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ABSTRACT Software-defined networking (SDN) has attracted the attention of the research community
in recent years, as evidenced by a large number of survey and review papers. The architecture of SDN
clearly recognizes three planes: application, control, and data planes. The application plane executes network
applications, the control plane regulates the rules for the entire network based on the requests generated by
network applications, and based on the set rules, the controller configures the switches in the data plane.
The role of the switch in the data plane is to simply forward packets based on the instructions given by
the controller. By analyzing the SDN-related research papers, it is observed that research, from the very
beginning, is insufficiently focused on the data plane. Therefore, this paper gives a comprehensive overview
of the data plane survey with a particular emphasis on the problem of programmability and flexibility.
The first part of the survey is dedicated to the evaluation of actual data plane architectures through several
definitions and aspects of data plane flexibility and programmability. Then, an overview of the SDN-related
research was presented with the aim of identifying the key factors influencing the gradual deviation from
the original data plane architectures given with ForCES and OpenFlow specifications. In this paper, we used
the term data plane evolution for this deviation. By establishing a correlation between the treated problem
and the problem-solving approaches, the limitations of ForCES and OpenFlow data plane architectures were
identified. Based on the identified limitations, a generalization of approaches to addressing the problem of
data plane flexibility and programmability has been made. By examining the generalized approaches, open
issues have been identified, establishing the grounds for future research directions proposal.

INDEX TERMS Data plane, data plane abstractions, data plane architectures, data plane flexibility, data
plane implementations, data plane languages, data plane programmability, deeply programmable networks,
description languages, energy consumption, energy efficiency, hardware-based implementations, measure-
ment, monitoring, network virtualization, network functions virtualization, networking technologies, per-
formance, programming languages, quality of service, reliability, security, software-based implementations,
software-defined networking, stateful data plane.

I. INTRODUCTION
Traditional communication networks are constructed from
a large number of network devices that perform various
tasks such as switching, routing, maintaining quality of ser-
vice, monitoring and management, ensuring security and

The associate editor coordinating the review of this manuscript and
approving it for publication was Nitin Nitin.

reliability, etc. To respond to these challenges, complex
network algorithms and protocols are implemented on these
network devices, which in the majority of cases are propri-
etary and implemented in the form of closed code. Main-
tenance and management of such networks is achieved by
particular configuration of network devices through inter-
faces that vary from one vendor to another. Standardization
of network interfaces and protocols, aimed at unifying the
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FIGURE 1. Migration from traditional to software-defined network architecture.

network ecosystem and increasing the degree of interop-
erability, is a complex and time-consuming process. This
approach has slowed down innovation and increased com-
plexity and cost of maintenance and network management.
In response to this problem, researchers in the 1990’s [1], [2]
have applied the analogy of relatively simple reprogramming
of classical computers to computer networks, thus establish-
ing the basis for the development of active networks [3].
The active network concept is based on the fact that the
packet carries the program instead of raw data (ie., smart
packets [4]). Network devices, when they receive a smart
packet, execute the program it carries, and in accordance
with the data plane design carry out different actions on the
packet. In this way, network devices create an environment
that responds to what the packet carries instead of passively
transmitting packet payload from one node to another.

In the early 2000s, the idea of network programmability,
which comes from active networks, is articulated by sepa-
rating the control and data plane, thus creating the concept
of software-defined networking (SDN) [5]. Figure 1 illus-
trates the transition from a traditional network architecture
to a software-defined network. In the backbone of conven-
tional network architecture, there is a networking device
which performs all control and data plane tasks using a hard
separable combination of software and hardware. On the
other hand, in the SDN, the entire network intelligence is
centralized in the application and control plane, where the
application plane is composed of different network applica-
tions, and one or more controllers make the control plane.
Network applications are performing routing algorithms,
quality of service (QoS) mechanisms, control and network

management mechanisms, etc., and are generating rules,
according to which the network traffic should be treated.
Generated rules are delivered to the control plane via a spe-
cially defined northbound interface. Based on these rules,
controllers make specific forwarding rules and, according to
them, configure packet switches via a southbound interface.
In the end, network devices (routers and switches), in the data
plane, perform a simple forwarding of packets based on a
quick lookup of the forwarding tables.

