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ABSTRACT Signal generation and measurement have been widely used in many engineering applications,
such as for creating test signals in radar, communication, and software-defined radio. In field programmable
gate array (FPGA) design, to generate and measure an analog signal, compatible software and hardware
interfaces are required. Traditionally, hardware description language (HDL) is required to program an FPGA.
HDL programming provides an efficient logic resource with low latency. However, it is time-consuming
for designs that are more complex. Currently, OpenCL is implemented for FPGA programming. OpenCL
reduces the FPGA development time because it increases the abstraction level of the code. OpenCL is an
open and royalty-free framework for accelerating the algorithm executed on a heterogeneous system, such
as a GPU, CPU, DSP, or FPGA. OpenCL implementation on FPGAs yields high-performance results for the
computation process. However, compared to HDL design, OpenCL does not provide a particular function
to access the FPGA hardware directly. In this paper, we have demonstrated the implementation of OpenCL
programming on an FPGA for signal generation and measurement. We have developed OpenCL components
that can interact with the FPGA hardware directly. An OpenCL I/O channel extension is employed in the
kernel to read data from and write data to the OpenCL components. The experimental results indicate that
OpenCL can be used for signal measurement and generation using FPGAs.

INDEX TERMS FPGA, I/O channel, OpenCL, signal generation, signal measurement.

I. INTRODUCTION
Field programmable gate arrays (FPGAs) have been widely
implemented in many engineering and scientific applications
because of their reusability, reliability, high performance, and
low power consumption. FPGAs are used in medical, auto-
motive, and military applications [1], in communications [2],
and in nuclear facilities [3]. Recently, FPGAs have also
been applied in artificial intelligence (AI) [4] and inter-
net of things (IoT) solutions [5]. FPGAs can also be
implemented in signal generation and measurement.
This implementation is often applied in digital signal
processing [6], data acquisition [7], communication [8],
software-defined radio [9], automotive radar [10], and quan-
tum computing [11].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Liang.

Traditionally, an FPGA is programmed using hard-
ware description language (HDL) to generate hardware
implementation from the source code onto a register transfer
level (RTL). However, owing to an increase in design com-
plexity, FPGA programming using HDL is time-consuming.
Moreover, to develop a complex design using HDL, an FPGA
programmer needs to have detailed knowledge of the hard-
ware and software of an FPGA, particularly its programming,
simulation, and debugging process.

Currently, high-level synthesis (HLS) is implemented on
FPGAs. HLS provides an alternative solution to reduce the
development time for FPGA programming. HLS improves
the FPGA design efficiency by increasing the abstraction
level of the code [12]. HLS also reduces the gap between the
FPGA design and the programming process. Consequently,
the FPGAdevelopment time can be reduced. Various research
studies present the implementation of HLS in FPGA projects,
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particularly in the high-performance computing applications.
In [13], FPGAs are employed for molecular dynamics sim-
ulation using Intel’s OpenCL SDK. In [14], tsunami sim-
ulations are performed on FPGAs using OpenCL. In [15],
FPGAs are used to compute high-performance stencils by
combining spatial and temporal blockings using OpenCL.
In [16], OpenCL implementations for high-performance
computing application using FPGAs are demonstrated to
be more energy-efficient than those using GPUs. Further,
in [17], SDAccel and Vivado HLS are used for data mining
using an FPGA accelerator.

In this paper, we focus on the implementation of FPGAs
for signal generation and measurement. Therefore, an FPGA
needs to access external devices such as an analog-to-digital
converter (ADC) and a digital-to-analog converter (DAC)
for measuring and generating a signal. To reduce the
development time, OpenCL was selected to program the
FPGA because OpenCL exploits the concept of parallelism
that enables us to develop a parallel program application
for FPGAs using high-level language. In addition to this,
OpenCL avoids creating complexHDL codes, particularly for
the libraries as well as platform-specific tools [18]. However,
we faced problems in developing the FPGA-based signal
measurement and generation usingOpenCL. Compared to the
HDL program, OpenCL does not provide direct access to the
FPGA’s I/O, particularly for reading data from an ADC and
writing data to a DAC.

