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ABSTRACT Logistics network optimization is an important part of the spare parts allocation problem.
In recent years, reverse logistics has greatly increased the efficiency of the supply chain. However, it also
increases the difficulty of mathematical modeling and solving. In order to solve the network optimization
problem of spare parts, a multi-period closed-loop logistics network is established. The practical problem
is described as a mixed nonlinear integer programming model with multi-objective and multi-constraint.
An improved multi-objective ant lion algorithm is proposed to solve this model. In the proposed algorithm,
Levy flight and the quasi-opposites-based learning strategy are used to improve the performance of the
algorithm. The numerical simulation shows that the convergence and distribution of the result of the
proposed algorithm are promoted. Finally, the mathematical model is solved by the proposed algorithm, and
a sensitivity analysis is carried out. The results show that, first, the proposed closed-loop supply network
is superior to the traditional forward logistics network. Second, the improved ant lion algorithm is more
effective than a basic ant lion algorithm and other classical algorithms.

INDEX TERMS Spare parts, closed-loop logistics networks, multi-objective optimization, ant lion
optimizer.

I. INTRODUCTION
Maintenance spare parts logistics network optimization is
an important part of military logistics management. The
availability and lead time of spare parts have a direct effect
on the maintenance tasks. Thus, lots of research works pay
attention to the spare parts logistics network optimization.
There are some similarities in spare parts logistics network
between military and enterprise, such as scenario setting and
constraint conditions. However, there are some differences in
their objectives. The enterprises and factories usually con-
sider economy, environment and other factors as the objec-
tives. However, in the field of military logistics, in order
to complete the maintenance task as quickly as possible,
the time factor is usually the primary factor in logistics net-
work optimization.

At present, there are many research works on logistics
network optimization. Referring to some typical articles, this
study analyzes these articles from three aspects of network
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structure, model type and solution method. These references
have basically covered all types of logistics network opti-
mization problems. Hao and Wei (2016) took the minimiza-
tion of overall system costs and carbon emission as the targets
to establish a single-period multi-echelon reverse logistics
network and used mathematical programming to solve the
model [1]. Harris et al. proposed a single period forward
logistics network to solve facility location–allocation prob-
lem (CFLP). In their paper, both cost and carbon emission
were considered as objectives, and a SEAMO2 algorithm
was used to solve the proposed multi-objective problem [2].
Amin and Zhang established a closed-loop logistics net-
work consisted of both forward and reverse supply chains,
and the stochastic programming scenario-based model was
used to solve the model [3]. Lee et al. took lead time, cost
and fill rate as the objectives in their reverse logistics, and
a multi-objective hybrid genetic algorithm and fuzzy logic
controller model were proposed to solve the problem [4].
Maghouli et al. proposed a scenario-based multi-objective
model to solve multi-period transmission expansion plan-
ning problem. To overcome the difficulties in solving the

45048
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1551-1826


Y. Wang, Q. Shi: Spare Parts Closed-Loop Logistics Network Optimization Problems

TABLE 1. Literature survey of logistics network design and optimization.

nonconvex and mixed integer optimization problem, the
genetic-based non-dominated sorting genetic algorithm
(NSGA-II) was used [5]. Wu et al. studied on the forward
supply network of spare parts with the aim at minimize
the cost, and the model was solved by two meta-heuristic
algorithms [6]. Jeihoonian et al. proposed a two-stage
stochastic mixed-integer programming model for a closed-
loop supply chain network design problem. They also pro-
posed a scenario-based approach to handle the mathematical
model [7]. Moghaddam considered four objectives included
total profit, total defective parts, total late delivered parts
and economic risk factors in the study of reverse supply
chain system. Monte Carlo simulation integrated with fuzzy
goal programming was developed to determine the entire
set of Pareto-optimal solutions of the proposed model [8].
Chang et al. established a single-stage and single-objective
forward logistics network. They proposed a novel greedy-
search-based multi-objective genetic algorithm to solve the
problem [9]. Fattahi and Govindan addressed design and
planning of an integrated forward/reverse logistics network
over a planning horizon with multiple tactical periods.
A single objective mathematical programming model was
established and simulated annealing was used to solve the
problem [10]. Wang et al. studied on a single-stage single-
target forward supply chain, which was solved by bi-level
stochastic programming and developed a genetic algorithm
with efficient greedy heuristics [11]. Lee et al. established a
single-period forward supply network with the cost and fill
rate factors as its objectives. The proposed multi-objective
problem was solved by multi-objective evolutionary algo-
rithm [12]. Kumar et al. put forward a model of multi-period
and multi-echelon vehicle routing forward-reverse logistics
system. Particle swarm optimization algorithm was used to
solve the mathematical model [13].