The standardization of the first SDN architecture was
started through the Forwarding and Control Element Sep-
aration (ForCES) requirements specification by the IETF
in 2003 in RFC3654 [6] and a year later confirmed
in RFC3746 [7]. According to the ForCES specification
given in RFC3746, the network element (NE) consists of
several control elements (CE) in the control plane and the
forwarding elements (FE) in the data plane. Since ForCES
was not designed with a long-term vision to implement the
SDN architecture, only with the emergence of OpenFlow [8],
the significance and usefulness of SDN architecture has
arisen. OpenFlow is based on an Ethernet switch with an
internal flow table and a standardized interface for adding
and deleting records in the flow table. With understanding
the need for standardization of communication interfaces
and protocols, IETF expands the ForCES specification with
RFC5810 [9]. Although both ForCES and OpenFlow follow
the same idea of the control and data plane separation, they
are technically different from the aspects of architecture and
forwarding model, as analyzed in [10].

The development of SDN has attracted the attention of the
research community in recent years, as evidenced by the large
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FIGURE 2. Survey methodology.

number of review and survey papers. General overviews of
SDN research are provided in [11]–[15], while in a significant
number of papers, targeted reviews were made by the issue
addressed within the SDN. Thus, the development of traffic
engineering in OpenFlow based networks is shown in [16],
while a review of new challenges in the development of
SDN-based traffic engineering is given in [17]. Special atten-
tion was given to the review of QoS models and mechanisms
in [18]. In [19], problems and solutions related to scalability,
reliability, security, and performance of SDN were analyzed,
while in [20], [21], issues of energy efficiency and energy
consumption in SDN were discussed. An overview of the
research experimentation platforms is given in [22].

By analyzing the survey papers mentioned above, it has
been noted that the SDN research has been focusing on the
control and application plane programmability from the very
beginning. For the data plane, ever since the inception of the
SDN idea, it was considered that it should follow two basic
principles:

1) simplicity that is seen in the process of packets forward-
ing in data plane, and

2) the generality that is indicated in the independence
of the SDN architecture from the technology through
which the network is implemented.

Since the main challenges of SDN have been in the control
plane, that led to the neglect of data plane development.
Therefore, the focus of this paper is on the data plane, espe-
cially in term of its flexibility and programmability.

Considering the different definitions of the data plane flexi-
bility [23]–[25] and programmability [4], [26]–[30], we advo-
cate that flexibility denotes the possibility of a data plane

to timely respond to new conditions in the network, and
programmability a method by which flexibility is achieved.
Under new conditions in the network, we include changes in
requirements, constraints, and data plane state.

Although, specific issues of data plane flexibility and pro-
grammability were addressed in above-mentioned papers,
it is important to note that there is no comprehensive survey of
data plane research from the aspect of its flexibility and pro-
grammability. It is also important to emphasize that although
there are review papers that dealt with software-defined wire-
less networks [31]–[33], data plane of the wireless network is
out of the scope of this paper because it is being implemented
using the Software-Defined Radio (SDR) techniques.

Consequently, the aim of this paper is a survey of data
plane research in awired SDN,which appropriately addresses
the problems of programmability and flexibility, and estab-
lishes preconditions for the advancement of its development
through a proposal of future research directions.

To accomplish this goal, several tasks have been carried
out according to the methodology presented in Figure 2,
which are at the same time the outline of this paper.
At first, an overview of the data plane architecture in ForCES
and the OpenFlow-based SDN, reflecting on the historical
context of development and the differences between these two
models is given in Section II. Afterwards, in Section III is
given an overview of the definitions of network flexibility
and programmability and some general considerations of
flexibility in other domains. Then, a review of the constraints
of ForCES and OpenFlow-based data plane architectures,
through the considered definitions and aspects of flexibility
and programmability, is presented. Given that a lot of the data
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plane research, discussed in Sections II, V, and VI, is estab-
lished on the experimental evaluation, in Section IV is given
an overview of hardware- and software-based technologies
which served as good support for data plane implementation.
In Section V is given an overview of SDN-related research
whose results have implied a data plane evolution. Under the
data plane evolution, we indicate a gradual deviation from
the original data plane architectures given with ForCES and
OpenFlow specifications, resulting in the need to address
the problem of programmability and the flexibility of the
data plane in a more generic way. By reviewing the research
which had addressed different problems in seven categories,
as shown in Figure 2, we observed several common problem-
solving approaches. Then, by establishing the correlation
between treated problems and problem-solving approaches,
we identified the key limitations of ForCES and OpenFlow
data plane architectures. Based on identified key limitations
in Section V and discussed aspects of flexiblity and pro-
grammability in Section III, we generalized approaches to
improving the data plane flexibility through four methods for
improvement of the data plane programmability. Based on
critical review of generic approaches to improve data plane
flexibility and related open issues, future research directions
are proposed in Section VII.