To overcome these limitations, we developed ADC and
DAC component modules on the system.qsys of the FPGA’s
board support package (BSP), which allows an OpenCL ker-
nel to access the FPGA’s I/O. To enable the kernel to com-
municate with the ADC and DAC components, an OpenCL
I/O channel extension was employed. This channel extension
allowed the OpenCL kernel to stream data to and from the
FPGA’s I/O. Therefore, this study demonstrates the capabil-
ity of the OpenCL program for accessing the FPGA’s I/O
directly, particularly for signal measurement and generation
applications. It is expected that this research will contribute to
the use of the OpenCL program not only for FPGA-based par-
allel computations, but also for signal and video processing,
data acquisition, and control systems through the FPGA’s I/O.

Here, we present several advantages of using OpenCL
implementation for the FPGA-based signal generation
and measurement compared to using HDL-based design.
In HDL implementation, to generate a signal, a ROM-based
lookup-table is required to store data to generate a signal.
The size of data is also limited by the size of the FPGA’s
ROM. In some cases, the FPGA needs to be reprogrammed
when different signals need to be modified. However, for
an OpenCL implementation, the signal data can be stored
on global memory (external DDR memory) instead of the
FPGA’s ROM because the OpenCL framework provides an
interfaces and access to the global memory. In this implemen-
tation, large data can be stored on global memory where this
data is limited by the size of the external memory. Different
signals can also be updated quickly without reprogramming

the FPGA by invoking the host to transmit the data to the
FPGA’s global memory. Similarly, the measured signal can
also be stored on global memory. Consequently, this allows
the host to read the data from the FPGA directly for fur-
ther processing and analysis. In HDL-based design, these
implementations require detailed specifications of the dou-
ble data rate (DDR) interface for the configuration for the
DDR memory controller to access external memory. More-
over, the FPGA simulation and debugging process needs to
be performed. To enable communication or to transmit and
receive the data between the FPGA and the host, hardware
configuration and a device driver for a PCIe hard IP or a
10 Gbps Ethernet controller is required in the HDL-based
design. However, for an OpenCL implementation, the PCIe
and Ethernet controller are generated automatically. This
is because the OpenCL framework consists of firmware,
software and device driver between FPGA and the host for
connecting, controlling and transferring data [19]. In term
of development time, OpenCL implementation takes two
weeks of programming the FPGA, particularly for signal
measurement and generation, where the most considerable
portion involves developing the ADC and DAC component
modules using Avalon-ST source and Avalon-ST sink on
the FPGA’s BSP. Thus, OpenCL implementation reduces the
development time and increases productivity.

This paper presents OpenCL kernel implementation for
signal measurement and generation. To evaluate the OpenCL
kernel implementation within this context, we conduct
experiments by developing the kernel into three categories,
as follow:

• signal measurement: In this implementation, the
OpenCL kernel measures the input signal and stores the
data in global memory so that the host can read the data
for further analysis. The example implementation of this
kernel involves data acquisition from sensors as well as
signal filtering.

• signal generation: Here, the host writes the data to
global memory, and then the OpenCL kernel generates
an output signal by reading the data from global mem-
ory. An example implementation of this kernel includes
signal generation for wireless communication or for a
radar transmitter.

• signal measurement and generation: In this implemen-
tation, the first kernel reads a signal and writes it to an
I/O channel. The second kernel reads the data from the
I/O channel and generates a signal simultaneously. Here,
data transfer is performed without accessing global
memory. An example of this implementation involves
digital signal processing.

The remainder of this paper is organized into six addi-
tional sections. In Section 2, we present some related works.
In Section 3, we introduce the OpenCL implementation for
FPGA. In Section 4, the customization of the FPGA hardware
for developing the OpenCL components (ADC and DAC) is
described. Section 5 presents the OpenCL system implemen-
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tation and the experimental results. In Section 6, discussions
are provided. Finally, the study is summarized in Section 7.

