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ABSTRACT Software maintenance is an essential phase of software development. Developers employ issue
tracking systems to collect bugs for software improvement. Users submit bugs through such issue tracking
systems and decide the severity of reported bugs. The severity is an important attribute of a bug that decides
how quickly it should be solved. It helps developers to solve important bugs on time. However, manual
severity assessment is a tedious job and could be incorrect. To this end, in this paper, we propose a deep
neural network-based automatic approach for the severity prediction of bug reports. First, we apply natural
language processing techniques for text preprocessing of bug reports. Second, we compute and assign an
emotion score for each bug report. Third, we create a vector for each preprocessed bug report. Forth, we pass
the constructed vector and the emotion score of each bug report to a deep neural network based classifier for
severity prediction. We also evaluate the proposed approach on the history-data of bug reports. The results of
cross-product suggest that the proposed approach outperforms the state-of-the-art approaches. On average,
it improves the f-measure by 7.90%.

INDEX TERMS Bug reports, deep learning, severity prediction, software maintenance.

I. INTRODUCTION
Software maintenance is an essential phase of software devel-
opment. One of the most important tasks of the maintenance
process is bug resolution [1], where bug reports represent the
bugs that users encountered while using released software
systems. Developers are interested to collect such bugs for the
improvement of software systems. They utilize bug tracking
systems (e.g., Bugzilla [2] and JIRA [3]) that help developers
to manage bug reporting and bug triaging [4].

Users often submit bug reports through issue tracking sys-
tems. A bug report describes the particular situation under
which a software bug occurred and contains information
of bug regeneration. A typical bug report contains multiple
attributes: bug-id, submission date, status, priority, severity,
summary, and description. However, the severity is an impor-
tant attribute of a bug report that decides how quickly it should
be resolved. In Bugzilla, severity of a bug report may varies
from trivial, minor, normal, major, critical to blocker. Users
decide and manually assign the severity to bugs at reporting
time which is a tedious task that requires domain knowledge.

The associate editor coordinating the review of this manuscript and
approving it for publication was Santhosh Kumar Gopalan.

It may lead to an incorrect assessment of severity due to
different reasons e.g., inexperienced users.

Researchers have proposed different approaches [5]–[10]
to automate the severity prediction of bug reports. Most
of the approaches focus on traditional classification algo-
rithms, i.e., j48, decision trees, naive Bayes and support vec-
tor machine. However, the performance of such approaches
require significant improvement, and none of them incor-
porate the reporters’ emotion in severity prediction [11].
Umer et al. [11] reported that the count of negative emo-
tions of reporters is higher in severe bugs as compared to
non-severe bugs. Hence, reporters while writing bugs are
expressive. For example; the words/phrases (e.g., pathetic
interface,worst, incorrect) used by reporters may indicate the
urgency of a bug report. Such expressions (emotions) could
help in severity prediction of bug reports.

To this end, in this paper, we propose an automatic
approach for the severity prediction of bug reports using
a deep learning classification algorithm. We apply natural
language processing techniques for text preprocessing of bug
reports. Given the preprocessed bug reports, we perform an
emotion analysis and assign an emotion score to each bug
report as users are often expressive while experiencing bugs
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and writing bug reports that may influence the selection of
severity level. Furthermore, we create a vector for each bug
report based on the preprocessed text. Finally, we pass the
constructed vector and the emotion score of each bug report to
a deep neural network based classifier that predicts the sever-
ity of bug reports. We also evaluate the proposed approach
on the history-data of bug reports. Results of cross-product
suggest that the proposed approach outperforms the state-
of-the-art approaches. On average, it improves the f-measure
by 7.90%.
This study makes the following contributions:
• An automated deep neural network based approach for
severity prediction of bug reports. To the best of our
knowledge, it is the first deep learning based approach
to predict the severity of bug reports.

• Evaluation results of the proposed approach on the
history-data suggest that the proposed deep learning
approach is accurate in severity prediction of bug reports
and outperforms the state-of-the-art approaches.

The remaining sections of the study are organized as fol-
lows: Section II defines the proposed approach in detail.
Section III describes the evaluation process of the proposed
approach and its results. Section IV explains the threats.
Section V discusses the related work respectively. Section VI
concludes the paper and suggests future work.

II. PRELIMINARY STUDY
A. EMOTION ANALYSIS
Recently, researchers are facing a challenge to make the
machines emotionally intelligent in software engineering
[12]. The software engineering related text (bug reports in our
case) may contain emotion words. For example, a bug report
can be declared either emotionally positive if it contains pos-
itive words (e.g., good, well, right) or emotionally negative if
it contains words (e.g., bad, wrong, suffer).

