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ABSTRACT Recently, multi-sensor navigation has emerged as a viable approach in autonomous vehicles’
development. Kalman filtering has been widely applied in multi-sensor data fusion, and researchers are
trialing variants of the Kalman Filter (KF) to improve the operational robustness of vehicles in a range of
environments under varying dynamic constraints. This paper proposes a novel sensor data fusion algorithm
employing an Unscented Kalman Filter (UKF) for the autonomous navigation of an Unmanned Surface
Vehicle (USV). Since the navigational sensors on-board the USV are subject to operational uncertainties
caused by equipment limitations and environmental disturbances, an improved UKF algorithm with the
capability of adaptive estimation, namely fuzzy adaptive UKF data fusion algorithm, has been proposed to
obtain reliable navigational information. The conventional UKF is capable of fusing a number of raw sensor
measurements and generating relatively accurate estimations with proper a priori knowledge of system
noise. To deal with systems that lack such information, a fuzzy adaptive estimation method is introduced to
enhance the performance of the conventional UKF, making the algorithm capable of verifying and correcting
the associated sensor noise in real time. The proposed fuzzy adaptive UKF data fusion algorithm has been
tested and evaluated in different simulations modeled using practical maritime environments and the results
are compared with the conventional UKF. The sensor measurements taken from a practical USV trial have
also been applied to the proposed algorithm for further validation.

INDEX TERMS Unscented Kalman Filter (UKF), adaptive estimation, USV navigation, fuzzy logic,

multi-sensor data fusion.

I. INTRODUCTION

In recent years, Unmanned Surface Vehicles (USVs) have
gained increasing prominence driven by their ability to carry
out unmanned missions on ocean exploration and protection.
While undertaking these missions, autonomous navigation of
a USV can be crucial. Benefiting from the rapid advance-
ments in navigational devices, such as the Global Positioning
System (GPS) and other marine electronics, real-time nav-
igational data can be obtained by an autonomous navigation
system without human interaction. However, sensors working
as standalone devices cannot provide reliable navigational
data since they suffer from loss of signal and uncertainties
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caused by environmental disturbances and equipment limita-
tions. To address these challenges, one popular approach is
to use the multi-sensor data fusion methodology by integrat-
ing various sensors as complementary devices. The imple-
mentation of multi-sensor navigation relies on effective data
fusion algorithms to manage large amounts of raw sensor
measurements and deliver reasonably accurate navigational
information.

The Kalman Filter (KF) is a popular technique applied
to data fusion algorithms as an optimal estimator for linear
stochastic systems [1], [2]. However, the marine environ-
ment is uncertain and complex for USV navigation. Various
aspects could cause position offset, especially environmen-
tal influences. Tidal current, wind and waves are the most
significant effects that would cause drifting of a moving
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water surface vehicle. In this context, the trajectory of an
USV is complicated which cannot be simply characterized
as operating on a straight line or a curved line in practice.
Besides, multi-sensor integration may introduce increased
nonlinearity to the system, which is beyond the capability of
the conventional KF [3]. Thus, Kalman Filter variants such
as the Unscented Kalman Filter (UKF) have been developed
and used to deal with non-linear systems. The UKF employs
the unscented transform (UT) to approximate the non-linear
system [4]-[8]. It first forms a set of Sigma points, which
are able to capture exactly the mean and covariance of the
original distribution of the system states, and propagates
them through the actual non-linear function characterizing
the system dynamics. The mean and error covariance of the
system states are then recalculated based on the propagated
points, yielding more accurate results [9].

Driven by the nature of Kalman filtering, data fusion
algorithms based on conventional UKF require accu-
rate a priori knowledge on the characteristics of system
noise [10]. In particular, the uncertainties in system process-
ing noise and measurement noise have a large impact on
the conventional UKF, thereby resulting in degraded per-
formance [11], [12]. An adaptive estimation algorithm to
match the system processing noise covariance Q and mea-
surement noise covariance R is a solution to accommodate
the influences caused by inaccurate a priori knowledge of
characteristics of system noise and contributing to a more
robust system. The adaptive estimation algorithm is able to
determine the system noise covariance of the dynamic system
so that the UKF data fusion algorithm can approximate the
system state based upon the determined real-time statistical
parameters together with the observed data.

Wang et al. [13] proposed a fuzzy logic based adaptive
KF algorithm to adapt the two noise parameters to deter-
mine the attitudes of a satellite. The algorithm defines an
adjustment coefficient according to the designed fuzzy logic
system to update the processing error covariance and mea-
surement error covariance for the next state. Jin et al. [14]
proposed a fuzzy logic based adaptive estimation method to
correct the measurement noise covariance in the KF operation
for the inertial motion capture system. Rahimi et al. [15]
extends the adaptive research onto the conventional UKF
and details the matching between the theoretical and actual
processing and measurement error covariance for the appli-
cations of reaction wheels. These studies on various practi-
cal applications demonstrate the validation and effectiveness
of the adaptive estimation for conventional KF/UKF based
algorithms.

