURE 17. Relative position tracking trajectory under controller (51).

FIGURE 18. Relative position tracking error under controller (51).

the same for the following simulation study. During
the final approaching stage of a rendezvous, the system
errors are constrained by b1= diag(9, 0.3, 0.6, 0.4, 0.4, 0.4),
b2= diag(0.5, 0.05, 0.05, 0.05, 0.05, 0.05). The controller
parameters are K1 = diag(0.03, 0.03, 0.025, 0.2, 0.2, 0.2),
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FIGURE 19. Relative velocity tracking error under controller (51).

FIGURE 20. Attitude tracking trajectory under controller (51).

FIGURE 21. Attitude tracking error under controller (51).

K2 = diag(5.5, 3, 3, 2.6, 2.6, 2.6), γ0, γ1 = 0.01, C1 =

20I6, C2 = 50I6. The control force and torque are restricted
by l m/s2 and 2 N ·m.

B. RESULT ANALYSIS
The 6-DOF tracking trajectory and tracking error under
the proposed controller (29) are depicted in Figs. 5-10,
respectively. As shown in Fig. 5 and Fig. 8, the relative

FIGURE 22. Angular velocity tracking error under controller (51).

FIGURE 23. Control force under controller (51).

FIGURE 24. Control torque under controller (51).

position and attitude tracking with the controller (29) can be
achieved within 175s and 20s, respectively. We can see that
the Lyapunov stability of the closed-loop system is guaran-
teed, and the system state asymptotically converges into a
small neighborhood of zero. From Fig. 6, 7, 9 and 10, it can be
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FIGURE 25. The output signals ξ1 and ξ2 of the anti-windup auxiliary subsystem (44).

determined that the bounds for the closed-loop error signals
are never violated during the entire dynamic process.

The time responses of control force and torque are curved
in Fig. 11 and 12. Due to the existence of initial state error,
the maximum control inputs are 4.5m/s2 and 2.5N·m, respec-
tively. Along with the convergence of all the states to desired
values, the control inputs decrease gradually. Furthermore,
the chattering phenomenon is obviously existed in the time
responses of control force, even after the system states have
tracked with the desired ones. The direct reason is the exis-
tence of sign function in the controller (29).

To illustrate the restrictive condition given in Remark. 4,
here Figs. 13-16 display the simulation results of conven-
tional quadratic Lyapunov-based controller (35).

It is obvious that the initial conditions given in Table 1 do
not satisfy the condition (39). Hence, comparing the simu-
lation results of the two controllers based on Barrier Lya-
punov and quadratic Lyapunov function, it can be concluded
that:
a. Both two controllers (29) and (35) can ensure the conver-

gence of relative position and attitude to the desired value and
quadratic Lyapunov based method has a faster convergence
rate and less settling time.
b. Although quadratic Lyapunov based method has a bet-

ter transient performance, the second order states (curved
in Fig. 13 and Fig. 14) violate the prescribed bound distinctly
with the same initial conditions as BLF method. In contrast,
BLF method could ensure boundness of the full state in the
constraints during the entire dynamic process.

Figs. 17-25 describe the simulation results of controller
(51) with adaptive law (52). The time responses of relative
position, attitude, and the state error are depicted in Figs.
17-22. It can be observed that the Lyapunov stability of
the closed-loop system is ensured with input and full-state
constraints, and all system states never violate the prescribed
bound during the entire dynamic process. Obviously, the pro-
posed control scheme still has a good tracking performance,

even if the physical conditions limit the maximum input. This
implies that the developed adaptive control scheme is valid
for the 6-DOF spacecraft system with external disturbances,
and multiple physical constraints.

As a comparison of Figs. 11-12 and Figs. 15-16, in which
the chattering phenomenon is distinctly existed, the time
responses of control force and torque under controller (51) are
shown in Figs. 23-24. We can see that the proposed controller
(51) with adaptive law (52) is fundamentally smooth without
a sign function Moreover, it can be further observed that
the control force and torque achieve the bound of saturation
with 1m/s2 and 2N ·m, and the tracking control performance
still remains good. The reason is that the control command
calculated by controller (51) overtops the input constraints,
and the excess part is compensated by the term C2ξ2 to
guarantee the stability. As depicted in Fig. 25, the output
signals of the auxiliary subsystem are bounded, so all the
signals of the closed-loop system are ultimately bounded.
Hence, summarizing the simulation results, we can conclude
that the 6-DOF final approaching task of a rendezvous is
achieved under multiple physical constraints with a satisfac-
tory tracking performance.

V. CONCLUSIONS
This paper focuses on the 6-DOF tracking control problem
for a noncooperative space target in the final approaching
stage of a rendezvous task, in which external disturbances,
model uncertainties, input and full-state constraints are taken
into accounted simultaneously. Two 6-DOF integrated track-
ing controllers are developed to address and overcome the
full-state constraints explicitly with the Barrier Lyapunov
Function technique. Moreover, the novel adaptive controller
with input and full-state constraints is smooth by estimating
the square of unknown upper bound of disturbances and
uncertainties. This result provides a new insight into the
6-DOF integrated tracking control and has potential ben-
efits for on-orbit services, since the relative position and
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attitude constraints are strictly guaranteed and chattering
phenomenon is effectively avoided. The performance of the
proposed controllers is further illustrated by numerical sim-
ulation examples. In our further research, more practical
situations will be taken into consideration such as control
allocation, actuator faults, and collision avoidance.
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