II. RELATED WORK
This section presents some related studies on the implemen-
tation of FPGA-based signal generation and measurement
in many applications. In [20], an FPGA-based signal gen-
erator is developed on Altera’s Cyclone II based on direct
digital synthesis (DDS) using VHDL to generate a sine
wave, square wave, triangular wave, saw-tooth wave, lad-
der wave, and amplitude modulated wave. In [21], it is
demonstrated that a DDS-based signal generator that uses
an FPGA by modifying and improving the pipelined accu-
mulator with a CORDIC algorithm can solve problems
caused by the usage of traditional DDS. Similarly, the same
method is implemented in [22]. The paper presents the design
implementation of a high-speed arbitrary signal generator
on a Xilinx Spartan 6 FPGA based on DDS technology
and a high-speed AD9734 DAC. In [23], a signal genera-
tor is also implemented for FPGA-based nuclear magnetic
resonance (NMR) spectroscopy on an Altera Cyclone II
FPGA using DDS and VHDL. Another implementation
of an FPGA-based signal generator can be found in [24].
The paper presents the use of an FPGA for an arterial
pulse wave generator using an Altera Cyclone FPGA based
on the Nios II embedded processor. In [25], it is demon-
strated that an FPGA-based signal generator for 4-level
pulse amplitude modulation (PAM-4) signaling can control
the AD9739A DAC using a Xilinx Kintex-7 FPGA. The
papers mentioned above present the implementation of an
FPGA-based signal generator that uses Verilog/VHDL for the
hardware development. For storing the signal to be gener-
ated, an FPGA’s ROM is required as a look-up table for the
design.

The implementation of an FPGA-based signal measure-
ment can also be found in [23]. In this paper, a signal acquisi-
tion to process the digital quadrature demodulation in nuclear
magnetic resonance (NMR) spectroscopy using VHDL on
an Altera Cyclone II FPGA, has been demonstrated. In [26],
a data acquisition (DAQ) system, which is designed to
determine plasma electron densities using a Xilinx Kintex-7
FPGA and VHDL code, has been presented. A signal mea-
surement is also implemented in software-defined radio.
In [27], an example of an FPGA’s implementation as a
digital front-end module that receives digital signals that
are converted by the ADC from the IF signals, has been
described. The use of OpenCL programming for data acqui-
sition using FPGAs is mentioned in [28]. However, the lat-
ter study does not provide a comprehensive and detailed
analysis of the results, particularly results pertaining to sig-
nal generation and measurement. According to the study,
as presented above, many applications employ signal gen-
eration and measurement using an FPGA in their design.
Therefore, this motivates us to focus on this study by imple-
menting OpenCL for signal generation and measurement
using FPGAs.

III. OPENCL FOR FPGA
In this section, we briefly introduce OpenCL for an FPGA
including the memory type. In OpenCL programming of an
FPGA, the kernel code which is executed by the FPGA has
the same programming model as the code of a graphics pro-
cessing unit (GPU). However, the kernel code for the FPGA
is compiled into a different sequence of instructions that
are executed by different work items simultaneously. This is
because an FPGA exploits pipeline parallelism to execute the
kernel. For high-performance computing purposes, OpenCL
provides an application program interface (API) that allows
the host to communicate with the FPGA through a PCIe
bus. For embedded purposes, such as use of an SoC FPGA,
the internal bus is used for data transfer and communication
between an FPGA and the advanced RISC machine (ARM)
processors, as shown in Fig.1.

FIGURE 1. OpenCL system with a host CPU and FPGAs (a) data
communication through a PCIe, (b) using the internal bus.

OpenCL for FPGAs also shares the same memory
types for the computation process. The memory types are
defined as global/constant memory, local memory, and pri-
vate memory. The offline compiler for OpenCL employs
DDR3/DDR4 memory on an FPGA board as global memory.
The memory type that has higher throughput with lower
latency is local memory. During the kernel compilation, local
memory is implemented by the block RAMs. This memory
is dedicated to work items in the same workgroup. The last
type of memory that has faster throughput and smaller size
than the others is the private memory. Depending on data
size, private memory is implemented by either block RAMs
or registers [29].

IV. CUSTOMIZING THE BOARD HARDWARE
FOR OPENCL COMPONENTS
In this section, we demonstrate how to develop the ADC
and DAC component modules on the FPGA’s board support
package (BSP), which allow the OpenCL kernel to access the
FPGA’s I/O. Then, the ADC and DAC component attributes
are defined in the channel interface of the board_spec.xml
file that describes the hardware interfaces to the Intel FPGA
SDK for OpenCL. Finally, the use of the OpenCL I/O channel

VOLUME 7, 2019 48851



I. Firmansyah, Y. Yamaguchi: OpenCL Implementation of FPGA-Based Signal Generation and Measurement

extension is explained for streaming data to and from an
FPGA’s I/O through the ADC and DAC components.