The main contributions of this paper can be summarized as
following:
• An overview of supporting hardware and software tech-
nologies, which enabled SDN’s data plane implementa-
tion, is given from the perspective of several definitions
of flexibility and programmability.

• Key limitations in term of flexibility and programmabil-
ity of OpenFlow and ForCES based data plane architec-
tures are identified by comprehensive review of SDN-
related research.

• The proposed future research directions are estab-
lished on the basis of identified open issues of generic
approaches to data plane flexibility improvement.

Table 1 shows the list of abbreviations in alphabetical order
which are used more than once throughout the paper or out-
side the same paragraph.

II. DATA PLANE ARCHITECTURES
An overview of the data plane architecture in ForCES and the
OpenFlow based SDN is given in this section. In addition,
some architectures inspired by ForCES have been reviewed,
and at the end of the section, a review of the differences
between the ForCES and OpenFlow data plane architectures
is provided.

The first proposal of the data plane architecture was spec-
ified by RFC5812 [34], according to which the resources
within ForCES FE are represented by logical functional
blocks (LFBs), as illustrated in Figure 3. LFB is a logi-
cal representation of a single packet processing function-
ality. The data paths through which the packets pass are
formed by the interconnection of multiple LFBs, and they
enable complex tasks execution during packet processing.

TABLE 1. List of abbreviations.

Definitions and implementations of 22 LFBs in accordance
with ForCES specification are presented in [35]. In addition
to the definition of LFBs, the definition of eight frame types,
43 data types, and 14 metadata types are given. Metadata are
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FIGURE 3. ForCES forwarding element architecture.

associated with packets when traveling between LFBs within
the network element. The proposed definitions covered basic
Internet protocol version 4 (IPv4) packet processing func-
tionality, while the definitions of advanced elements required
to support QoS functionality or firewall functionality were
beyond the scope of the above-mentioned paper. The design
and implementation of the ForCES protocol are presented
in [36]. The introduced implementation enables the creation
of new LFB test topologies within the network element struc-
ture, which makes it a useful tool in the research of the
ForCES data plane.

The LFB chain compositionmethod, which allows the LFB
series to combine in the LFB chain according to the applica-
tion, is presented in [37]. LFB chainingmethod is divided into
three types: (1) sequential chaining, (2) chaining of branches
and (3) a hybrid chaining. In the mentioned work, a method
for sequential chaining was proposed, and a work frame for
that method was implemented. The framework consists of an
LFB chain matching agent, which generates an appropriate
LFB chain based on the incoming request. Agent performs the
matching process in three steps: (1) mapping requests to a set
of LFBs that can respond to a given request, (2) combining
LFBs into one or more chains, and (3) selection of the best
chain from a set of chains. An overview of research in the field
of development and application of the ForCES specification
is given in [38]. It has been noted that ForCES provides a
significant support in various areas where distributed packet
processing on network elements is required. The possibility
of realization of custom-defined LFBs makes the ForCES
model very flexible and powerful. Also, the vision of using
ForCES in the unification of all network technologies, such
as optical networks, wireless networks and Internet of Things
(IoT), is presented. Although ForCES was presented as a
promising model, it was concluded that its application is not
at a satisfactory level due to several factors of which the most
significant are: (1) lack of model adoption in the network
industry, and (2) little use in academic environment due to
lack of support for experimental work in the form of usable
open source code.