Previous effort has also been made in the field of navi-
gation. Almagbile et al. [16] demonstrated the performance
of covariance matching based adaptive KF methods with dif-
ferent adaptations of the processing error covariance matrix
and measurement error covariance matrix. The results sug-
gest that the Q adaptation has impaired filtering accuracy
compared to the R adaptation. Meng et al. [17] deduced an
adaptive estimating algorithm based on the UKF for both Q
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and R adapting simultaneously and applied it to the Global
Navigation Satellite System (GNSS) and Inertial Naviga-
tion System (INS) hybrid navigation system. However, their
method to determine the real-time R matrix is achieved by
simply adjusting its theoretical value to the calculated actual
value. Compared to the processing error, measurement noise,
which is prone to alteration, have a greater impact on the
performance of data fusion algorithms since the practical
condition of the sensors is difficult to predict and evaluate,
detrimentally affecting the data fusion algorithms.

Previous work on adaptive estimations mainly concentrate
on combining them with the conventional KF. Given the
superior performance of UKF over the conventional KF, this
paper fills this knowledge gap by proposing an improved
adaptive UKF algorithm that can be applied to robust USV
navigation in a practical maritime environment. The novelty
of this method lies in the fact that a fuzzy logic based, noise
covariance adaptive estimation is developed to compensate
sensors’ noise and improve the overall performance of esti-
mating a USV’s navigational data.

This paper is organized as follows. Section II intro-
duces the details of modelling the movement of an USV.
Section III demonstrates how a conventional UKF can be
used to improve the accuracy of raw sensor measurements.
Section IV specifically details the proposed fuzzy covariance
matching adaptive estimation algorithm. Section V validates
the algorithm through a number of simulations in practical
maritime environments and practical USV trial data. The final
section provides the conclusion remarks as well as sugges-
tions for future work.

Il. DATA FUSION FOR USV NAVIGATION

Before introducing the UKF algorithm to deal with sensor
uncertainties, it is important to establish appropriate system
equations to detail the USV’s movement. This is because
the success of the KF (especially the conventional KF) is
largely dependent on accurate system expression [18]. For
an autonomous USV navigation, information including its
position (p), velocity (v) and heading (6) is required in real
time, which can be calculated by using the discrete integration
of the acceleration rate (a) and rotation rate (w) as following:

p(k):p(k—1)+Txv(k—1)+%T2xa(k—l) 1)
vik)y=vk—1D)+T xa(k—1) )
0k) =0k —1)+T x wk) 3)

where 7 is the sampling time between consecutive time steps.

This navigation information can be measured from var-
ious electronic navigational sensors. For example, a GPS
can provide absolute measurements of the USV’s current
location in longitude and latitude, an Inertial Measurement
Unit (IMU), which is composed of an accelerometer and a
gyroscope, can accurately measure the USV’s acceleration
and angular velocity over short periods, and an electronic
compass is able to provide absolute measurements of the
USV’s headings. The absolute measurements obtained from
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FIGURE 1. Conversion between different frames.

FIGURE 2. Framework of the proposed data fusion algorithm based on
Unscented Kalman Filter.

the GPS and electronic compass are along the earth frame and
can be converted to a pre-defined navigation frame. In con-
trast, the acceleration rates provided by the IMU are along
the inertial frame or the body frame for simplicity and need
to be converted to the same navigation frame. Fig. 2 describes
these three frames. The pre-defined navigation frame uses the
y axis to denote the north direction and the x axis to denote
the east direction. The inertial frame can be approximated to
the body frame as long as the inertial sensors are installed at
the center of the gravity of the USV. The IMU data can then
be converted by applying the rotation matrix.

|:anx i| . [cosﬂ —sin®i| |:al~x i| )
any | | sin  cos¥ || aiy

where ) is the angle between the body frame (inertial frame)
and the navigation frame, and is equal to the USV’s heading;
ay is the acceleration in the navigational frame and a; is that
in the inertial frame.

However, precise measurements are not always obtainable
in practice due to equipment limitations and environmental
influences. A low cost IMU is normally a Micro Electro
Mechanical System (MEMS) based sensor, which is sensitive
to the surrounding environment, such as dynamic changes and
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vibration. Therefore, as stated in (5) and (6), the readings of
the accelerometer (a,) and gyroscope (w,) are composed of
the true value (a;, ;) and the noise which comprises a con-
stant bias (b,, bg) and a random noise (w,, wg). The constant
bias is varied in different environments and can be determined
by a calibration process prior to operation of the USV. The
random noise is normally assumed to be white noise.

ao = a; +bg +wy (5)
wo = wi +bg +w, (6)