A. DEVELOPING OPENCL’S ADC AND DAC COMPONENTS
Fig.2 shows a system.qsys diagram of the FPGA’s BSP where
the OpenCL ADC and DAC components have been devel-
oped. The BSP, which is provided by the FPGA vendor
for OpenCL programming, simplifies FPGA programming
because it provides an external DDR memory controller
for writing and reading data to global memory, and pro-
vides a data interface for communications between the host
and FPGA.

FIGURE 2. System Qsys of a customized board support package (BSP) by
adding new ADC and DAC components.

The first component is the ADC component. This com-
ponent is created by implementing an Avalon-ST source for
streaming data from the external ADC board to the OpenCL
kernel. The OpenCL kernel receives the data from this com-
ponent through an Avalon-ST sink. The block diagram of the
ADC component is shown in Fig.3(a). The ADC component
receives two input signals, the clock (kernel_clk) and the
reset (kernel_rst) from the kernel, has a port for reading
the data from the ADC board (adc_read), produces two
signals for handshaking with the kernel: (kernel_ready) and
(kernel_valid), and includes a port for streaming the data to
the kernel (kernel_out).

FIGURE 3. (a) ADC component using Avalon-ST source, (b) DAC
component using Avalon-ST sink.

The second component is the DAC component. This com-
ponent is created by implementing an Avalon-ST sink for

streaming data from the OpenCL kernel to the external
DAC board. The OpenCL kernel streams the data through
an Avalon-ST source to the DAC component. As shown
in Fig.3(b), this component also has the same signals
as the ADC; however, the two signals for handshaking,
(kernel_ready) and (kernel_valid), are in the opposite direc-
tions. This component also has a port for receiving streamed
data from the kernel (kernel_in) and a port for writing data to
the external DAC board (data_out).

In the Qsys system design, the data ports of the ADC and
DAC components need to be exported so that the kernel can
read from and write data to the external ADC/DAC board.
The adc_read port of the ADC component is exported and
connected to the data port of the ADC controller, while the
dac_write port of the DAC component is exported and con-
nected to the data port of the DAC controller. The ADC and
DAC controllers are written in HDL and are located inside
the root partition (top.v) of the BSP to control the ADC/DAC
board. The ADC chip on the ADC/DAC board converts an
analog signal to a 14-bit digital signal. In contrast, the DAC
chip converts a 14-bit digital signal to an analog signal.

B. SETTING OPENCL COMPONENT PARAMETERS
We have shown how to implement the OpenCL’s ADC and
DAC components on the FPGA’s BSP. To allow the OpenCL
kernel to access these components, the component attributes
need to be declared in the board_spec.xml file of the BSP. The
board_spec.xml file is an extensiblemarkup language (XML)
file that provides the board description, such as the hardware
interface and the component interface, to the Intel SDK for
OpenCL. According to the content of the board_spec.xml
file, a custom circuit for an FPGA is generated by the SDK
compiler for OpenCL. Then, this custom circuit is incorpo-
rated with the OpenCL kernel [30].

TABLE 1. OpenCL component attributes.

According to the ADC and DAC components, as shown
in Fig.3(a) and Fig.3(b), we specify the component attributes
such as name, port , type, width, and chan_id on the channel
interface of the board_spec.xml file, as shown in Table 1.
The name attribute specifies the names of the ADC and DAC
components. The port attribute specifies the data ports of
the ADC and DAC components where data are read from
and written to the FPGA’s I/O. The type attribute specifies
the type of Avalon-ST bus being used. Because the ADC
component reads data from the ADC board and streams this
data to the OpenCL kernel, a stream source is employed.
On the other hand, the DAC component receives streamed
data from the OpenCL kernel and writes the data to the
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DAC board; therefore, a stream sink is used. The chan_id
attribute is a unique name for the I/O interface on the FPGA
board and will be associated to the io(‘‘chan_id ′′) attribute
in the OpenCL kernel. The value of 14 in the width attribute
specifies the 14-bit resolution of the ADC and DAC board.
In the experiments, the data type for this channel is specified
as ushort .