Inspired by ForCES, two architectures based on the idea
of separating the control and data plane, NEon and Ethane,
are presented in [39], [40]. NEon [39], in accordance with
the SDN principles, consists of two planes: (1) control plane
policy manager, and (2) programmable rule enforcement

FIGURE 4. OpenFlow switch architecture.

device (PRED). PRED has been realized as a high-
performance programmable machine for packets classifica-
tion and actions execution. It consists of logical functional
blocks aggregation that enables the implementation of
different network services. Logical functional blocks are
providing packet processing functionalities such as flow iden-
tification, packet classification, and action processing. Action
processing was achieved by using programmable dispatch
machines that allow packet data manipulation. Ethane [40]
is an enterprise network architecture, consisting
of: (1) a centralized controller that defines network policies
for all packets, and (2) a group of simple Ethane switches.
The Ethane switch contains a secure channel to the controller
and a simple flow table. Packets arriving at the Ethane switch
are forwarded based on the records in the flow table. In the
absence of an appropriate record, the packet is forwarded
to the controller together with information about where the
packet came from. In this case, the controller has the task of
defining the forwarding rule for that packet and updating the
flow table on the switch. The records from the Ethane flow
table contain: (1) header according to which the matching is
performed with the headers of incoming packets, (2) action
that tells the switch to what to do with the packet, and
(3) additional data related to the flow (various counters).
Header fields cover transport control protocol (TCP), user
datagram protocol (UDP), IP and Ethernet protocol, and
physical port information. Supported actions are: (1) forward-
ing the packets to the corresponding interface, (2) update of
byte and packet counters, and (3) setting the flows activity
bits. Beside listed, additional actions are possible such as
placing packets in different queues or changing packet head-
ers. In Ethane network architecture, all switches do not have
to be Ethane switches, enabling a gradual migration from
classic networks to Ethane-based networks.

On the other hand, the OpenFlow data plane [8] consists of
fixed architecture switchesmade up of: (1) flow table contain-
ing flow records with associated actions, (2) a secure channel
to the OpenFlow controller, and (3) OpenFlow protocol that
provides standardized communication between switches and
controllers. OpenFlow switch working principle, illustrated
in Figure 4, is based on simple forwarding of the packet
between the ports based on the records in the flow table
defined by the remote control process, i.e. the controller. Each
record in the flow table contains three fields: (1) the packet
header which defines the flow, (2) an action that specifies how
packets are processed, and (3) statistics related to the flow
(e.g., packet and byte count). OpenFlow switch has to support
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at least the following three actions: (1) forwarding a packet to
a specific port or multiple ports, (2) packet encapsulation and
forwarding to the controller, and (3) packet discarding. The
encapsulation of the packet and sending to the controller is
performed only for the first packet of the new flow, i.e., when
for the incoming packet there are no records present in the
flow table. Then, the controller generates the forwarding rule
for the new flow and delivers it to the switch, allowing the
switch to autonomously handle all subsequent packets from
that flow.

An overview and the analysis of the differences
between ForCES and OpenFlow regarding architecture and
forwarding model are given in [10]. ForCES architecture
implies separating the control and data plane within a single
network element. This is achieved on two levels: (1) the
first level implies communication separation in the sense
that CE and FE are using a standard protocol instead of
proprietary interfaces, and (2) physical separation that allows
CEs and FEs to be executed in physically separated devices,
and together form a network element. Interfaces between two
ForCES NEs are the same as between standard switches and
routers, so ForCES NEs can be transparently connected to
existing conventional network elements. The ForCES control
functions are still based on the use of distributed protocols.
However, OpenFlow separates the control and data planes
in such a way that the data plane consists of more simple
switches and the control plane of the whole network is
made up from one centralized controller. The OpenFlow
architecture supports two types of switches:

1) ‘‘pure’’ OpenFlow switch - contains only a data plane
based on flow tables, and provides an interface to a
logically centralized controller. Logically centralized
controller performs all control tasks such as: (1) col-
lecting data on network operation andmaking decisions
according to management logic, (2) installing rules on
switches’ flow tables through the OpenFlow protocol,
and (3) providing an open application programming
interface (API) to user applications.

2) hybrid switch - also supports autonomous operation as
a conventional Ethernet switch (eg., in the absence of
OpenFlow controller).