The above research works were summarized in Table 1
according to the structure of the logistics network, the number
of objectives and the solution method. It can be seen that,

the above literatures have covered various types of logistics
network optimization problems.First of all, the structures of
the logistics networks are different. From the perspective of
space, it mainly includes forward logistics network, reverse
logistics network and closed-loop logistics network. From the
perspective of time, it mainly includes static optimization and
dynamic network optimization considering multiple periods.
Secondly, when studying the optimization of logistics net-
work, economic factors, date factors, environmental factors
and social factors are usually considered. Some research
works only considered one of these factors, and others consid-
eredmultiple objectives. In the logistics network optimization
problem, it is necessary to select the appropriate optimiza-
tion objectives according to the actual situation. Generally,
the model with single objective is easier to solve than the
multi-objective optimization problem. Lots of methods have
been proposed to solve these models. These algorithms can
be divided into exact methods, heuristic algorithms and meta-
heuristic algorithms.

Combined with real world problems, this paper considers
a multi-objective closed-loop network optimization problem.
Therefore, multiple objectives should be considered in the
spare parts logistics network optimization, and these objec-
tives are conflicted with each other. In order to solve the
multi-objective optimization problem (MOP), the intelligent
optimization method is proposed. At present, multi-objective
optimization algorithms can be categorized in Pareto based
methods, decomposition based methods and index based
methods [14]. The Pareto-based methods select the non-
dominated solutions as the optimal solutions by compar-
ing the dominating relations between different solutions.
The most common used Pareto-based methods include the
non-dominated sorting genetic algorithm II (NSGA-II) [15],
strength Pareto evolutionary algorithm 2 (SPEA2) [16], and
Pareto envelope-based selection algorithm II (PESA-II) [17],
and so on. The decomposition-based methods aggregate the
objectives by using a scalarizing function such that a single
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FIGURE 1. Spare parts closed-loop logistics network.

scalar value is generated. In these algorithms, the diversity
of a population is maintained by specifying a set of well-
distributed reference points to guide its individuals to search
simultaneously towards different optima. The decomposition
based multi-objective evolutionary algorithm (MOEA/D) is
one of the most common used decomposition based algo-
rithms [18]. The idea of indicator-based algorithms is to
apply performance indicators to guide the search during the
evolutionary process. The most common used indicators are
ε indicator [19], inverted generational distance (IGD) [20],
and the hypervolume (HV) indicator [21]. It can be seen from
Table 1 that, these algorithms and their improved algorithms
have been widely used in supply network optimization.

In this paper, a swarm intelligence algorithm named ant
lion algorithm is improved and used to solve the model [22].
In order to solve the multi-objective optimization problem by
using ant lion algorithm, Mirjalili proposed a multi-objective
ant lion algorithm, and a large number of experiments proved
that the performance of multi-objective ant lion algorithm is
better than that of traditional algorithms such as MOPSO,
NSGA-II, and so on [23]. Because of the superiority of the
ant lion algorithm, the algorithm has been applied and pop-
ularized in lots of real world engineering problems such as
parameter optimization [24] and path planning problem [25].
However, the basic ant lion algorithm converges slowly at the
end of iteration when solving real world problems and is still
prone to fall into local optimum. Therefore, this paper tries to
improve its ability of global exploration and local exploita-
tion in solving multi-objective problems by proposing an
improved algorithm named quasi-oppositional Levy flight
multi-objective ant lion optimizer algorithm (QOLMALO).
After the performance of the improved algorithm has been
tested, the QOLMALO algorithm has been used to solve the
spare parts logistics network optimization model.

The remaining sections of this article are organized as
follows. In section 2, the maintenance spare parts logistics

network optimization problem is described. A multi-period
closed-loop logistics network is proposed, and a non-
linear integer program model with multi-objective and
multi-constraint is established to formulate the MOP.
Section 3 describes the improved ant lion algorithm. The
performance of the proposed algorithm is tested by numerical
simulation in section 4. In section 5, the improved algorithm
is used to solve the proposed mathematical model. The sen-
sitivity analysis and control experiment are carried out in
order to show the flexibility and efficiency of the proposed
model. We summarize the paper with suggestions for future
improvement in section 6.

II. MODELING THE SPARE PARTS CLOSED-LOOP
LOGISTICS NETWORK
A. PROBLEM DESCRIPTION
The three-echelon spare parts logistics network consists of
warehouses, distribution centers and the end-users which are
often called customers. A maintenance center is set up in the
closed-loop spare parts logistics network, which is used to
realize the reverse flow. The structure of the logistics network
is shown in Figure 1. When the requirement occurs at the
first period, spare parts are delivered from warehouses to
distribution centers, and then transported from distribution
centers to customers. The defective parts in customers are sent
to maintenance center for repair. In the maintenance center,
the repaired spare parts are sent to distribution centers as
inventory to support the next period of spare parts supply.