To this end, we analyze the emotional words of bug reports
based on bug severity levels (trivial, minor, normal, major,
critical, and blocker). We observed that the words break,
wrong, and incorrect having highest negative scores. In our
case (binary classification), the words (e.g., break, crash, and
error) indicate the severe bugs reports. Whereas, the words
(e.g., warn,minor, and incorrect) indicate the non-severe bug
reports. Note that we utilize Senti4SD repository for emotion
analysis as explained in Section III-E.

III. APPROACH
A. OVERVIEW
An overview of the deep neural network based severity pre-
diction of bug reports is presented in Fig. 1. The proposed
approach predicts the severity of bug reports as follows:
• First, we extract the history-data of bug reports from
open-source projects.

• Second, we preprocess the bug reports using natural
language processing techniques.

• Third, we compute and assign an emotion score to each
bug report.

FIGURE 1. An overview of the proposed approach.

• Fourth, we create a vector (word-embeddings) for each
preprocessed bug report.

• Finally, we train a deep learning based classifier for
severity prediction. We input the emotion score and the
vector of each bug report to the classifier for its severity
prediction.

The following sections introduce each of the key steps of the
proposed approach.

B. ILLUSTRATING EXAMPLE
We use the given example to illustrate how the proposed
approach predicts the severity of bug reports. It is an Eclipse
bug report (#437094) collected from Bugzilla [2].

• Product = ‘‘ECP’’ is the name of the affected product.
• Textual Information = ‘‘The EMFFilter must be
updated to filter out new models added to luna’’ is the
description of the bug report. It may contain the details
on how the bug can be regenerated.

• Severity = ‘‘critical’’ is the severity of the bug report
that indicates how quickly a bug report should be
resolved.

The following sections present the details on how the pro-
posed approach performs for the illustrating example.

C. PROBLEM DEFINITION
Software developers often employ bug tracking system for
software maintenance. We collect and save the bug reports
of Mozilla and Eclispe from Bugzilla where severity of bug
reports varies from trivial, minor, normal, major, critical to
blocker. In the proposed approach, we specify the severities
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trivial, minor, and normal as non-severe. Whereas, major,
critical, and blocker are specified as severe.
Given a set of bug reports R, a bug report r can be formal-

ized as

r =< t, s > (1)

where t and s are the textual description and severity of r ,
repectively.

For the illustrating example presented in this section,
we have

re =< te, se > (2)

where,
te = ‘‘The EMFFilter must be updated to filter out new

models added to luna’’, and
se = severe
The proposed approach predicts the severity of the new

bug report either severe or non-severe. severe indicates that
the new bug is more important and urgent than non-severe
existing bugs.Whereas, non-severe indicates that the new bug
report may be postponed to first solve the existing severe
bugs. Consequently, the severity prediction of a new bug
report r can be defined a mapping f as

f : r → c

c ∈ {severe, non−severe} , r ∈ R (3)

where c is a predicted severity either severe or non-severe, r is
a bug report, and R is a set of bug reports.

D. PREPROCESSING
In this section, we briefly introduce each of the key steps
of natural language processing that we apply to preprocess
the text of bug reports. We perform tokenization, spell cor-
rection, stop-word removal, word inflection, and lemmatiza-
tion to clean the textual description of bug reports. To this
end, we employ Natural Language Toolkit (NLTK) [13]
and TextBlob [14] to apply natural language processing
techniques.

1) TOKENIZATION
The textual description of bug reports usually combines word
and meaningless symbols e.g., punctuation. Such symbols do
not contribute to the severity classification of bug reports.
Tokenization filters out the meaningless symbols and divides
the remaining text into tokens.

2) SPELL CORRECTION
The unstructured attributes (e.g., summary and description)
of bug reports contain text written by users that may have
spelling mistakes or typo-errors. Therefore, we correct such
mistakes in this step of preprocessing.

3) STOP-WORD REMOVAL
The text of a document often contains constructive terms
(e.g., prepositions) and other language structures tomake sen-
tences. Such terms are known as stop-words. The occurrence

of stop-words in bug reports may increase the dimensionality
of data that may decrease the efficiency of classification
algorithms. In this perspective, we subtract stop-words from
the preprocessed bug reports.