The GPS measurements are relatively accurate as long as
the receiver is positioned in an open and clear area, where
it can access more satellites. That is, it will suffer signal
loss or inaccurate measurement in obscured environments.
According to Hightower and President [19], in the dynamic
environment, the GPS receiver provides constantly changing
measurements and this can consequently increase the uncer-
tainty of the measurement error. Although the electronic com-
pass could provide the most accurate measurements, e.g. less
than 1°, the distortion of the Earth’s magnetic field by nearby
ferrous effects, sensor noise and magnetic interferences still
have a large impact on the compass during operation. Gener-
ally, the measurements from GPS (p,) and electronic compass
(6,), which gives the absolute measurements, are modelled
by the true value (p;, 6;) plus a random white noise (v, vg) as
follows:

Po =Di+Vp @)
6, = 6; + vy (8)

Therefore, data fusion algorithms have to be applied to
detect and reduce the possible measurement errors of these
complementary sensors during operation.

IIl. UNSCENTED KALMAN FILTER
The Kalman filter (KF) is a linear recursive data processing
algorithm that estimates the real-time state of a system, based
upon 1) the initial values of system states; 2) the system
and measurement dynamic models; 3) a priori knowledge of
statistical characteristics of the system noise, such as uncer-
tainties in system dynamic models and measurements [20].
If the input data fits the predefined linear dynamics and
statistical models and a priori knowledge is known, then the
KF can provide, in a minimum variance sense, an optimal
estimate of the state vector [21]. Hence, the KF has become
the most common technique for estimating the state of a linear
system, particularly in navigation systems.

Considering a non-linear system that describes the USV’s
movement with the discrete system state vector x as:

x(k)y=fxk—-1), wk-1) 9
with a measurement
z (k) = Hx (k) + v(k) (10)

where w (k) is the process noise and v(k) is the measurement
noise. They are both assumed to be white noise with normal
probability distribution p (w) ~ N(0, @) and p (v) ~ N(O,R).
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Equations (1) - (3) provide the prediction model of the
USV’s navigational data and can be viewed as the state
equations with p, v and 6 being the state of the system, which
are the estimation objects of the UKF. Therefore, the state
vector x with required data can be defined as:

x:[x Dy Vx Wy G]T (11

By subscribing the frame conversion (4) into the state
equations (1) to (3), the nonlinear dynamic model of the
system can then be obtained by (12):

Px Vx
Py Vy
ff@)y=| v | = | cosbaix — sinbaj, (12)
Vy sinfajy + cosOa;y
0 w

where p, and p, represent the USV’s positions in the north-
east navigation frame, v, and vy are its velocity components
and 6 is the heading of the USV.

With the absolute measurements of the USV’s position and
heading from GPS and electronic compass, the measurement
transition matrix H can be written as below:

1 0 0 0 O
H=|0 1 0 0 0 (13)
0 0 0 0 1

The Unscented Kalman Filter (UKF) is a modification of
the conventional KF to handle non-linear processes of the
predefined system. It has the same fundamental as the con-
ventional KF and involves two steps in the process, prediction
and estimation. The framework of this algorithm is illustrated
in Fig. 2, where the working process of the UKF has been
divided into two parts, namely the UKF prediction module
and estimation module.

In the prediction module, the algorithm first uses the
unscented transformation to form a set of 2n + 1 weighted
points (Sigma points), where n is the number of the system
vector x. All the Sigma points are then propagated through
the nonlinear dynamic model yielding the prediction of the
next state of the system by assigning different weights to
each Sigma point. The algorithm then estimates the opti-
mal next state by estimating the Minimum Mean Square
Error (MMSE) of the sensor measurements and predictions.
After the optimal estimation, the system will update its
covariance matrix to iterate the system and the error covari-
ance of the system will be reduced. The numeric interpreta-
tion of this prediction-estimation process is demonstrated in
the Appendix.

IV. ADAPTIVE ESTIMATION

Due to the nature of Kalman filtering, the performance of an
UKEF based multi-sensor data fusion algorithm depends on the
statistical system noise, which in practical applications have
unrealistic fixed values consequently degrading the perfor-
mance. In this study a fuzzy logic based adaptive method has
been added to the UKF algorithm to match its theoretical and
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actual noise covariance in real-time (Fig. 3). By using such
a method, the measurement noise covariance R can be more
robustly estimated, which improves the performance of the
multi-sensor data fusion algorithm to determine the locations
of the USV.

FIGURE 3. Framework of the Adaptive Unscented Kalman Filter data
fusion Algorithm.

As shown in Fig. 3, the theoretical covariance C7 and the
actual covariance C4 of the innovation sequence €, which
is defined as the difference between the measurement z and
system prediction x~ (14), are calculated and their similarity
is the input of the fuzzy logic system. The system then adjusts
the C7 to match the Cy4 by tuning the UKF measurement noise
covariance R.