When spare parts demand of the next period is needed,
spare parts are still transported from warehouses to distribu-
tion centers and then send to customers. At this point, since
there is already inventory in distribution centers, the amount
of spare parts shipped from warehouses to distribution cen-
ter is reduced. Generally, the distance between the ware-
houses and distribution center is longer than that between
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maintenance centers and distribution center. Therefore, the
total lead time will be greatly reduced.

The following assumptions are made in the model:
1) Only one kind of spare parts is considered and the spare

part is repairable;
2) The location of each node is known. The unit deliver

time from warehouse to distribution centers, distribu-
tion centers to customers, customers to maintenance
center and maintenance center to distribution centers
are known and fixed;

3) The storage capacity of each warehouse is unlimited,
and the spare parts reserve in warehouses is sufficient;

4) The maximum capacity of each distribution center is
known and fixedč"

5) The customers are equally important, and the require-
ments in each period are known. The threshold of the
maximum fill rate of the customers is knownč"

6) The maintenance capacity of the maintenance center is
known and fixed. Unit maintenance time is knownč"

7) Due to the particularity of military tasks, priority is
given to ensuring that spare parts requirements are met
in the shortest time. The costs of storage and transporta-
tion are not taken into account.

B. DECISION VARIBLES AND PARAMETERS
The notations of the model are defined as following:

Indices
L : index of warehouses, l = 1, 2, · · · ,L
I : index of distribution centers, i = 1, 2, · · · , I
J : index of customers, j = 1, 2, · · · , J
K : index of the periods of spare parts supply, k =

1, 2, · · · ,K
Parameters
Dkj : spare parts demand of the customer j at the period k
Tli : unit delivery time of spare parts from warehouse l to

distribution center i
Tij : unit delivery time of spare parts from distribution

center i to customer j
Tjq : unit delivery time of spare parts from customer j to

maintenance center
Tqi : unit delivery time of repaired spare parts from main-

tenance center to distribution center i
Tq : unit maintenance time of maintenance center
σj : maximum fill rate of the customer j
Ci : maximum capacity of the distribution center i
ω : repair capacity at maintenance center
The decision variables are denoted as follows:
xkli : the amount of spare parts from warehouse l to distri-

bution center i at the stage k
ykij : the amount of spare parts from distribution center i to

customer j at the period k
zki : the amount of spare parts from maintenance center to

distribution center i at the period k .

C. MATHEMATICAL MODELING
In the model, the shortest lead time and the maximum fill
rate are considered simultaneously as the two conflictive

objective functions. The following constraints should also
be considered. At first, the number of spare parts enters
each distribution center should not exceed the maximum
capacity of the distribution center. Secondly, the flow of each
node (distribution centers or maintenance centers) should be
balanced, that is, the output should not exceed the sum of
input and inventory. Thirdly, the spare parts fill rate of each
customer should be greater than 1 and below the prescribed
threshold.

At the first period, the total time of spare parts supply
includes the deliver time from warehouses to distribution
centers, transportation time from distribution centers to cus-
tomers, transportation time from customers to maintenance
center, transportation time from maintenance center to distri-
bution centers and maintenance time in maintenance center.
The formula is as follows:

T 1
=

∑
l

∑
i

(x1li × Tli)+
∑
i

∑
j

(y1ij × Tij)

+

∑
j

(D1
j × Tjq)+

∑
i

(z1i × Tqi)+
∑
l

(D1
j × Tq) (1)

The overall fill rate of the customers region is the ratio of
the quantity supplied to demand. The formula of the fill rate
at the first period is as follows:

S1 =

∑
i

∑
j
y1ij∑

j
D1
j

(2)

The total fill rate should be between 1 and the maximum
threshold, which is formulated as follows:

1 ≤

∑
i

∑
j
y1ij∑

j
D1
j

< σj (3)

When the spare parts reach the distribution centers from
the warehouses, the capacity of each distribution centers is
limited, which is formulated as follows:∑

l

x1li < Ci (4)

When the repaired spare parts reach the distribution cen-
ters, the capacity of each distribution center is limited, which
is formulated as follows:∑

l

x1li −
∑
j

y1ij + z
1
i < Ci (5)

The output of spare parts at each distribution center should
not be greater than the input:∑

j

y1ij <
∑
l

x1li (6)

In the maintenance center, the number of repaired spare
parts is equal to the number of defective spare parts multiplied
by the maintenance capacity:∑

i

z1i = ω
∑
j

D1
j (7)
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At the next k − 1 periods, the calculation of the total spare
parts supply time is the same as that in the first period, with
the following formula:

T k =
∑
l

∑
i

(xkli × Tli)+
∑
i

∑
j

(ykij × Tij)

+

∑
j

(Dkj × Tjq)+
∑
i

(zki × Tqi)

+

∑
l

(Dkj × Tq), k ∈ 2, 3, · · ·K (8)

The total fill rate of the customers at period k is calculated
in the same way as the first period:

Sk =

∑
i

∑
j
ykij∑

j
Dkj

, k ∈ 2, 3, · · ·K (9)

Total fill rate constraint of customers at period k is given
as follow:

1 ≤

∑
i

∑
j
ykij∑

j
Dkj

< σj, k ∈ 2, 3, · · ·K (10)

As the supply at first period lets the distribution centers to
have inventory, when the next batch of spare parts arrive at the
distribution centers from the warehouse, the supply flow and
the existing stock should not exceed the capacity limitation
of the distribution centers. The formula is as follows:∑
l

xk−1li −

∑
j

yk−1ij + z
k−1
i

+

∑
l

xkli < Ci, k ∈ 2, 3, · · ·K (11)

Similarly, the capacity constraint when repaired spare parts
reach the distribution centers at period k is as follows:∑
l

xk−1li −
∑
j

yk−1ij +z
k−1
i +

∑
l

xkli

−

∑
j

ykij+z
k
i <Ci, k ∈ 2, 3, · · ·K (12)

The output of spare parts at each distribution center should
not be greater than input:∑

j

ykij <
∑
l

xkli, k ∈ 2, 3, · · ·K (13)

In the maintenance center, the amount of repaired spare
parts is equal to the number of defective spare parts multiplied
by the maintenance capacity:∑

i

zki = ω
∑
j

Dkj , k ∈ 2, 3, · · ·K (14)

Above all, the following constrained multi-objective non-
linear integer programming model is established:

minF1 =
∑
k

T k , k = 1, 2, 3, · · · ,K

maxF2 =
∑
k

Sk , k = 1, 2, 3, · · · ,K

s.t.

1 ≤

∑
i

∑
j

ykij∑
j

Dkj
< σj, k = 1, 2, 3, · · · ,K

∑
l

x1li < Ci∑
l

x1li −
∑
j

y1ij + z
1
i < Ci∑

l

xk−1li −

∑
j

yk−1ij + z
k−1
i +

∑
l

xkli

< Ci, k = 2, 3, · · · ,K∑
l

xk−1li −

∑
j

yk−1ij + z
k−1
i +

∑
l

xkli −
∑
j

ykij

+ zki < Ci, k = 2, 3, · · · ,K∑
j

ykij <
∑
l

xkli, k = 1, 2, 3, · · · ,K∑
i

zki = ω
∑
j

Dkj , k = 1, 2, 3, · · · ,K

xkli, y
k
ij, z

k
i ∈ N

+, k = 1, 2, 3, · · · ,K

III. THE PROPOSED QOLMALO ALGORITHM
A. DESCRIPTION OF BASIC ANT LION OPTIMIZER
The way that ant lion optimizer find the optimal solutions is
simulating the process of ant lions build trap and prey ants in
nature. So there are two populations in the ant lion algorithm,
that is, the ant lions and the ants. The hunting process consists
of five basic steps: random walk of ants, ants fall into traps,
ants slid towards ant lions, ant lions catch ants and ant lions
reconstruct traps. The basic steps of the ant lion optimizer
simulate the above process, and the mathematical description
is as follows:
(1) The random walk of ants is formulated as follows:

x(t) = [0, cumsum(2r(t1)− 1),

cumsum(2r(t2)− 1), . . . , cumsum(2r(tn)− 1)]

(15)

where cumsum calculates the cumulative sum, t is the number
of iterations, and n is the maximum number of iterations.

r(t) =

{
1 if rand > 0.5
0 if rand ≤ 0.5

is a random function related to

t , and rand satisfies the uniform distribution of [0 ∼ 1].
In order to ensure that ants move randomly in search space

and prevent them from crossing the boundary, it is necessary
to normalize the position of ants:

X ti =
(X ti − ai)× (d ti − c

t
i )

bi − ai
+ cti (16)

where cti and d
t
i indicate the minimum value and the maxi-

mum value of the variable i of one ant at the t − th iteration
respectively; ai and bi indicate the minimum value and the
maximum value of the variable i of the ant respectively.
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(2) By simulating the process of random walking around
the ant lion and falling into a trap, the formula is as follows:

cti = Antliontj + c
td ti = Antliontj + d

t (17)

where ct and d t are the minimum and maximum values of all
variables in the t − th iteration; Antliontj is the position of ant
lion j at the t − th iteration.
(3) By adaptively reducing the random walk range of the

ants, the process of the ants to slide into the ant lion is
simulated as follows:

ct =
ct

I
, d t =

d t

I
(18)

where I = 1 + 10
ω t
T is gradually increased as the number

of iterations increases. t is the number of iterations, T is
the maximum number of iterations, t = 1, 2, · · · ,T , ω is
dynamically adjusted with the number of iterations.