4) WORD INFLECTION AND LEMMATIZATION
Word inflection transforms words into their singular form and
lemmatization shifts the comparative and superlative terms
into their basic term. For example; inflection transforms the
word bugs into bug and lemmatization shifts the word com-
putation into compute. We perform both word inflection and
lemmatization to avoid the repetition of words that share the
same basic term. Finally, we convert all the preprocessed
words into lowercase.

A preprocessed bug report r can be represented as

r ′ = < wn, s > (4)

wn = < w1,w2, . . . ,wn > (5)

wherew1,w2, . . . ,wn represent the tokens from preprocessed
bug report r .
For the illustrating example presented in Section III-B,

Table 1 represents the effect of each preprocessing step on
re. A preprocessed re can be represented as

r ′e =< emffilter, update,filter, . . . , luna, severe > (6)

where emffilter, update, filter, . . . , luna are the preprocessed
words from re and severe is the severity of re.

E. EMOTION SCORE CALCULATION
We compute the emotion score for each bug report as users
are often expressive while experiencing bugs and writing bug
reports. There are a number of tools available to compute
the emotion score of the written text e.g., SentiWordNet [15].
However, to the best of our knowledge, SentiStrengthSE [16],
SentiCR [17], Senti4SD [18] and EmoTxt [19] are widely
used classification tool for software engineering text. We uti-
lize a repository Senti4SD for two reasons: it is most
recent and commonly used repository for emotion analy-
sis in software engineering domain [20], [21] and accord-
ing to Calefato et al., it outperforms the SentiStrength,
SentiStrengthSE, and SentiCR in classifying software engi-
neering documents [18].

We pass the each bug report to the Senti4SD to compute
its emotion score. Note that we pass the textual description
of each bug report regardless of its severity level. Senti4SD
returns the emotion score of the given bug report. A bug report
r ′ with its emotion score es can be represented as

r ′′ =< es,w1,w2, . . . ..wn, s > (7)

To compute the emotion score of the given bug report,
Senti4SD calculates the semantic features of the report as
the distance between its vector representation and four pro-
totype distributed semantic vectors. The vectors represent
the three polarities and subjectivity. Senti4SD computes a
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TABLE 1. An example of preprocessing.

FIGURE 2. Word2Vector model.

vector sum of the words with their polarities according to the
SentiStrength lexicon [22].

For the illustrating example presented in Section III-B,
we compute its emotion score. A bug report r ′e with its
emotion score can be represented as

r ′′e =< positive, emffilter, update,filter, . . . , luna, severe >

(8)

where positive represents the emotion score of r ′e.

F. WORD EMBEDDINGS
To input the textual description of bug reports to a deep learn-
ing based classifier, we transform words into fixed-length
numerical vectors using word2vec (a skip-gram model) pro-
posed by Mikolov et al. [23]. It is an efficient method
for learning high quality distributed vector representations.
It captures a large number of precise syntactic and semantic
word relationships and returns k-dimensional vector. It is
essentially a neural network that predicts the surround-
ing context words given the central target word (as shown
in Fig. 2). Given a trained network, we can exploit the hidden
layer to transform words into numerical vectors.

For each bug report r ′′, we pass the preprocessed words
w1,w2, . . . ,wn from Eq. 7 and transform each word into a
fixed-length numerical vector.

wi = < w1,w2, . . . ..wn > (9)

= < v1, v2, . . . ..vn > (10)

where w1,w2, . . . ,wn is a sequence of words from each pre-
processed report and vi transformswordwi into a fixed-length
numerical vector.

For the illustrating example presented in Section III-B,
the preprocessed words emffilter, update, filter, . . . , luna from
r ′′e are passed to skip-gram model to convert them into a
fixed-length numerical vector.

G. DEEP NEURAL NETWORK BASED CLASSIFIER
The composition of the deep neural network based classifier
is presented in Fig. 3. We exploit Convolutional Neural Net-
work (CNN) for severity prediction of bug reports because of
the following reasons. First, CNN layers may learn the deep
semantical relationships between input words for severity
prediction of bug reports. Second, CNN significantly reduces
training time due to its capability for parallel computation on
modern powerful GPU [24]. Third, CNN may use different
filter size filters that avoid the exploding gradient problem of
recurrent neural network [25].

We pass preprocessed words w1,w2, . . . ,wn and emotion
score es of each bug report r ′′(Eq. 7) to the deep neural
network based classifier into two parts. We feed the words wi
into an embedding layer that transforms them into numerical
vectors as discussed in Section III-F. Consequently, we feed
the converted numerical vectors into a CNN. We use three
layers of CNN with settings: filter = 128, kernel size = 1
and activation= tanh. Where, filter represents the number of
neurons, since each neuron performs a different convolution
on the input to the layer (more precisely, the neurons’ input
weights form convolution kernels), kernel size represents the
size of the filter, and activation function represents the final
value of a neuron. We forward the output of CNN to a flatten
layer [26] that turns the given converted numerical vectors
into a one-dimensional vector.