€(k) =z (k) — Hx (k) (14)

The theoretical covariance Cr can be computed by the
UKF equations (Appendix) as:

Crk)=HP~(k)HT +R (15)

where P~ is the predicted covariance, R is the predefined
measurement noise covariance. R is commonly defined by
the sensor noise characteristics and can be obtained from
sensor specifications. In this research, the measurements are
provided by GPS positions and compass headings and the
measurement noise covariance can be expressed by using
the GPS and compass noise as the diagonal value as shown
in (16):

Fepsi> 0 0
R=| 0 rgy? 0 (16)
0 0 Feom?

For a dynamic system, the actual covariance of innovation
C4 (k) can be computed as the mean of previous innovations
over a moving window size N in a recursive manner:

1
Cal ==Y (e a7

1
Ca () = Catk = ) + = | (ce))
—(etk =N + De(k — N + 1)T)] (18)
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At each time step k, if the fixed value of the measurement
noise covariance matrix R is close to the actual measurement
noise covariance, it will make the theoretical covariance of
innovation Cr equal to the actual covariance of innovation
C4. However, in real applications, sensor disturbances could
make C, differ from Cr, and to improve the performance
of UKF, R (k) should be adjusted to reduce the difference
between Cr and C4, which is known as covariance matching.
The simplest way to obtain the adjusted R is to let the two
covariances equal to each other, so that the updated R can be
computed in (19).

R(k)=Cy4 (k) —HP~ (k)HT (19)

During the calculations of the data fusion algorithm for
a practical application, this subtraction equation (19) may
generate negative outcomes that would lead to system errors.
To correct this, a fuzzy logic based adaptive estimation algo-
rithm has been designed to avoid the possible system error
and improve the localization system robustness. The designed
fuzzy system employs the similarity of C4 and Cr asits input,
which is expressed as multifactor Degree of Matching (DoM )
in this paper with the definition as:

DoM (k) = Ca(k)/Cr(k) (20)

Based upon the DoM , the fuzzy logic based algorithm then
outputs an adjustment coefficient o to update the measure-
ment noise covariance R using (21).

R (k) = a (k) x R(k) 1)

In general, the relationship between the coefficient o and
DoM can be described as following:

If DoM > 1, C4 is larger than Cr, R should be increased to
reduce the two innovation covariance matrices, then o should
be larger than 1;

If DoM ~= 1, C4 is similar to C, then « should equal to
1 to maintain R unchanged;

If DoM < 1, Cy4 is smaller than Cr, R should be deceased,
then « should be reduced to be smaller than 1.

The fuzzy rules with thresholds (epl and ep2) can then
be defined based on the relationship between o and DoM
in Table 1. The thresholds epl and ep2 are two small values
used to create intersections between each fuzzy rule that
allows the algorithm to compute the adjustment coefficient
o in a fuzzy way.

TABLE 1. Fuzzy rules.

Rule 1: If DoM > 1 + ep2, then a is large;
Rule 2: If 1 — ep1 < DoM < 1 + ep1, then « is equal;
Rule 3: If DoM < 1 — ep2, then « is small.

The range of DoM at each time step k is divided into six
bands to define the following input membership functions of
the fuzzy system.
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Large:
1 DoM > max
=11 2 — DoM 22
H —i—ep—o 1+ ep2 < DoM < max (22)
ep2 + 1 — max
Equal:
1 1 — DoM
St epl — DoM 1 +ep2 < DoM <1+ epl
epl —ep2
Me =11 1 —ep2 < DoM <1+ ep2
DoM 1-1
DM APl =Lyl <DoM <1 ep2
epl —ep2
(23)
Small:
Us = X DoM +1 DoM <1 —ep2 (24)
ep2 — 1

Based on the fuzzy rules, the output membership functions
can then be determined as follows:

Large:
1 l_ep2 —
0] = tal_ep « a>14al_ep2 (25)
al_ep2 + 1 — al_max
Equal:
1 I_epl —
M l4al_ep2 <a <14 al_epl
al_epl — al_ep2
0,=11 1—al_ep2 <a <1+al_ep2
I_epl — 1
% l—al_epl <a <1—al_ep2
al_epl — al_ep2
(26)
Small:
0y xa+1 a<1—al_ep2 27

- al_ep2 — 1
Then, at each sampling time step k, the adjustment coeffi-

cient « is defuzzified by applying a Centroid method where
multiple rules can be applied as:

fo,-((x) ado
o="—"
[ oi(@) da

V. SIMULATIONS

In order to simulate an USV operation in a practical environ-
ment, waypoint tracking missions have been assigned to the
USV according to the map of its surrounding environment.
At the start point, the simulated USV calculates the distance
and bearing to the next waypoint in real time to verify whether
it reaches a predesigned waypoint, which is called waypoint
clearance. The condition for a waypoint clearance is:

=l,es (28)

pusv — Pwp| < d (29)

where pysy is the current position of the USV, p,,, is the
position of the target waypoint, d is the predesigned min-
imum target radius around the waypoint. The USV can be
considered as having reached the waypoint by entering a
circle with radius d around the waypoint. According to the
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FIGURE 4. Calculation of Tidal effect to the USV speed.

waypoint clearance condition, the operation of the USV will
be adjusted by changing its heading so as to track the target
waypoint. Once the conditions are met, which indicates that
the USV has reached the waypoint, it will start calculating its
current distance and bearing to the next predesigned waypoint
and keep repeating the waypoint clearance procedure until it
reaches the final destination.