C. ACCESSING OPENCL’S ADC AND DAC COMPONENTS
USING AN I/O CHANNEL EXTENSION
So far, we have shown how to develop the ADC and DAC
components for accessing the FPGA’s I/O in the system.qsys
of the BSP and how to set the components attributes in the
board_spec.xml file. An OpenCL API call is required to
stream data between the OpenCL kernel and the FPGA’s I/O
across the ADC and DAC components. In this subsection,
we introduce the concept of the OpenCL I/O channel exten-
sion and how to use the channel extension in our design.

FIGURE 4. Kernel-to-kernel communication (a) without I/O channel
through global memory (b) with I/O channel implementation.

In OpenCL design, a kernel needs to communicate with
global memory to read and write data for the computa-
tion process. When two or more kernels are executed to
solve computational problems, more communications and
data transfers are performed between the kernels and global
memory. Compared to a GPU that supports a high-bandwidth
global memory, most FPGA boards are equipped with
DDR3 or DDR4 as the global memory. As a result, this causes
a reduction in performance owing to the global memory
bandwidth bottleneck, as shown in Fig.4(a). To overcome this
constraint, an OpenCL I/O channel extension is employed
to transfer data among the kernels without accessing global
memory, as shown in Fig.4(b). The I/O channel extension is
a first-in-first-out (FIFO) buffer. The I/O channel is imple-
mented using RAMblocks and registers [31] [32]. In the Intel
SDK for OpenCL, a write_channel_intel(ch_0, input_buf )
API call is used to write data to the input_buf vari-
able of a channel ch_0. To read data from the ch_1
channel to an output_buf variable, a output_buf =

read_channel_intel(ch_1) API call is used. Previous study
has shown the implementation of an OpenCL channel exten-
sion for data communication. In [33], an implementation of
the OpenCL I/O channel extension for data communication

using a high-speed FPGA network through the QSFP+ port
was demonstrated.

In this study, the OpenCL I/O channel extension is
employed to stream data between the OpenCL kernel and the
FPGA’s I/O through the ADC and DAC components. To read
a signal from the ADC board, the channel attribute in the
kernel must point to the chan_id name of the ADC compo-
nent. Here, the chan_id attribute is specified as ch_adc_read .
Therefore, the channel attribute in the kernel is declared as
io(‘‘ch_adc_read ′′). A similar method is applied to write data
to theDACboard. However, the channel attribute in the kernel
is declared as io(‘‘ch_dac_write′′) so that it points to the DAC
component.

V. SYSTEM IMPLEMENTATION
In this study, we evaluate the OpenCL kernel using a Cyclone
V SoC FPGA board from Terasic. This board consists of
the Cyclone V SoC 5CSEMA5F31C6 FPGA, dual-core
ARM Cortex-A9 (HPS), 85K programmable logic elements,
4,450 Kbits embedded memory, two 40-pin expansion head-
ers, and two hard memory controllers [34]. For the ADC
and DAC chip, we utilized the analog-to-digital/digital-to-
analog (AD/DA) board from Terasic. This AD/DA board
consists of dual AD channels with 14-bit resolution and
dual DA channels with 14-bit resolution [35]. In the experi-
ments, the AD/DA board was connected to the GPIO JP1 and
JP2 pins of the Cyclone VDE1-SoC FPGA board. The analog
input signal was connected to AD channel A, while the analog
output signal was generated from DA channel A. To execute
an OpenCL project, Intel SDK for OpenCL version 17.0 was
used to compile the kernel. The ARM part of the SoC FPGA
executed the host program, which was cross-compiled by
Intel’s SoC EDS.

A. SIGNAL MEASUREMENT
In this experiment, we demonstrate how to develop the
OpenCL kernel for signal measurements using the OpenCL
ADC component and a channel extension. The example
implementation of this kernel is for data acquisition from
sensors or signal processing in a radar receiver.

1) EXPERIMENTAL DESIGN
Fig.5 shows the FPGA-based system design for signal mea-
surement using OpenCL. The analog signal, which is con-
verted to digital by the ADC chip, passes through an I/O
channel extension. Then, the OpenCL kernel reads and
stores the data in the global memory of the FPGA. The
global memory is also accessible by the host, which allows
the host to read the data for further analysis. To mea-
sure the signal, the kernel attributes are declared according
to the content of the board_spec.xml file. In the experi-
ment, the name for the chan_id attribute was specified as
‘‘ch_adc_read ′′. Therefore, the channel attribute in the ker-
nel was declared as __attribute_((io(‘‘ch_adc_read ′′))). The
max_global_work_dim(0) attribute was used to inform the
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FIGURE 5. I/O channel implementation for signal measurement from ADC
to global memory of an FPGA.