We feed the emotion score es directly into another CNN
(with the same setting as previous CNN) whose output is
forwarded to a flatten layer. Both inputs (preprocessed words
and emotion score) are finally merged by themerge layer [27]
that combines a list of inputs. The following layers (dense
layer fully connects the 128 neurons to those in the next layer
and output layer 2 neurons) map both inputs into a single
output (prediction) that predicts the severity s of r . We use
binary_crossentropy as the loss function for the proposed
model.Where binary_crossentropyis a cross-entropy loss that
measures the performance of a classification model whose
output is a probability value between 0 and 1.
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FIGURE 3. Neural network based classifier.

IV. EVALUATION
In this section, first, we construct the research questions
to evaluate the proposed approach. Second, we explain the
collection process of bug reports. Third, we introduce the
metrics and evaluation process. Finally, we discuss the results
while answering the research questions.

A. RESEARCH QUESTIONS
We investigate the following research questions to evaluate
the proposed approach:
• RQ1: Does the proposed approach outperform the state-
of-the-art approaches in severity prediction of bug
reports? If yes, to what extent?

• RQ2: How does emotion analysis influence the perfor-
mance of the proposed approach?

• RQ3: How does the text preprocessing influence the
performance of the proposed approach?

• RQ4: Does CNN outperform the traditional machine
learning algorithms and LSTM in severity prediction of
bug reports?

The first research question (RQ1) investigates the per-
formance improvement of the proposed approach against
EWD-Multinomial [28] and severity prediction algorithm
(sPredict) [29]. We choose the approaches proposed by
Yang et al. [28] and Zhang et al. [29] for comparison because
of the following reasons. First, they provide an automatic
severity prediction of bug reports as our approach is. Second,
to the best of our knowledge, these are the state-of-the-art
approach declared to be more accurate than other related
approaches [7], [9], [10].

The second research question (RQ2) examines the influ-
ence of emotion analysis. We feed the emotion score of
each bug report with its other attributes into the deep neural
network for severity prediction of bug reports. RQ2 investi-

gates to what extent emotion analysis affects the performance
of the proposed approach.

The third research question (RQ3) examines the influ-
ence of the preprocessing on the performance of the pro-
posed approach. We apply natural language preprocessing
techniques to clean the textual description of bug reports
(mentioned in Section III-D) as most of the written text con-
tain meaningless information e.g., punctuation. RQ3 investi-
gates to what extent preprocessing effects the performance of
the proposed approach.

The fourth research question (RQ4) compares the selected
deep neural network (CNN) against alternatives. We choose
Multinomial Naive Bayes (MNB) and Random Forest (RF)
because Yang et al. [28] and Lamkanfi et al. [7] sug-
gested it as best machine learning algorithms for pre-
dicting severity. Whereas, we select Long Short Term
Memory (LSTM) because Young et al. proved it effective for
text classification [30].

B. DATASET
We reuse the dataset created by Lamkanfi et al. [31]. They
investigated the bug repository of Bugzilla to extract bug
reports from Eclipse andMozilla projects. They collected bug
reports and ignored the duplicate reports and enhancement
reports. Both projects Eclipse andMozilla contain four prod-
ucts, respectively. From the dataset, we select bug reports
of seven open source products. Platform, CDT, JDT, Core,
Firefox, Thunderbird, and Bugzilla. We ignored bug reports
from GEF as it contains small number of bug reports. We use
summary attribute that defines the bug reports and severity
attribute that indicates how urgent it is needed to be resolved.
The total number of bug reports are 59616 in which approxi-
mately 8.39%, 16.77%, 16.77%, 16.77%, 16.77%, 16.77%,
and 7.76% of bug reports belong to each product, respec-
tively.

C. PROCESS
We execute the evaluation of the proposed approach as
follows: First, we reuse the bug reports R of seven open
source products from Eclipse and Mozilla and preprocess
each bug report using natural language processing tech-
niques (mentioned in Section III-D). Second, we perform the
cross-product validation the given dataset. We divided R into
seven parts based on the project notated as Pi(i = 1 . . . 7).
For the ith cross-validation, we subtract the bug reports that
belongs to Pi and select them as testing reports Te, and the
remaining bug reports are combined as training reports Tr .
For each cross-validation, the evaluation process as follows:
• First, we combine Tr that is a union of all reports from
R but Pi.