The simulations have been carried out based on an
actual environment being in the Solent, Southampton,
UK (Fig. 5(a)). According to Townend from the environment
agency Defra [22], in the Southampton area, the tidal current
at the mouth has a peak speed of 0.7 m/s on the flood
and 1.0m/s on the ebb. Therefore, a constant current speed
v. along the direction of the water flow that would causes
drifting of the USV’s position is simulated as an environment
influence. Fig. 4 shows how the tidal current would affect the
USV’s trajectory. The velocity (v,-) of the simulated USV with
respect to the water should then be computed by the resultant
of USV’s own velocity (v,) and effect of the tidal current as
shown in (30).

|:er] _ |:vux+vcxcos8:| 30)

Vry Vuy + Ve X sin §

where § is the direction of the water current.

As illustrated in Fig. 5(a), the water current has been
simulated at constant speed but in varied directions to match
the water flow directions in the area. The flow data of the
currents is based upon previous recorded information [23]
and tide tables [24] for the tidal currents in the Solent and
Southampton water. The mission start point (765m, 728m) is
chosen at the top right corner of the environment map.

The USV is simulated to travel along the coastline to the
end point (30m, 250m) located at the lower left of the map.
Two waypoints (650, 385), (320, 190) are set for the USV
to conduct maneuvers so as to complete the mission while
avoiding collision risks with the land. The initial velocity and
heading of the simulated USV is 1 m/s at 210°. As shown
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FIGURE 5. Simulation environment in Solent: (a) shows the satellite map
with planed waypoint tracking trajectory of the USV, a variant current is
simulated along the coastline; (b) gives the binary map that converted
from the satellite map with the drifted trajectory of the USV caused by the
variant current.

in Fig. 5(b), the planned trajectory is altered by the influence
of the water current.

In order to verify the working performance of the modified
adaptive UKF algorithm, three scenarios are considered: 1) a
system with good knowledge of the a priori measurement
noise; 2) a system with poor knowledge of the a priori mea-
surement noise; 3) a system with good knowledge of the a pri-
ori measurement noise initially but the actual sensor noise
changes during the operation. The UKF noise characteristic
and the fuzzy adaptive estimation algorithm thresholds listed
in Table 2 remain the same for all the three simulations.

TABLE 2. UKF characteristics and fuzzy system threshold.

Accelerometer noise G1x = 0.0039 m/s?
¢1y = 0.0039 m/s?

q, = 0.033 deg/s

Gyroscope noise

GPS noise Typsx = 6M
Tgpsy =7 M
Compass noise Teom = 0.5 deg
Input Membership epl =0.25
Function ep2 =0.15
Thresholds max =7
Output Membership al_epl =0.2
Function al_ep2 =0.08
Thresholds al_max =5

A. SIMULATION SCENARIO 1

In this simulation, the noise of sensor measurements are
assumed to be predictable based on the Rooted Mean Square
Error (RMSE) values in their data sheet, which are close
to the predefined UKF error characteristics in Table 2. The
simulated sensor errors for the sensor measurement models
(shown in equations (5) to (8)) during USV operation are
listed in Table 3.

VOLUME 7, 2019



W. Liu et al.: Robust Localization Method for USV Navigation Using Fuzzy Adaptive Kalman Filtering

IEEE Access

TABLE 3. Simulated sensor noise characteristics.

Noise
Sensor Measurement - -
Bias Variance
Acceleration a, 0.03 m/s? 0.0042 m/s?
MU Acceleration a, 0.02m/s? 0.0042 m/s?
Rotation rate w 0.28°/s 0.036°/s
Position p, 0 8m
GPS Position p, 0 7m
Electronic Heading 6 0 0.8°
Compass

FIGURE 6. Simulation scenario 1: the converted binary map with the
simulated GPS measurements and fused position results by both
conventional UKF and adaptive UKF.

FIGURE 7. Simulation scenario 1: true headings, electronic compass
measurements and fused heading results by both conventional UKF and
adaptive UKF.

Figs. 6 to 9 show how the conventional UKF and adap-
tive UKF are able to improve raw measurements of the
GPS and subsequently provides robust localization capability.
A converted binary map of the simulation area is displayed
in Fig.6 with the whole simulated USV true trajectory, shown
as the black line, the GPS raw measurements as the blue dots
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FIGURE 8. Simulation scenario 1: Rooted mean square errors (RMSEs) of
the USV's positions and headings.