OpenCL offline compiler that the kernel type was the single
work item kernel.

To read the signal from the channel, the data_in[i] =
read_channel_intel(ch_data_read) API call was used, where
the ch_data_read was the name of the channel variable. The
results were stored in a datain buffer on the global mem-
ory of the FPGA. To execute this kernel, the host invoked
the clEnqueueTask() function in the host code. Meanwhile,
the clEnqueuereadBuffer() function was called to read the
data_in data in global memory. The OpenCL kernel for the
signal measurement is shown in Listing 1.

Listing 1. OpenCL kernel for signal measurement.

2) IMPLEMENTATION AND RESULT
In this first experiment, we employed an arbitrary signal
generator to generate different signal types, such as sine,
triangle, and square wave signals. Fig.6 shows examples of
the measured input signal types by the OpenCL kernel (sine
wave, triangle wave, and square wave). For the remainder of
this paper, evaluation of sine waves as both input and output
signals will be discussed.

We have shown how to read a signal by leveraging the I/O
channel extension in the OpenCL kernel. However, the fre-
quency of the signal still cannot be determined. To evaluate
the frequency of the signal, the kernel sampling rate for the
measured signal (T ) is required. This sampling rate can be

FIGURE 6. Measured input signal by the FPGA from an arbitrary signal
generator.

FIGURE 7. Kernel execution time for signal measurement.

calculated from the kernel execution time (tkernel) divided by
the length of the data (n), as defined by Equation 1. Fig.7
shows the signal, which is sampled every T seconds over
length n of the dataset.

T =
tkernel
n

(1)

In the experiment, the signal generator was set to generate
a sine wave (fin) with frequency of 20 MHz. The kernel was
programmed to read and store the data to global memory with
different lengths (n) as follows: 50K, 60K, and 75K. From the
experimental results, the kernel execution time was tkernel 1 =
0.686 s, tkernel 2 = 0.801 s, and tkernel 3 = 0.974 s for n =
50K, n = 60K, and n = 75K, respectively. By applying the
fast Fourier transform (FFT) function, the frequency of the
measured signals for different lengths (n) of the dataset are
shown in Fig.8. The measured frequencies for the 20 MHz
input frequency were 16.85 MHz, 17.31 MHz, and 17.8 MHz
for n = 50K, n = 60K, and n = 75K, respectively. The results
show that the measured frequency is lower than the input
frequency. This is because of the slow kernel execution time
owing to the use of global memory for storing the measured
signal.

To avoid the global memory constraint, the experiment was
carried out by storing the data temporarily in the on-chip
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FIGURE 8. Measured frequency using global memory for a 20 MHz
frequency input signal.

FIGURE 9. Measured frequency using on-chip RAM for a 20 MHz
frequency input signal.

RAM of the FPGA instead of writing directly to global mem-
ory. The kernel execution time decreased to tkernel3 = 0.871 s
for n = 75K. The result indicates that the use of an on-chip
RAM achieves faster execution time. By using Equation 1 to
calculate the kernel sampling rate, the measured frequency
input can be evaluated using an FFT function, with the result
shown in Fig.9. The measured frequency of 19.9 MHz is
closer to the 20 MHz frequency of the input signal than the
17.8 MHz signal measured using global memory access.

B. SIGNAL GENERATION
In this experiment, we demonstrate how to implement the
OpenCL kernel for signal generation using the OpenCL DAC
component and a channel extension. The example implemen-
tation of this kernel applies to signal generation for wireless
communication or for a radar transmitter.