Tri =
⋃

i∈[1,7] ∧ j 6=i

Pj (11)

• Second, we train a MNB [28] with data from Tr
• Third, we train a RF with data from Tr
• Third, we train a CNN with data from Tr .
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• Fourth, we train a LSTM with data from Tr .
• Fifth, we use the trained MNB, RF, CNN and LSTM to
predict the severity of each testing report from Te, and
compare their predicted severity with actual severity.

• Finally, we compute the accuracy, precision, recall,
F-measure, and MCC to compare the performance of
each algorithm.

D. METRICS
The accuracy, precision, recall, and f-measure are well-
known metrics that are used to evaluate the performance
of classification algorithms. To this end, we compute the
severity specific accuracy, precision, recall, and f-measure
to evaluate the performance of the proposed approach on the
given bug reports that can be formalized as,

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F−measure =
2 ∗ Precision ∗ Recall
Precision + Recall

(15)

where, Accuracy, Precision, Recall, and F-measure are the
precision, recall, and f-measure of the approach in predicting
severity of bug reports. TP is the number of bug reports that
are correctly predicted as severe, TN is the number of bug
reports that are correctly predicted as non-severe, FP is the
number of bug reports that are incorrectly predicted as severe,
and FN is the number of bug reports that are incorrectly
predicted as non-severe.

We also calculates the Mathews Coefficient Correla-
tion (MCC) to measure the quality of the classifier.

MCC=
TP∗TN−FP∗FN

√
(TP+FP)(TP+ FN )(TN+ FP)(TN+FN )

(16)

E. RESULTS
1) RQ1: COMPARISON AGAINST EWD-MULTINOMIAL
To answer the research question RQ1, we compare the
proposed approach against EWD-Multinomial [28] and
sPredict [29] in severity prediction of bug reports.

The cross-project validation results of the proposed
approach, EWD-Multinomial, and sPredict are presented
in Tables 2, 3, and 4. For each table, the first column presents
the products. Columns 2-6 present the accuracy, precision,
recall, f-measure, and MCC of each approach. Rows 3-9
present the performance results of each approach for each
cross-validation, respectively. The last row presents the per-
formance averages of each approach. The average accu-
racy, precision, recall, f-measure, and MCC of the proposed
approach are 88.10%, 82.64%, 86.16%, 84.36% and 0.286,
respectively. Similarly, the average performance results
of the EWD-Multinomial are 81.27%, 76.82%, 79.70%,
78.18%, and -0.004, respectively. Furthermore, the average

TABLE 2. Performance of the proposed approach.

TABLE 3. Performance of the EWD-Multinomial.

TABLE 4. Performance of the sPredict.

TABLE 5. Comparison against the EWD-Multinomial.

TABLE 6. Comparison against the sPredict.

performance results of the sPredict are 82.77%, 76.81%,
83.79%, 80.14%, and -0.004, respectively.
The performance improvement of the proposed approach

upon EWD-Multinomial and sPredict is presented in
Tables 5 and 6. For each table, the first column presents
the approaches. Columns 2-6 present their accuracy, preci-
sion, recall, f-measure, and MCC, respectively. The second
row and third row present the performance of the proposed
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FIGURE 4. Distribution of Accuracy.

approach and the EWD-Multinomial or sPredict, respec-
tively. The last row presents the improvement of the pro-
posed approach upon the EWD-Multinomial and sPredict in
Table 5 and Table 6, respectively.

The accuracy distribution of cross-project validation for
the proposed approach, EWD-Multinomial, and sPredict is
presented in Fig. 4. The beanplot compares the f-measure
distributions by plotting one bean for each approach. Across
a bean, each short horizontal line represents the f-measure on
a single project, whereas the long horizontal line represents
the average f-measure.
From Table 5, Table 6 and Fig. 4, we make the following

observations:
• The proposed approach outperforms the
EWD-Multinomial and sPredict. The performance
improvement of the proposed approach in accuracy,
precision, recall, f-measure, and MCC upon EWD-
Multinomial and sPredict is (8.40%, 7.57%, 8.11%,
7.90%, and 0.290) and (6.43%, 7.59%, 2.83%, 5.27%,
and 0.290), respectively. One of the possible reasons
of the significant improvement in performance is that
the k-dimensional vector computed with the syntac-
tic and semantic word relationships (mentioned in
Section III-F).