The forwarding model in the ForCES data plane is based on
packet processing through the LFB composition described
by the directed graph. Each LFB defines a straightforward
operation which is performed on the packet that passes
through it. Typical examples of LFBs are: IPv4 Longest
Prefix Matching, address resolution protocol (ARP), Internet
control message protocol (ICMP), Queue, Scheduler, etc.
However, with OpenFlow, the forwarding model is based on
the flow tables manipulations. OpenFlow switches handle
packets with flow granularity. Therefore, some standard net-
work functionality that is run on the packet level (e.g., ARP)
is very difficult to implement with OpenFlow. On the other
hand, using the ForCES architecture, it is possible to define
LFBs whose work principle is similar to OpenFlow flow
tables, which confirms the flexibility of ForCES forwarding

model. Thus, the possibility of extending OpenFlow architec-
ture with ForCES concepts is explored in [41]. By comparing
the data plane of the OpenFlow and ForCES architectures,
it has been observed that ForCES elements can describe
some aspects of OpenFlow: (1) suitable LFB components can
describe packet header fields lookup, counters, and actions,
(2) unique attributes of LFBs can describe the set of supported
actions and the mode of their execution, and (3) directed
graph of LFBs can describe OpenFlow pipeline. In regard
to the observation, the middleware based on the ForCES
wrapper around the OpenFlow switch, which would allow
switch control via the ForCES control element or OpenFlow
controller, was proposed.

III. DATA PLANE FLEXIBILITY AND PROGRAMMABILITY
An overview of network flexibility definitions and general
considerations of flexibility in other domains, which can be
useful in valuing data plane flexibility, is given in this section.
Then, an overview of the definition of programmability and
the connection between the programmability and the flexi-
bility of the data plane is presented. Finally, a review of the
limitations of ForCES and OpenFlow based data plane archi-
tectures, from the perspective of the described definitions of
flexibility and programmability, is given.

A. DEFINITION OF FLEXIBILITY
Since there is no common approach to the definition of
network or data plane flexibility, various definitions have
been used and proposed in many papers. While some
observed flexibility through the structure and design of the
system [23]–[25], [42]–[44], others tied the definition of
flexibility to the resilience of the system [45]–[47].

1) FLEXIBILITY IN SDN
Although the benefit of SDN paradigm is in the development
flexibility of new control logic, in [28] is emphasized the
importance of reconfiguration flexibility which allows the
addition of support for new protocols and flexibility of the
data plane structure. According to papers [23] and [24] which
have dealt with the flexibility of softwarized networks, which
include SDN, flexibility is defined as the ability of the net-
work to adapt its resources, such as flows and topology,
to changes in the requirements placed to the network. Adap-
tation implies changing the network topology, configuration
and position of network functions. Given that there is no gen-
erally accepted definition of flexibility, the following aspects
of flexibility are proposed in [23]:
• flow steering,
• function placement,
• function scaling,
• function operation.

From the aspect of flow steering, an element, which sup-
ports both packet forwarding and copying, is more flexible
regarding an element which supports only packet forwarding.
Flexibility from the aspect of function placement reflects
in the ability to dynamically change the position of
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functions during network operation, while the granularity
of the resource allocation between the functions affects the
aspect of scalability. The configurability and programmabil-
ity of the network element functionalities are covered through
the aspect of the function operation. Additionally, an aspect
of topology adaptation, in term of adding or deleting links and
nodes, is introduced in [24].

Network flexibility was also a subject of research presented
in [25], where it is defined as ‘‘timely support of changes
in the network requirements.’’ Under changes in network
requirements, they include traffic variation, user mobility,
network lease, network upgrades, and failure mitigation.
In the aforementioned papers, they have considered two cases
in which the network can support these requirements:

1) a network design which allows meeting the require-
ments without adaptation, and

2) an adaptation of topology, flows, resources, and
functions.

In the second case, adaptation should be carried out within
the given time constraints.