1) EXPERIMENTAL DESIGN
To generate an output signal, first the host writes one cycle of
a sine wave to the global memory of the FPGA by calling the
clEnqueueWriteBuffer() function. Second, the host invokes

FIGURE 10. I/O channel implementation for signal generation.

the clEnqueueTask() function to execute the OpenCL kernel.
On the FPGA side, the kernel reads the data from global
memory and passes it to the DAC board through an I/O chan-
nel extension. This process is depicted in Fig.10. Accord-
ing to the content of the board_sprec.xml file, we specified
the chan_id value as ‘‘ch_dac_write′′. Therefore, the kernel
attribute was declared as __attribute_((io(‘‘ch_dac_write))).
To read the data from global memory and to pass it to the
DAC board, a write_channel_intel(ch_data_write, sine[i])
API call was executed, where ch_data_write was the name
of the channel variable, and sine represented variable arrays
containing one cycle of a sine wave. The OpenCL kernel
for generating the signal is given in Listing 2. In the kernel,
the length variable is defined as the length of the data in
one cycle. Fig.11 shows how one cycle of a sine wave with
length m and amplitude from 0 to 214 is stored in the global
memory of the FPGA.

Listing 2. OpenCL kernel for signal generation.

2) IMPLEMENTATION AND RESULTS
To evaluate the kernel, an oscilloscope was employed to
measure the output signal from theDAC chip. After executing
the kernel, the analog output signal was generated as shown
in Fig.12. As can be seen, there is a delay after one cycle
of the generated signal (red circle), as shown in Fig.12(a).
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FIGURE 11. One cycle of a sine wave for a dataset of length m.

FIGURE 12. Output analog signal (a) with global memory, (b) without
global memory implementation.

This delay is owing to the long latency involved in global
memory usage. After one period of the signal, the kernel
accesses the non-contiguous memory allocation in the global
memory and generates the same signal repeatedly. To over-
come this limitation, global memory usage is omitted by
copying the data from global memory to the on-chip RAM
of the FPGA. Fig.12(b) shows the result when the kernel
employs the on-chip RAM, indicating that the signal is gen-
erated without delay.

We have shown how to generate a signal by leveraging an
OpenCL I/O channel extension without any delays. To gen-
erate the signal at a specific frequency, we propose a formula
which is similar to the direct digital synthesis (DDS) archi-
tecture. The DDS technique is used to generate a sinusoidal
signal or arbitrary waveformwith a programmable frequency.
DDS enables us to control the frequency of the signal accu-
rately and to adjust the frequency quickly [36]. A typical DDS
architecture consists of a phase accumulator (M), a reference
clock fc, and a DAC. The phase accumulator specifies the
phase angle of the output signal. This phase accumulator has
N -bit resolution, with a range from 1 to 2N . The DAC con-
verts the digital value to an analog signal [37] [38], as shown
in Fig.11.

In the experiment, we employed the ADC and DAC with
14-bit resolution. Therefore, the dataset for one cycle of the
sine wave is represented by the data from 0 to 214. To generate
a signal with a specific frequency, the host writes one cycle
of a sine wave with the length of the data (m) to global
memory, as shown in Fig.11. Here, we present the equation
for estimating the frequency of the generated signal. In DDS,
the frequency of the signal with N − bit resolution can be

calculated using Equation 2.

fo = M ×
fc
2N

(2)

Because m is equal to 2N divided by M , the frequency
of the output signal can be estimated using Equation 3 as
follows:

Festimation =
fkernel
m

(3)

FIGURE 13. Output frequency for dataset length m.

TABLE 2. OpenCL kernel compilation report.

Here, fkernel is the working frequency of the kernel. This
working frequency can be obtained from the OpenCL kernel
compilation reports as shown in Table 2. From the table,
the working frequency of the kernel for this implementation
is 145.07 MHz. Fig.13 shows the comparison between the
frequency estimation and the actual frequency of the signal
using a spectrum analyzer. The results show that the fre-
quency estimation is similar to the actual frequency of the
signal. The larger the value of m is, the lower the frequency
of the output signal. Fig.14 shows examples of the output
frequency for different m data lengths.

C. SIGNAL MEASUREMENT AND GENERATION
In this experiment, we demonstrate signal measurement and
signal generation using OpenCL ADC and DAC components
that are executed simultaneously. Kernel-to-kernel data pass-
ing using a channel extension without global memory usage
is also presented.
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FIGURE 14. Frequency of the output signal for different data
lengths: (a) m = 24, (b) m = 12, (c) m = 8, and (d) m = 4.