• In cross-product validation, the average performance
of the proposed approach is significantly greater than
the best performances of the EWD-multinomial and
sPredict, as shown in Fig. 4.

To validate the significant difference between the pro-
posed approach, EWD-Multinomial, and sPredict, we apply
the ANOVA analysis on their evaluation results of accu-
racy, precision, recall, and f-measure. Table 7 shows the
results of ANOVA analysis which present F > Fcric and
PValue < (alpha = 0.05) are true for each accuracy,
precision, recall, and f-measure. It suggests that the factor

TABLE 7. Results of ANOVA analysis.

TABLE 8. Influence of emotion analysis.

(using different approaches) has a significant difference in
performance results.

Based on the preceding analysis, we conclude that the
proposed approach outperforms the EWD-Multinomial and
sPredict.

2) RQ2: INFLUENCE OF EMOTION ANALYSIS
The written text usually express the emotion of the writer.
Same is the case, a bug report may contain the emotion of
the user who encountered the bug while using software sys-
tems. Such emotions may help to automate the severity level
assessment of bug reports. In this perspective, we perform an
emotion analysis of bug reports.

To answer the research question RQ2, we perform perfor-
mance comparison of proposed approach with and without
emotion score of bug reports. Table 8 presents the evaluation
results of the proposed approach by enabling and disabling
emotion score. The first column presents the emotion analysis
input settings. Columns 2-6 present the accuracy, precision,
rescall, f-measure, and MCC. The performance of proposed
approach upon different settings is presented in the rows of
the table. The last row of the table presents the improvement
of proposed approach upon different input settings for emo-
tion analysis. Fig. 5 also illustrates the performance differ-
ence of the proposed approach upon different preprocessing
input settings by combing the products into two segments.

From Table 8 and Fig. 5, we make the following
observations:
• The proposed approach with emotions obtains signif-
icant improvement in performance. The improvement
in accuracy, precision, recall, f-measure, and MCC
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FIGURE 5. Influence of emotion analysis.

is 2.83% = (88.10% - 85.67%) / 85.67%, 6.16% =
(82.64% - 77.84%) / 77.84%, 14.09% = (86.16% -
75.52%) / 75.52%, 10.58% = (84.36% - 74.29%) /
74.29%, and 0.130 = 0.286 - 0.156 respectively.

• Disabling emotion score significantly decreases the
performance in accuracy and f-measure of the pro-
posed approach up to 2.83% and 10.58%, respectively.
Although emotion score has impact on performance of
the proposed approach; however, we observe that the
performance on bug reports from JDT andCore is signif-
icantly decreased by disabling emotion score. Therefore,
we combine the given bug reports into two segments as
shown in Fig. 5. To investigate the reason behind that we
analyze the bug reports for emotion words. We observe
that 70% of emotion words belong to JDT and Core.
Whereas, 30% of emotion words belong to CDT, Plat-
form,Firefox, Thunderbird, andBugzilla. However, 45%
of emotion words are common in both segments. The
facts suggest that the use of emotion word in a bug report
has impact in its severity prediction and may suggest its
urgency.

• The decrease in MCC by 0.130 confirms that the pro-
posed approach works better with emotion score.

Based on the preceding analysis, we conclude that the
emotion analysis of bug reports is an important step to the
proposed approach.

3) RQ3: INFLUENCE OF PREPROCESSING
The description of bug reports contains irrelevant and
unwanted text e.g., punctuation (as mention in Section III-D).
Passing irrelevant text as features to the machine learn-
ing algorithms increases processing time and require more
memory for processing. In this perspective, we perform text
preprocessing to improve performance and reduce computa-
tional cost.

To answer the research question RQ3, we perform perfor-
mance comparison of proposed approach with and without
preprocessing of bug reports. Table 9 presents the evaluation
results by enabling and disabling the preprocessing. The first
column presents the preprocessing input settings. Columns
2-6 the accuracy, precision, recall, f-measure, and MCC,

FIGURE 6. Influence of preprocessing.

TABLE 9. Influence of preprocessing.

respectively. The performance of proposed approach upon
different settings is presented in the rows of the table. The
last row of the table presents the improvement of proposed
approach upon different input setting for preprocessing. Fig. 6
also illustrates the performance difference of the proposed
approach upon different preprocessing input settings.