2) FLEXILIBITY IN OTHER DOMAINS
Flexibility can be observed through the inclusion of differ-
ent options or design alternatives in the system structure,
which was the basic idea of [42]. According to the proposed
approach, the system can be designed using nodes and links,
where each node represents the decision in the design pro-
cess, and the link indicates logical or temporal dependence.
According to cited paper, the system flexibility manifests
in the total number of paths from the source node to the
destination node, where each path represents a sequence of
decisions leading to the fulfillment of the set requirement.
Similarly, in [43] flexibility is defined via the ratio of the
number of different paths and the total number of nodes.

The impact of layer abstraction and modular decomposi-
tion on the flexibility of the system is explored in [44]. The
analysis was carried out for four design strategies:

1) integral system design in which one form shares func-
tions, including unused functions,

2) modular system design in which multiple forms are
mapped to multiple forms by a one-to-one principle,

3) layered system design in which all functions are
included even not used (latent functions), and

4) synergistic system design which includes latent func-
tions but also allows adding new ones as needed.

Using the simulation techniques in [44] has been shown that
both system design strategies contribute to the flexibility of
the system, and their contribution is additive, making the
synergistic system design the most flexible.

In addition to the flexibility definitions which are related to
the structure and design of the system, in [45]–[47] flexibility
is observed through resilience, defined as the ability of the
system to recover quickly from external or internal disrup-
tions and return to the state of equilibrium. In this context,
the disruption can be modeled as a new requirement set to
the system, and the ability of the system to respond to new

requirements and continue with the correct functioning as a
system resilience.

B. DEFINITION OF PROGRAMMABILITY
Data plane programmability has been in the focus of
research presented in [4], [26]–[30]. Programmability has
been observed in [4] as a significant characteristic of the
network through the level of programmability indicating the
method, the granularity and the time scale in which new func-
tionalities can be introduced into the network infrastructure.

In [26] and [27] researchers advocate that data plane pro-
grammability reflects in its depth and the way of its imple-
mentation. The depth of programmability they see through
management capabilities of processes below the level of
packet forwarding, which includes caching, transcoding, sup-
port for new protocols, and so on. Regarding the method
of data plane implementation, a data plane which is imple-
mented entirely in the software is programmable, and one
implemented in hardware is non-programmable. Contrary
to this, in [28] researchers believe that the data plane pro-
grammability can be achieved with the use of reconfigurable
hardware and convenient programming languages. Regard-
less of the implementation method, in [29] it is deemed
that data plane programmability can be seen in stateful flow
processing.

A comprehensive definition of data plane programmability
is given in [30], according to which programmability implies
the switch capability to expose the packet processing logic to
the control plane to support systematic, fast and comprehen-
sive reconfiguration.

From the considered definitions of flexibility and pro-
grammability, we see data plane programmability as a key
factor in achieving flexibility from the aspects of adaptation
of topology, flows, functions and resources.

C. FLEXIBILITY AND PROGRAMMABILITY OF FORCES
AND OPENFLOW
According to the specification given in RFC5812 [34],
the data plane of ForCES consists of FEs presented by inter-
connected LFBs. Therefore, with the adequate support for the
programmability of individual LFBs and their arrangement
into arbitrary functional topologies, the data plane of ForCES
can be viewed as highly flexible from the aspect of adaptation
of functions.

On the other hand, the data plane of OpenFlow is fixed
pipeline structure whose forwarding model is based on the
lookup of flow tables and execution of associated actions.
Programmability of the data plane of OpenFlow is limited to
the level of table flow content, which restricts its flexibility
solely to the aspect of flows adaptation.

Since neither ForCES nor OpenFlow based data plane
architectures are flexible enough in term of considered
aspects, a significant number of research has gone in the
direction of data plane evolution to adequately respond to
various functional requirements. Section V is dedicated to
the review of that research with the aim of identifying the
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key limitations of ForCES and OpenFlow based data plane
architecture in term of flexibility and programmability.

IV. SUPPORTING TECHNOLOGIES FOR DATA PLANE
IMPLEMENTATIONS
Given that a lot of research, discussed in Sections V and VI,
is based on experimental verification of proposed data plane
architectures, this section presents an overview of
hardware- and software-based technologies which served as
a good platform for their implementations. At first, hardware
architectures were used to implement packet switching nodes
in the SDN, but slightly later software architectures were
also used due to processing power limitations of conventional
computer systems no longer being an issue. The processing
power of today’s computer systems has reached a significant
level which enables the implementation of packet switching
nodes whose performance is comparable to hardware-based
implementations, placing the software-based implementa-
tions in an equally prominent position.