1) EXPERIMENTAL DESIGN
Fig.15 shows a simultaneous signal measurement and gen-
eration execution. The measured signal is passed through
an I/O channel extension and is generated directly without
accessing global memory. Tomeasure and to generate a signal
simultaneously, we developed three OpenCL kernels in a
single OpenCL file, as shown in Listing 3. Here, we demon-
strate efficient kernel-to-kernel data communication through
a channel extension without accessing global memory for
storing and reading data. In the adc_channel kernel, the signal
from the ADC is read and stored in the chan_input channel.
In the opposite direction, the dac_channel kernel reads the
data from the chan_output channel and sends the data to the
DAC to generate a signal.

FIGURE 15. I/O channel implementation for measuring a signal, passing
data, and generating a copy of the signal.

To pass data between the adc_channel kernel and the
dac_channel kernel, the in_out kernel performs a data copy
from the chan_input channel to the chan_output channel.
In this implementation, the autorun attribute is declared for
the in_out kernel so that the kernel is automatically executed
without a host invocation.

Listing 3. OpenCL kernel for signal measurement and generation.

2) IMPLEMENTATION AND RESULT
To evaluate the kernel, we conducted an experiment by send-
ing an analog input signal generated by an arbitrary signal
generator through the ADC chip on the FPGA board. To mea-
sure the output signal from the DAC chip, we employed
an oscilloscope and a spectrum analyzer. Fig.16 shows the
comparison between the analog input signal and the analog
output signal. It can be seen that the input signal is similar to
the output signal. The signal measured by the adc_channel
kernel is passed through a channel extension and generated by
the dac_channel kernel. We also investigated the frequency

FIGURE 16. Comparison between (a) input sine wave and (b) output sine
wave.
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FIGURE 17. Comparison between (a) input frequency and (b) output
frequency.

for both input and output signals. Fig.17 provides the fre-
quency comparison between the input and the output signals.
It can be seen that the frequencies for both signals are the
same.

VI. DISCUSSIONS
In this study, we have demonstrated the implementation of an
FPGA for signal generation and measurement using OpenCL
programming. We developed the OpenCL components in the
FPGA’s BSP, which can access the FPGA’s I/O for both
reading and writing data. In the implementation, the OpenCL
I/O channel extension is used in the kernel to read and
write data from and to the components. Our implementation
provides evidence that OpenCL programming can be used
for generating and measuring a signal using the I/O channel
extension.

We have also taken advantage of OpenCL’s BSP usage
because the BSP provides an external memory controller
for accessing the global memory of an FPGA. BSP also
provides a communication interface between the FPGA and
the host that allows the host to send and receive data for
analysis. Therefore, this process reduces the overall FPGA
development time. This implementation focuses on design
methodology, not performance accuracy. Therefore, some
limitations are worth noting. According to the experiments,
the working frequency of the FPGA cannot be determined
at the initial condition. Thus, to achieve better data accu-
racy, further research should be conducted to implement an
accurate clock source and FIFO buffer on the ADC/DAC
board. Additionally, to avoid attenuation in signal amplitude,
amplifier circuits should be employed.

VII. CONCLUSIONS
The implementation of FPGA-based signal measurement and
signal generation using OpenCL is demonstrated. We per-
formed experiments using OpenCL ADC and DAC compo-
nents that can access an FPGA’s I/O directly. To allow the
OpenCL kernel to stream data to the FPGA’s I/O, OpenCL I/O
channel extensions are employed for both reading and writing
data. In the signal measurement experiment, the measured
signal is demonstrated to be similar to the input signal. For
signal generation, the frequency of the generated signal is
similar to the estimation frequency. We also demonstrate the
implementation of the I/O channel extension for data trans-
mission between two kernels. In the experiment, the mea-
sured signal is passed to a channel extension and is generated
simultaneously without having to access global memory, and
we verified that the frequency of the input signal is similar
to the frequency of the output signal. This study has shown
that the OpenCL programming language can be used for
accessing an FPGA’s I/O, particularly for signal measurement
and signal generation. OpenCL usage reduces the develop-
ment time. In this study, we focus on the OpenCL design
methodology needed to access the FPGA hardware. Future
research should focus on further improving performance and
accuracy. Such a study can be carried out by employing a
high-speed ADC/DAC board with higher sampling rate and
an improved signal conditioning circuit.
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