FIGURE 9. Simulation scenario 1: the diagonal elements of the actual,
updated and fixed measurement noise covariance matrix.

scattered around the true trajectory subject to the predefined
variance, and the fused position results of the conventional
UKF and adaptive UKF indicated as green and red lines,
respectively. From the enlarged inset in Fig. 6, it is clear
that the red line (adaptive UKF result) is slightly closer to
the black line compared with the green line (conventional
UKF result), which indicates that the proposed adaptive
UKEF data fusion algorithm performs better when estimating
the USV’s real-time position than the conventional UKF
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algorithm. Fig. 7 demonstrates the USV’s heading results,
where both conventional and adaptive UKF algorithms are
able to reduce the raw compass measurement noise. Again
the adaptive UKF algorithm shows marginal improvement
in performance. Such a statement can also be supported by
Fig. 8, which records the real time RMSEs of the measured
and estimated position and heading. The RMSEs of adaptive
UKF estimations (red line) are slightly lower than those of
the conventional UKF (green line) and they are both much
lower than those of the raw sensor measurements. The diag-
onal elements of the measurement noise covariance matrix R
are illustrated in Fig. 9. The true value of the measurement
covariance R, is obtained using (31).

1
Ry =<3 @@ 6D

where v is the measurement noise that can be computed by
the difference between the sensor measurements z and actual
USV navigational data x, in (32).

v(k) =z (k) —H x4(k) (32)

Since the simulated sensor noise are close to the predefined
UKEF noise characteristics, the actual value of R, (black line)
is close to the fixed value of R (blue line) used in the conven-
tional UKF algorithm. The adjusted R (red line) by the fuzzy
adaptive UKF algorithm fluctuates about the actual R,. This
simulation proves the effectiveness of the proposed fuzzy
adaptive UKF data fusion algorithm. As long as the system
has a good a priori knowledge of the sensor measurement
noise characteristics, the conventional UKF algorithm is also
able to provide accurate estimations of the USV’s naviga-
tional data even when the USV is operating in a complex
environment with turning maneuvers.

B. SIMULATION SCENARIO 2

In a practical environment, sensor measurements accuracy
could degrade. During operation sensor noise may be greater
than predicted in the sensor manual and differ from UKF
predefined noise models that are based on the manuals.
In this simulation, poor a priori measurement noise has been
assigned to the system to verify the performance of the
improved fuzzy logic based adaptive estimation algorithm.
The RMSE of raw GPS measurements increases to 20m
in both x and y axis and the RMSE of the raw compass
measurements increases to 5° while the settings of the UKF
noise characters are unchanged as shown in Table 2. Such a
configuration indicates that the conventional UKF uses the
incorrect measurement noise characteristic to make estima-
tions without any update during the process.

Figs. 10 to 13 present the simulation results of the Sim-
ulation Scenario 2. Similar to the Simulation Scenario 1,
Fig. 10 and Fig. 11 represent the position and heading
results of the proposed algorithms together with raw sensor
measurements. However, in this simulation, the proposed
fuzzy adaptive UKF algorithm performs much better than the
conventional UKF. According to the real-time RMSEs for
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FIGURE 10. Simulation scenario 2: the converted binary map with the
simulated GPS measurements and fused position results by both
conventional UKF and adaptive UKF.
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FIGURE 11. Simulation scenario 2: true headings, electronic compass
measurements and fused heading results by both conventional UKF and
adaptive UKF.

each navigational data processing method shown in Fig. 12,
the error of the adaptive UKF estimations are much lower than
those of the conventional UKF estimations, providing at least
30% improvement. Such an improvement is due to the fact
that the fuzzy adaptive UKF is capable of intelligently calcu-
lating the measurement covariance to facilitate improving the
accuracy of the filtered data. Fig. 13 demonstrates the diag-
onal elements of the actual, updated and fixed measurement
covariance. The adapted R in this simulation is convergent to
the actual R, when compared to the fixed settings of R.

C. SIMULATION SCENARIO 3

In Simulation Scenario 3, the noise of raw sensor mea-
surements increase during USV operation. During the first
300 time steps, the sensor noise are assumed to be the values
used in Simulation Scenario 1. Then sudden changes of sen-
sor noise occur as could occur through unexpected influences
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FIGURE 12. Simulation scenario 2: Rooted mean square errors (RMSEs) of
the USV’s positions and headings.
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FIGURE 13. Simulation scenario 2: the diagonal elements of the actual,
updated and fixed measurement noise covariance matrix.

on the sensors. The noise are increase to the values used in
Simulation Scenario 2. Figures 14 to 17 demonstrates the
performance of both the conventional UKF algorithm and
the proposed fuzzy adaptive UKF algorithm in this situation.
As shown in Fig.14, the GPS measurements become nois-
ier before the first waypoint. The green line that represents
the conventional UKF estimated positions starts to fluctuate
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FIGURE 14. Simulation scenario 3: the converted binary map with the
simulated GPS measurements and fused position results by both
conventional UKF and adaptive UKF.
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FIGURE 15. Simulation scenario 3: true headings, electronic compass
measurements and fused heading results by both conventional UKF and
adaptive UKF.