(4) The simulation of capture process is as follows:

Antliontj = Ant ti if f (Ant
t
i ) < f (Antliontj ) (19)

whereAntliontj is the position of ant lion j at the t−th iteration,
Ant ti is the position of ant i at the t − th iteration.
Select the ant lion with optimal fitness as elite individual

which decides the position of ants in the next iteration. Ants
move randomly towards both a randomly selected ant lion and
the elite ant lion, with the following formulas:

Ant ti =
RtA + R

t
E

2
(20)

where RtA is a random movement around an ant lion selected
by roulette wheel selection mechanisms. RtE is a random
movement around the elite ant lion.

(5) Reconstruction the trap. Use an external archive to
store the non-dominant solution set. The niche technique is
used to measure the distribution of solutions in archives. The
distribution of the solution ismeasured by the number of other
solutions in the neighborhood of each solution. The more the
solution in the neighborhood, the denser the individual is.

B. QUASI-OPPOSITION BASED LEARNING STRATEGY
Traditional meta-heuristic algorithms usually begin with a
set of random initial solutions, but the randomly generated
initial solutions may be far from the optimal solutions. So it
takes a long time for the algorithm to converge to the optimal
solutions. Therefore, in this paper, the quasi-opposition based
learning (QOBL) strategy is used to optimize the initial popu-
lation [26]. In this way, the convergence rate of the algorithm
can be improved, as well as, the diversity of the population
can be increased.

For a real number x with search interval [a, b], its opposite
number ox is defined as follows:

ox = a+ b− x (21)

Its quasi-opposites number is defined as follows:

qox = rand((
a+ b
2

), ox) (22)

Then, for a D dimensional individual X = [X1,X2, . . . ,
XD], its quasi-opposites individual is QOX = [qox1,
qox2, . . . , qoxD]. The value of i − th variable in QOX is
qoxi = rand(( ai+bi2 ), oxi).

After the quasi-opposite population is obtained, it is mixed
with the individual of the original population as the new
population.

C. LEVY FLIGHT
Levy flight is a style of movement in nature, and its step
length obeys a heavy-tail probability distribution. The defi-
nition of a Levy flight stems from the mathematics related
to chaos theory and is useful in stochastic measurement
and simulations for random or pseudo-random natural phe-
nomena [27]. This stochastic technique has been used in a
lot of metaheuristic optimization algorithms such as particle
swarm optimization [28], grey wolf optimizer [29], cuckoo
search algorithm [30], and so on. Some scholars have also
improved the theory and proposed the normalized truncated
Levy walks [31]. Its trajectory is shown in Figure 2. It can
be seen from the figure that the particle moves in the form
of Brownian motion with an occasional long-distance flight.
Therefore, using this mechanism in ant lion algorithm can
make the population have good ability of both local exploita-
tion and global exploration.

FIGURE 2. Trajectory of Levy flight.

The position updated formula of Levy flight is as follows:

xt+1 = xt + s (23)

where xt is the position at the t − th iteration, xt+1 is the
position at the (t + 1) − th iteration, s is step length which
obeys Levy distribution.

Levy distribution is a distribution of the sum of N ran-
dom variables distributing identically and independently.
In general, Levy distribution should be defined in terms of
Fourier transform: FN (k) = exp(−N |k|β ), 0 < β ≤ 2
where, N is a scale parameter, and β is an index parameter.
However, it is difficult to get the actual distribution L(s),
because there is no analytical forms of the integral L(s) =
1
π

∫
∞

0 cos(ks) exp(−N |k|β )dk, 0 < β ≤ 2, except for a few
special case such as β = 1 and β = 2. The generation of
steps obeys Levy distribution is quite tricky, and there are
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a few ways of achieving this currently. The step length s is
often simulated by Mantegna algorithm, and the formulas are
as follows [32]:

s =
µ

|υ|1/β
(24)

where µ and υ are normal distributed with an expectation of
zero. Their variances are shown as follows:

σµ =


01+ βsin

πβ

2

0
1+ β
2

β
2
β − 1
2



1
β

, σv = 1 (25)

β usually equal to 1.5.
Therefore, the random walk mechanism in the basic ant

lion algorithm, shown as Eqs. (15), is replaced as follow:

x(t) = [0, cumsum(L(t1)), cumsum(L(t2)),

. . . , cumsum(L(tn))] (26)

where L(t) is the Levy fly in t − th iteration.

D. COMPLETE ALGORITHM
In the improved algorithm, Levy flight is used to replace the
random walk mechanism in the basic algorithm to increase
the ability of local exploitation and global exploration of
the algorithm. Firstly, the elite ant lion and random ant
lion are selected from the external archive based on non-
dominance relationships and crowding distance. Secondly,
we make these two individuals to perform Levy flight. The
process is actually to make every dimension variable on each
individual to perform Levy flight process. Quasi-opposites
learning strategy is adopted after the population is updated
using Eq. (20). In this way, it’s possible to increase diversity
of the population and improve the convergence speed. The
detail of the proposed QOLMALO algorithm is presented
in Algorithm 1.