From the Table 9 and Fig. 6, we make the following obser-
vation:

• The proposed approach with the preprocessing obtains
significant improvement in performance. The improve-
ment in accuracy, precision, recall, f-measure, and
MCC is 2.52% = (88.10% - 85.93%) / 85.93%, 0.37%
= (82.67% - 82.33%) / 82.33%, 0.28% = (86.16%
- 85.92%) / 85.92%, 0.33% = (84.36% - 84.08%) /
84.08%, and 0.078 = 0.286 - 0.208 respectively.

• Disabling preprocessing step significantly decreases the
performance in accuracy and f-measure of the pro-
posed approach up to 2.52% and 0.33%, respectively.
Although, the decrease in performance of the proposed
approach without preprocessing step is minor, however,
it cannot be ignored as it reduces the computation time
of the algorithm.

• The decrease in MCC by 0.078 confirms that the pro-
posed approach works better with preprocessing.

Based on the preceding analysis, we conclude that the text
preprocessing of bug reports is also an important step to the
proposed approach.

4) RQ4: COMPARISON AGAINST ALTERNATIVE MACHINE
LEARNING ALGORITHMS
To answer the research question RQ4, we apply two well
known machine learning algorithms (Multinomial Naive
Bayes (MNB) and Random Forest (RF)) and a deep learning
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TABLE 10. Influence of machine learning algorithms.

FIGURE 7. Influence of machine learning algorithms.

algorithm (Long Short Term Memory (LSTM) to compare
their performances with the proposed approach.
Table 10 presents the evaluation results of the algorithms.

The first column presents the approaches. Columns 2-6 the
accuracy, precision, rescall, f-measure, and MCC, respec-
tively. The other rows present the performance of CNN,
LSTM, RF, and NBM, respectively. Fig. 7 also illustrates the
performance differences of the algorithms.

From Table 10 and Fig. 7, we make the following
observation:
• The proposed approach outperforms the MNB, RF and
LSTM and obtains the best accuracy, precision, recal,
f-measure, andMCC. One possible reason is that the pro-
posed approach build the relationships between hidden
vectors.

• The performance of LSTM is significantly higher than
the performance of MNB. Consequently, it can be con-
cluded that deep learning approaches outperform the
machine learning approaches for severity prediction of
bug reports.

• The negative score (-0.004) of MCC against MNB sug-
gests that theMNB classifier does not fit for the proposed
approach.

V. THREATS
In this section, we identify some factors that may affect the
performance of the proposed approach. The threats (construct
threats, internal threats and external threats) to the validity of
this study are as follows.

A. THREATS TO VALIDITY
A threat to construct validity is that the selection of the eval-
uation metrics. The selected metrics (precision, recall, and
f-measure) are most adopted metrics [7], [9], [10], [28], [32].

Therefore, we also adopt these metrics to evaluate the perfor-
mance of the proposed approach.
Another threat to construct validity is that the utilization

of Senti4SD to compute the emotion scores of bug reports.
We select Senti4SD due to its popularity among researchers.
It also outperforms the other available tools for emotion
analysis [18] (as mentioned in Section III-E). The usage of
different emotion calculation repositories may affect the per-
formance of the proposed approach.
A threat to internal validity is that the implementation of

the baseline approach. To mitigate the threat, we verify the
implementation and results. However, there could be some
unseen errors.
A threat to external validity is that the generalizability of

our results.We focus on the bug reports from two open-source
projects Eclipse and Mozilla for the evaluation of the pro-
posed approach. The results of the proposed approach are
not guaranteed with the inclusion of bug reports from other
projects.
Another threat to external validity is that the settings of

hyper-parameters for deep learning algorithms. The large
number of bug reports as a training set or the adjustment
of hyper-parameters may influence the performance of the
proposed approach.

VI. RELATED WORK
A. MACHINE LEARNING APPROACHES
Bug reports are generally classified as critical, major, minor
and trivial bugs in which critical bugs are more severe and
trivial bugs are just inconveniencing to users. To prioritize
the severity of the bug reports, a number of machine learning
approaches have been proposed. Most of the studies focus
on traditional classification algorithms such as Bayesian and
Support Vector Machine (SVM).
Menzies and Marcus [8] are the first who proposed an

automated solution SEVERIS (SEVERity ISsue assessment)
that assigns severity to the bug report. The solution provides
fine-grained severity out of 5 severity levels used in NASA
for prioritization. They trained a machine learning classifier
on the feature vectors with top-k feature words that predict
the severity of future bug report.
Lamkanfi et al. [7] extended the study of Menzies and

Marcus [8]. They applied Menize and Marcus approach on
open-source bug repositories to predict the severity of the
bug reports. They analyzed the textual description of the bug
reports from GNOME, Eclipse, and Mozilla to predict their
severity. To avoid the multi-class classification, 5 severity
labels out of 6 severity labels are used to group them into
two categories i.e., severe and non-severe.
Based on Naive Bayes (NB), decision tree and random for-

est, Alenezi and Banitaan [33] proposed a solution to execute
the priority prediction. They used two feature set based on tf
weighted words of bug reports and based on operating system
and severity classification. The study suggests that the usage
of the second feature set performed better than the first feature
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set. The study also reveals that random forests and decision
trees outperform NB.