appreciably from the true trajectory (black line) while the
adaptive UKF still provides much closer estimations. The
better performance of the adaptive UKF algorithm is further
proved from the enlarged inset in the heading estimations
(Fig. 15). The UKF estimated headings (green line) starts
to generate larger errors when the compass error increases,
whereas the fuzzy adaptive UKF estimated headings (red
line) still maintain their accuracy and report to the true val-
ues. The real-time RMSE values of each navigational data
processing method further supports that the proposed fuzzy
adaptive UKF data fusion algorithm achieves better accuracy
when the system is lacking in appropriate a priori knowledge
of system measurement noise characteristics, even when the
sensor noise degrades suddenly. The reason for this is that
the proposed algorithm is able to tune the predefined mea-
surement covariance R close to the actual value in real-time,
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FIGURE 16. Simulation scenario 3: Rooted mean square errors (RMSEs) of
the USV's positions and headings.
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FIGURE 17. Simulation scenario 3: the diagonal elements of the actual,
updated and fixed measurement noise covariance matrix.

which is also shown in Fig. 17, instead of fixing it as it is the
case with the conventional UKF algorithm.

At this juncture, it can be summarized that in the first
simulation, the proposed fuzzy adaptive UKF shows marginal
improvement in reducing the raw sensor measurement errors
over the conventional UKF. In the second simulation, when
the a priori information of the sensor noise is poor and
largely different to the UKF’s settings, the proposed fuzzy
adaptive UKF provides more accurate results than the con-
ventional UKF. The improved performance has been demon-
strated again in Simulation Scenario 3, where the sensor noise
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FIGURE 18. Springer USV developed by MIDAS group from Plymouth
University in UK.

changes suddenly during USV operation. The computational
time of the proposed multi-sensor data fusion algorithm at
each time step in all the three simulations is approximately
0.0023s. It is far below the simulated sampling time of
navigation system, of which is 1s. Therefore, the proposed
algorithm should be able to conduct data fusion missions in
real-time applications.

VI. PRACTICAL TRIAL
To further demonstrate the effectiveness of the proposed
method, a field trial using an actual USV has been carried
out. The experiment was undertaken through a collaboration
program between UCL and Plymouth University to jointly
explore the improvement of the autonomous navigation sys-
tem of a practical USV, Springer [25], [26]. The Springer
USV developed by the Marine and Industrial Dynamic Anal-
ysis Research (MIDAS) group (now known as Autonomous
Marine Systems Research Group) from the Department of
Marine Engineering, Plymouth University is a double hull
designed USV, shown in Figure 18. Each hull carries a
watertight peli-case that contains the navigational sensors,
which are not waterproof, together with a hosting com-
puter. [27], [28]. The Springer USV was equipped with all
the required sensors, i.e. GPS receiver, IMU, and electronic
compass and all the raw measurement data collected during
the field test had been recorded. The experiment was held
at the Roadford Lake in Devon, UK (Fig. 19) with overcast
skies, light precipitation and easterly winds of 1 to 3.2 m/s.
Three buoys were set out as the waypoints constituting of a
waypoint-tracking path for the Springer USV and requiring
the USV to make three turning maneuvers to complete the
designed mission (Fig. 20). The sampling interval for the
sensors to take measurements was 1 second. The duration
for one trial is approximately 15 minutes and the USV was
operating at a speed of approximately 1.5 m/s.

The actual environment influences such as the wind and
water current altered the trajectory of the Springer USV,
which has been shown in Fig. 21. The blue line represents
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FIGURE 19. Experimental environment: Roadford lake, Devon, UK.

FIGURE 20. The satellite map of the Roadford lake and the planned
trajectory for the Springer USV to follow.

raw GPS measurements that have been extracted from the
trial. As illustrated in Fig. 21, the USV successfully transited
the three waypoints in sequence and returned to the first
waypoint as planned, but the water surface currents pushed
the vehicle towards the northwest and made large impacts
on its trajectory when the USV was facing northeast. As a
result, the Springer USV turned right first and subsequently
made a circular maneuver to alter its direction towards the
third buoy instead of directly turning left after it reached the
second buoy. This kind of unpredictable event increases the
complexity of practical USV operations.

The conventional UKF and the proposed fuzzy adaptive
UKEF data fusion algorithms are applied to the raw sensor
measurements recorded from the practical trial. The average
computational time for each cycle of the algorithm is 0.0017s
while the actual sensor measurements are sampled at s,
which confirms the proposed algorithm can be employed in
real-time navigation system. The fusion results are plotted
in Fig. 22 and Fig. 23. As shown in Fig.22, the red line
that denotes the fuzzy adaptive UKF estimated trajectory,
is close to the GPS measurements that are represented by
the blue line, whereas the green line denotes the conventional
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FIGURE 21. The converted binary map with USV’s planned trajectory and
recorded GPS measurements during the practical experiment.