IV. PERFORMANCE TEST
A. METRIC AND BENCHMARKS
Formulti-objective optimization algorithms, the performance
of the algorithms is mainly reflected in convergence and dis-
tribution of the results [33]. Convergence describes the degree
of approximation distance between the results obtained by the
algorithm and the true Pareto front (TF). The stronger the
convergence of the algorithm, the closer the solution set is
to the true optimal solution, and the more accurate the result
is. The distribution describes the distribution characteristics
of the obtained results in the objective space. On the one
hand, the results should be distributed as much as possible
on the whole PF, and on the other hand, the results should be
distributed as evenly as possible. The stronger the distribution
of the algorithm represents a better global exploration ability
of the algorithm. An example is shown in Figure3:

It can be see that, the result of Figure (A) has good distri-
bution and convergence, the result of Figure (B) has a week

Algorithm 1 QOLMALO
1: Define the fitness function, F = [F1,F2, · · · ,FM ] ∈

�M

2: Set the individual dimensions, population size, scale
of external archival, value range of variable,
maximum iteration number

3: Initialize the population and the external
archive.(step1)

4: While (t < itermax)
5: for i = 1 : n
6: Calculate the fitness value and find the elite ant

lion(step2)
7: Update and maintain external archives(step3)
8: Select the random ant lion and elite ant

lion(step4). Levy flight is adopted based on
Eqs. (26), and the individual position of
population is updating according to Eqs. (20)

9: end for
10: for i = 1 : n
11: for j = 1 : d
12: Calculate the opposite and quasi-opposite

values of each decision variable by
Eqs. (21) and Eqs.(22)

13: Mi,j = (ai + bi)/2
14: If (Xi,j < Mi,j)
15: QOXi,j = Mi,j + (OXi,j −Mi,j)× rand
16: else
17: QOXi,j = OXi,j + (Mi,j − OXi,j)× rand
18: end if else
19: end for
20: end for
21: The quasi opposite population is mixed with the

original population, and the fitness of the new
population is calculated. According to the
dominance relation and the crowding degree, the
new population is selected to form the mixed
population.

22: end while
23: The individuals in external archive are optimal

solution set

convergence, and the results of Figure (C) and Figure (D)
have week distribution.

To measure the performance of the algorithm, among the
many metrics, inverted generation distance (IGD) and hyper
volume (HV) were selected because they can reflect the con-
vergence and distribution of the algorithm at the same time.

IGD describes the average distance from the result to the
reference point. The smaller the value, the closer the solution
set to the real PF, and the better distribution is. The formula
is as follows:

IGD=
∑
z∈P∗

d(z,P)/
∣∣P∗∣∣ (27)
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TABLE 2. Benchmarks of ZDT.

FIGURE 3. Illustration of distribution and convergence.

where P∗ indicates reference point, which is selected from
the true PF. P is the front line of the solution obtained by the
algorithm, d(z,P) is the minimum Euclidean distance from
the P∗ to the P, and |P∗| is the size of P∗.

HV indicates the hyper volume of the points and reference
points obtained by the algorithm in the target space. The
larger value represents better convergence and distribution of
the algorithm. The formula is as follows:

HV =3(
{⋃

hi|pi ∈ P
}
)=3(

⋃
pi∈P

{
x|pi<x<xref

}
) (28)

where 3 is Lebesgue measure, P is the solution obtained by
the algorithm, xref indicates reference point.

In order to study the performance of the improved algo-
rithm, five representative benchmark functions ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6 are selected from ZDT series bench-
marks [34]. Among them, ZDT1 and ZDT4 have convex
TF, ZDT2 and ZDT6 have concave TF, and ZDT3 has a
discontinuous TF. The exact description is shown in Table 2.

B. EXPERIMENTS AND ANALYSIS
In this paper, the improvement of the QOLMALO algorithm
compared with the original MALO algorithm, MOPSO algo-
rithm and the NSGA-II algorithm is verified by experiments.
The simulation studies were carried out in a MATLAB 2014b
platform on an ASUS laptop with 5-6300HQ 2.3GBz CPU,
4GB RAM in Windows 7.0(64-bit) environment. In order to
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FIGURE 4. Distribution of optimal solution in each algorithm.

ensure fairness, the population size of all experiments was
100, and the number of iterations was 100.

The above four algorithms are used to solve the five bench-
mark functions, and the distribution of the optimal solutions
in the objective space are shown in Figure 4.