A. HARDWARE-BASED IMPLEMENTATIONS
By reviewing the research that dealt with hardware-based
implementation of packet switching nodes and its application
in SDN’s data plane, we perceived the following categories:

1) field-programmable gate array (FPGA) based
implementations,

2) system on a chip (SoC) based implementations,
3) network processor (NP) based implementations,

1) FPGA-BASED IMPLEMENTATIONS
NetFPGA - the first FPGA-based platform, specially
designed to teach network equipment development, is pre-
sented in [48], [49]. The first version of the NetFPGA
board contains three Altera EP20K400 APEX devices, three
1MByte static random-access memory (SRAM) chips and
8-port Ethernet controller. One of three FPGA chips, called
Control FPGA (CFPGA), is pre-programmed and connects
two user FPGA chips (UFPGA) to an Ethernet controller. All
communication on the board takes place via Ethernet ports.
Although the board does not have a central processing unit
(CPU), its operation is possible thanks to the virtual network
system, the software executed on the computer where the card
is embedded. The software can access the hardware registers,
using a dedicated Ethernet frame with the CFPGA being
responsible for its decoding and execution.

The development of new versions of the NetFPGA board
proceeded because of the limitations of the first version
such as: impractical size of the board which can be only
fitted into specially designed computer chassis, low speed -
the first version had eight 10Mbps Ethernet ports, and
lack of processor. Thus, in [50], [51], NetFPGA-v2 and
NetFPGA-v2.1 boards are presented. NetFPGA-v2 is made
as a 32-bit full-length peripheral component interconnect
(PCI) board running at 33MHz. The board is equipped with
a Xilinx Spartan chip through which PCI communication is
supported and the Xilinx V2P30 chip to which the user design

is programmed. The UFPGA has two 512Kx36 SRAMs
and is connected to the Marvell Quad 10/100/1000 Ether-
net physical layer (PHY) chip through the standard gigabit
media-independent interface (GMII). NetFPGA-v2.1 brings
two additional DDR3 synchronous dynamic random-access
memory (SDRAM) chips that work asynchronously with
the UFPGA chip. The standard NetFPGA library contains
a skeleton of Verilog design that instantiates four Gigabit
EthernetMedia Access Controllers (GMAC) and interfaces to
SRAM and DDR2 memory. User design is implemented as a
pipeline following the standard request-grant first-in-first-out
(FIFO) protocol. The pipeline consists of input modules, user
filter, and the output module. Input modules are connected to
four Gigabit Ethernet network interfaces and host processors
via a PCI interface. The user filter performs tasks such as
decapsulation, decryption, and other user-defined functions.
The output module performs an output port lookup to deter-
mine the port to which the packet must be forwarded. For
example, the Ethernet switch or IP router logic are mainly
implemented in the output module of the pipeline.

The first application of FPGA technology in the SDN’s
data plane is the Ethane switch implementation [52]. The
data plane of the switch is implemented on the NetFPGA-1G
board as a pipeline with two exact match flow tables, one for
the packets to be forwarded and the other for the packets to be
discarded. Packets that do not match the records in flow tables
are forwarded to the software responsible for maintaining the
flow table through record addition and deletion.

Considering the growing need for fast prototyping plat-
forms in the forthcoming period, a 40Gbps PCI Express
card with a Xilinx Virtex-5 chip, called NetFPGA-10G,
is presented in [53]. NetFPGA-10G has four 10Gbps Eth-
ernet interfaces in SFP+ form that are connected via addi-
tional PHY transceivers to the FPGA, and RLDRAMII and
QDRII memory controllers for additional SRAM and DRAM
memory. The Open Component Portability Infrastructure
(OpenCPI) interface is used to connect the NetFPGA-10G
card via PCIe to a computer. The AMBA4 AXI-Stream inter-
face is used for packet transmission within the reference
design and the AMBA4 AXI-Lite interface for signaling.