Eclipse bug report classification is performed by
Gujral et al. [34], they have achieved 72% precision and
69% accuracy. Moreover, an algorithm that creates dictionary
terms is introduced that predicts severity level by selecting a
particular component.

In order to investigate the effectiveness of various clas-
sification algorithms, Zhang et al. [35] employed multiple
machine learning classification algorithms to predict the
severity of bug reports. They used 29,204 bug reports and
identified that NBmultinomial outperforms theNB, 1-nearest
neighbor, and SVM.

Using the nearest neighbor approach, Tian et al. [36] pre-
dicted the severity of bug reports. They used a larger collec-
tion of bug reports consisting of more than 65,000 Bugzilla
reports. Recently, using SVM Pooja [37] proposed a model
for bug severity level that assigns priorities to Firefox crash
reports in Mozilla Socorro server based on the frequency and
entropy of the crashes.

Kumari et al. [38] proposed an approach to assess the
severity of bug reports. They used entropy by considering
the uncertainty and irregularities in data. They applied KNN,
j48, RF, RNG, NB, CNN and MLR as training classifiers and
validated them using PITS, Eclipse, andMozilla projects. The
results suggest that their approach significantly outperforms
the existing research.

Yang et al. [28] constructed an emotion words-based
dictionary for verifying bug reports’ textual emotion
analysis. They modified a machine learning algorithm,
the Naive Bayes multinomial, calling the new algo-
rithm EWD-Multinomial. The result shows that the
proposed algorithms outperform the severity prediction
related approaches [7], [9]. To the best of our knowledge,
EWD-Multinomial is the state-of-the-art algorithm to pre-
dict the severity of the bug reports. Therefore, we select
EWD-Multinomial as a baseline to our approach.

B. DEEP LEARNING
Most of the existing studies focus only on traditional machine
learning algorithms e.g., Bayesian and support vector
machine. However, recently deep learning has gained tremen-
dous attention of researchers. They have achieved signifi-
cantly impressive results in the field of computer vision [39],
speech recognition [40] and sentiment analysis [41] by using
deep learning techniques. Deep learning provides numbers of
popular and efficient models, the state-of-the-art studies have
not considered deep learning approaches for bug severity of
the bug reports. However, some state-of-the-art contributions
on bug reports are discussed in the following.

An Artificial Neural Network (ANN) based framework is
proposed by Yu et al. [42] for an international health-care
company. The framework predicts the priorities of five dif-
ferent products of bug reports. Evaluation of threefold cross
validation experiments validates, the proposed framework is
better in term of precision, recall, and f1-score.

Based on support vector machine NB, KNN and Neural
Network, Sharma et al. [41] proposed a priority prediction
approach. Their approach predicts the priority of the newly
arrived bug reports. The study indicates the accuracy of dif-
ferent machine-learning techniques (except NB) can success-
fully predict the priority of less than 70% bugs from Eclipse
and OpenOffice projects.

As a conclusion, researchers have proposed a number
of useful machine learning approaches and deep learning
approaches to predict the severity of bug reports. Our pro-
posed approach differs from the existing approaches as we
are first to predict the severity of bug reports by employing
the deep learning algorithms.

VII. CONCLUSION
Users often submit bug reports with their severity level which
is an important attribute of a bug that decides how quickly
it should be resolved. It helps developers to solve important
bugs on time. However, manual severity assessment is a
tedious job and could be incorrect. To this end, in this paper,
we propose a deep neural network based automatic approach
for the severity prediction of bug reports. The proposed
approach applies deep learning model, natural language tech-
niques and emotion analysis on the given dataset for the
severity prediction of bug reports. The proposed approach
automates the severity assessment process and helps users by
subtracting the severity assignment step from bug reporting.
We perform the cross-project evaluation on the history-data of
the open source products of Eclipse and Mozilla. The evalu-
ation results suggest that the proposed approach outperforms
the state-of-the-art approaches.
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