The solid line indicates the True PF (TF) of the benchmark
functions, and the scatter represents the optimal solutions
obtained by different algorithms. The figures represent the
results of each algorithm for solving the ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6. In Figure 4, the x-axis and y-axis labels
corresponding to the fitness function f1 and fitness function
f2 respectively. From left to right correspond to the results
of QOLMALO,MOPSO,MALO, and NSGA-II respectively.
The performance of the algorithm can be observed intuitively
from the graph. Compare the four graphs in Figure (a),
it can be found that the solutions of all algorithms can land
on the solid line when solving the ZDT1 problem, which
shows that the four algorithms have good convergence for
solving the ZDT1 problem. However, it is obvious that the
solution of MALO is not well distributed on the whole
TF, while the other three algorithms are widely distributed
and uniform. It is showed that the distribution of QOL-
MALO, MOPSO and NSGA-II are better than that of MALO
as solving ZDT1 problem. In the same way, we can find

that the four algorithms have good convergence in solving
ZDT2, but the distribution of QOLMALO, MOPASO and
NSGA-II is better than that of MALO. Comparing the results
in Figure (c), we can find that the convergence and distri-
bution of QOLMALO and NSGA-II are very good when
solving the ZDT3 problem.At the same time, the convergence
of MOPSO is very good, but the distribution is not satis-
fied. Meanwhile, the convergence and distribution of MALO
algorithm are both poor. Figure (d) and Figure (e) show that
the convergence and distribution of QOLMALO are of good
performance, however, the performances of MOPSO,MALO
and NSGA-II when solving the ZDT4and ZDT6 are poor.

In summary, it can be seen from the distribution of the
optimal solutions that the proposed QOLMALO algorithm
has better convergence and distribution in solving all kinds of
benchmark functions. This shows that the proposed improved
algorithm greatly improves the performance of the original
MALO algorithm and has good adaptability and robustness
in solving multi-objective problems.

In order to get accurate results from the data, each bench-
mark was tested 30 times using each algorithm. The IGD
and HV of each trial were counted. By analyzing the values
of IGD and HV in Table 3, the performance of the four
algorithms can be judged accurately.
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TABLE 3. Mean and standard deviation of each metric for the three algorithms to solve the benchmarks.

For the mean value, the best algorithm corresponds to
the minimum value of IGD and the maximum value of HV.
It can be seen from the bold numbers that the value of IGD
with QOLMALO algorithm is the smallest among all the
benchmark functions, that is, the convergence and distribu-
tion of the QOLMALO are the best. Although the HV of the
QOLMALO algorithm can only reach the maximum value
just in the ZGT3 problem, the value of HV (0.5330) is not far
from that of the MOPSO algorithm (0.5394).

For the standard deviation, the smaller value corresponds
to a better stability of the algorithm. The bold numbers show
that, the minimum of all standard deviations corresponds to
the QOLMALO algorithm. This shows that the QOLMALO
algorithm has good stability in solving all benchmarks.

TABLE 4. Spare parts deliver time between pairwise nodes (h).

TABLE 5. Maximum capacity of each distribution center.

TABLE 6. Demand for spare parts in each period of customer.

V. QOLMALO FOR SPARE PARTS CLOSED-LOOP
LOGISTICS NETWORK OPTIMIZATION
A. SIMULATION EXPERIMENTS
A two periods three-echelon spare parts logistics network
is considered. The unit deliver time, maximum capacity of
each distribution center, and spare parts requirements at each
period of the customers are shown in Table 4, 5 and 6.

The maximum fill rate of the customers is 1.2, the repair
capacity of maintenance center is 0.6, and the unit spare parts
maintenance time is 5h.
There are 30 decision variables, 2 objectives and 24 con-

straints in this multi-objective optimization model. In this
paper, the penalty function method is used to transform the
constrainted problem into an unconstrained problem [35].
Therefore, the final fitness functions of the model are as
follows:

81(X ) = F1(X )+M × (
∑

G(X )+
∑

H (X ))

82(X ) = 1/F2(X )+M × (
∑

G(X )+
∑

H (X )) (29)

where F1(X ), F2(X ) are two objective functions in the
model, G(X ) and H (X ) indicate the corresponding viola-
tion function of inequality constraints and equality con-
straints in the model, respectively, G(X ) = max[0, g(x)],
H (X ) = max[0, |h(x)− ξ |]. g(x) indicates inequality con-
straints, h(x) indicates equality constraints. The penalty factor
M is 100000 in this paper.

B. COMPARISION OF DIFFERENT ALGORITHMS
In order to test the effectiveness of theQOLMALOalgorithm,
three classical algorithms, NSGA-II, MOPSO, SPEA2 and
the original MALO algorithm are selected to solve the model.
The results of different algorithms are compared to analyze
the advantages and disadvantages of each algorithm. In order
to ensure the fairness of the experiment, the population size of
all the algorithms is 100 and the maximum iteration number
is 1000. Each algorithm runs 10 times independently, and the
results of 10 times are compared according to the dominating
relation. The non-dominant solutions are chosen as the final
supply project of each algorithm.
In Figure 5, the x-axis and y-axis labels corresponding to

the fitness function 81 and fitness function 82 respectively,
which are formulated in Eqs. (29). Figure 5 shows that the
results of other algorithms are dominated by the results of
the QOLMALO algorithm. That is, the total supply time
occupied by the result of QOLMALO algorithm is less than
the supply time obtained by the other algorithms. At the same
time, the overall spare parts fill rate of the customers is also
larger than the results of other algorithms. It is obvious that
the proposed algorithm has a great improvement compared
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TABLE 7. Statistical result of each algorithm.