FIGURE 22. The raw GPS measurements, waypoints positions and
estimated positions generated by conventional UKF and adaptive UKF
respectively.

UKEF estimated trajectory deviate largely from the other two
trajectories. Fig. 23 demonstrates the heading results. It can
be seen that the headings estimated by the proposed fuzzy
adaptive UKF algorithm (red line) are more coincident with
the compass measurement (blue line). Again, the conven-
tional UKF estimations (green line) are associated with devi-
ations from the other two headings. The results validate the
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FIGURE 23. The raw compass measurements and estimated headings
generated by both conventional UKF and adaptive UKF.

feasibility of the proposed fuzzy adaptive UKF data fusion
algorithm whereas the conventional UKF algorithm is prone
to error in a practical application. In the simulations, despite
the better performance of the proposed fuzzy adaptive UKF
algorithm, the conventional UKF can also reduce raw sensor
measurement errors. Similar performance that has not been
achieved in practice, states the conventional UKF is a theoret-
ical optimal algorithm that provides less satisfactory in prac-
tical applications. In the meantime, the real-time adaption
of the measurement noise covariance enhances the ability of
the proposed fuzzy adaptive UKF algorithm to overcome the
unexpected uncertainties in practical applications. Although
the true positions and headings of the Springer USV are
not available in practical trial, the benefits obtained from
the proposed algorithm can still be revealed by its smoother
estimations with less pinnacles than raw sensors’ measure-
ments, which are presented in the enlarged insets in both
Fig. 22 and Fig.23.

VIl. CONCLUSION

This paper has introduced the development of a new
multi-sensor data fusion algorithm for USV navigation in
practical complex environments. When considering the envi-
ronment influences such as water currents, a conventional
UKF based algorithm is limited by the lack of capability
for dealing with variations in a practical water surface envi-
ronment. An UKF based multi-sensor data fusion algorithm
has therefore been proposed to solve the non-linear issues
associated with the navigation system for practical USV
applications. A fuzzy adaptive estimation method has been
further developed to reduce the effect on the system caused
by unknown or unpredicted changes of sensor measurement
noise. The fuzzy logic based algorithm determines an adjust-
ment coefficient to adapt the measurement covariance R
based on the actual and theoretical innovation covariance
matrices of the conventional UKF in real-time. Numerical
simulations have been carried out and evaluated in differ-
ent simulations based upon practical maritime environments
and the results illustrate the adaptive estimation based UKF
algorithm does improve the accuracy of the conventional
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UKEF. Although their results are quite similar when the system
has accurate noise settings, the adaptive UKF outperforms
conventional UKF with observably more accurate position
estimations when the system lacks a priori knowledge of
the sensors’ measurement noise; the improvement that can
be achieved is approximately 30%. The algorithms are then
applied to the actual sensor measurements that are recorded
from a practical experiments and the results suggest that this
newly developed algorithm delivers a more practical solution
to solve the problem of the robust localization of USVs.. This
research can be further improved by investigating how the
processing noise covariance would affect the performance of
the proposed UKF based data fusion algorithm and subse-
quently designing an improved mathematical method to deal
with such effects so that the AUKF algorithm would be more
adaptive in practical USV applications.

APPENDIX

Unscented Kalman Filter

Step 1: Prediction

a) Generate 2n + 1 sigma points (n = 5)

Xok —1) = mk — 1)

Xitk —1) =mk — 1)+ /n + 1 [Pi(k — 1)]
Xignk — 1) = mk — 1) — VJn+A[VPik—D].i =
1,....n

The constant weights W}" and W§ are computed as follows:
Wg =X/(n+1)

Wo =i + (1 —a?+8)

wr =Wf =1/2(m+1),i=1,...,2n

where A = &2 (n + k)—n. The parameters « and k determine
the spread of the sigma points around the mean. 8 describes
the distributed information, of which the optimal value is 2 for
Gaussian distribution.

b) Propagate the sigma points through the dynamic model
xik)=f (x;(k —1)),i=0,...,2n

¢) Compute the predicted mean m~(k) and the predicted
covariance P~ (k)

m=(k) = Y2 W% k)
P (k) = Y2 W (k) —m ) (k) —m~ (k)" +
Ok — 1)

where N is the dimension of the expended state space, which
equals to Ny + N, + N,. Ny is the dimension of the original
state that equals to n; N, and N, are the dimensions of white
noise w and v.

Step 2: Estimation

K (k) = P~(oHT [HP~(oHT +R] "

(k) =m= (k) +K (k) [z (k) — Hm™ (k)]

Pky=I—-K (k)H)P (k)
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