TABLE 8. Statistical result for different maintenance capacity.

FIGURE 5. Result of each algorithm.

with the original MALO algorithm. The QOLMALO algo-
rithm is superior to other traditional methods in solving the
spare parts supply network model as well.

Table 7 gives the number of non-dominant solutions, the
average, maximum, minimum and standard deviation of the
two objectives corresponding to each algorithm. It should be
emphasized that F1 and F2 is the value of objective functions
of the model rather than the fitness functions. F1 indicates
the total time of supply, and the smaller the value will get
the better the result. F2 indicates the overall fill rate of the
spare parts, and the greater the value corresponds to the better
the result. The bold numbers correspond to the minimum of
F1 and the maximum of F2. It can be seen that, compared
with the other algorithms, the mean, maximum and minimum
values of the F1 with QOLMALO are minimal, and the aver-
age and maximum value of F2 are the maximal. This means

that the supply scheme obtained by QOLMALO algorithm is
better than the results of other methods.

C. COMPARISION OF DIFFERENT
MAINTENANCE CAPACITY
In order to study the effect ofmaintenance center on thewhole
logistics network, the maintenance capacity ω of the mainte-
nance center is set as 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively.
The structure of the network is different from other situations
while ω = 0 . In this case, there is no maintenance center
in the logistics network, so it is a traditional forward supply
network. The demands of the customers must be met within
single period. The situation with ω = 1 indicates that the
maintenance center can repair all defective spare parts as new.

FIGURE 6. Result of each maintenance capacity.

Figure 6 shows that the results obtained while ω = 1 dom-
inate the results in other cases. That is, when the maintenance
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center can repair all the defective spare parts, the total time
consumed by the logistics network will be the shortest. In the
case of without maintenance center, the logistics network is a
traditional forward network, which takes the longest time and
the minimum spare parts fill rate. Therefore, compared with
the traditional forward logistics network, the proposed mul-
tiple periods closed-loop logistics network with maintenance
center has reduced the supply time and obtain greater fill rate
of spare parts at the same time.

The number of non-dominant solutions, mean value, max-
imum, minimum and standard deviation of the two objec-
tives corresponding to each case are in Table 8. The mean,
maximum and minimum values of F1 are minimal, as well
as, the minimum and the maximum of F2 are maximal in
the case of ω = 1. This shows that the results in the case
of ω = 1 are better than the results of other situations.
Therefore, decision-makers can improve the efficiency of the
closed-loop network by improving the maintenance capacity
of maintenance center.

VI. CONCLUSION
In order to improve the efficiency and effectiveness of the
spare parts supply, the characteristics of closed-loop logistics
network have been analyzed firstly. A multi-period closed-
loop logistics network has been designed with the aim at
obtaining the shortest deliver time and the maximum fill rate
under the constraints of other practical situations. A nonlinear
integer programming model with multi-objective and multi-
constraint has been established which transforms the spare
parts supply problem into constrained multi-objective opti-
mization problem.

To solve this multi-objective optimization problem,
an improved multi-objective ant lion optimization algorithm
is proposed. Based on the traditional ant lion algorithm,
the following improvements aremade in QOLMALO. Firstly,
the quasi-opposites learning strategy is used to optimize the
population, which can increase the diversity of the popula-
tion and improve the convergence speed of the algorithm.
Secondly, Levy flight is used to replace the random walk
mechanism in the original algorithm. On the one hand,
the Brownian motion of the individual is used to com-
plete the local exploration of the algorithm.On the other hand,
the occasional long distance flight is used to improve the
global exploration of the algorithm to overcome the problem
of premature convergence. In order to test the performance
of the proposed algorithm, five standard benchmark func-
tions with typical characteristics are selected. The proposed
QOLMALO is comparedwith the original multi-objective ant
lion algorithm and other classical multi-objective optimiza-
tion algorithm. The simulation results show that the improved
algorithm has better convergence and distribution than other
algorithms in solving all the benchmark functions.

Through the contrast experiment, it is verified that the
proposed QOLMALO algorithm has good adaptability and
robustness in solving spare parts logistics network opti-
mization problems. On the other hand, the advantages of

closed-loop logistics network over traditional forward net-
work in spare parts supply are verified. The next step of this
paper will continue to improve the algorithm to solve many-
objective optimization problem. At the same time, a new
constraint treatment method is explored to solve practical
engineering problems.
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