NetFPGA-1G-CML and NetFPGA-SUME, featured
in [54], [55], are the successors of NetFPGA-1G and
NetFPGA-10G platforms based on the 7th generation of
Xilinx FPGAs. NetFPGA-1G-CML board is based on the
Xilinx Kintex-7 FPGA. Improvements compared to
NetFPGA-1G are reflected in:
• three times more of FPGA logical elements,
• four times more of Block RAM capacity,
• 512 MB DDR3 instead of 64 MB DDR2,
• additional 4.5 MB QDRII+ memory,
• 4x Gen. 2 PCIe instead of PCI.

It is compatible with Stanford’s 10G architecture design,
which allows relatively easy portability of designs from
NetFPGA-10G platforms. NetFPGA-SUME is based on
the Xilinx Virtex-7 960T FPGA chip containing 30 serial
13.1Gbps transceivers through which the FPGA chip is
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connected to four 10Gbps SFP+ Ethernet interfaces, PCIe,
and two expansion connectors through which multiple
NetFPGA-SUME boards can be interconnected. There-
fore, no additional physical layer controller is required for
the implementation of 10G Ethernet applications, which
is the most significant improvement compared to the
NetFPGA-10G board. Through the expansion connector, it is
possible to implement a 100Gbps switch, and by the intercon-
nection of multiple cards, it is possible to produce a 300Gbps
non-blocking switch, which makes this platform suitable for
the research of high-throughput networks.

The multi-purpose highly-programmable network plat-
form based on FPGA technology, called C-GEP, is presented
in [56]. C-GEP enables flexible implementation of network
nodes that support different application types such as SDN
switches, media gateways, traffic generators, deep packet
inspection (DPI), etc. All of these applications are possible
over 1, 10, 40 and 100 Gbps traffic. The Virtex-6 FPGA
chip on the C-GEP motherboard performs packet forwarding
tasks, while the embedded COM Express PC is responsible
for management and SDN control functionality implemen-
tation. Installation of the appropriate firmware defines the
architecture of the network device implemented on C-GEP.
OpenFlow switch implementation on NetFPGA - which

can store more than 32,000 flow records and performs at
the speed of four NetFPGA 1G ports, is described in [57].
The switch is made of software and hardware components.
The software component of the switch is from the user space
responsible for communication to the OpenFlow controller,
and from the kernel space to the table flow maintenance,
packet processing, and statistics update. The hardware com-
ponent of the OpenFlow switches implements a different
output port lookup as compared to the reference router and
uses dynamic random-access memory (DRAM) for output
queues.

A good foundation for the future implementations of
SDN’s data plane using the NetFPGA platform was provided
by the reference architecture of the packet switching node,
presented in [58], [59]. The idea is based on the fact that
network hardware is generally implemented as a pipeline
through which packets flow and are processed in different
stages of the pipeline. Thus, the API that enables the con-
figuration of modular architecture and the transfer of packets
from one component to the other is proposed. Components
of the pipeline are modular and can be reused in other
projects. For example, an IPv4 router was built using the
reference pipeline, with five modules: (1) medium access
control (MAC) layer reception queues, (2) input arbiter,
(3) output port lookup, (4) output queues, and (5) MAC layer
transmission queues. Other examples of network devices that
are built using the reference design are 4-port network inter-
face card (NIC), 4-port Ethernet learning switch, OpenFlow
switch, etc.

OpenFlow switch implementations on NetFPGA-10G,
ML605 and DE4 platforms, which have demonstrated the
portability and flexibility of the proposed architecture, are

presented in [60]. The switch design is described using
the Bluespec System Verilog (BSV) language. Particular
attention is devoted to solving the challenges of portability
and flexibility through high modularity and configurability.
For the design of the switch pipeline, the following mod-
ules were used: (1) flow table records composer, (2) flow
table controller, (3) action processor, (4) arbiter i (5) switch
controller interface. All modules are designed in such a way
that machining functionality is independent of the platform
(e.g., type of memory used, type of network or
PCIe interface).
Network-attached FPGA concept - which enables the dis-

tribution of hardware design to multiple physical resources
(e.g., FPGA devices), is presented in [61]. The proposed
architecture, called OpenPipes, follows the basic principles
of system design according to which the system consists
of multiple modules: (1) processing modules, (2) flexible
interconnections, and (3) a controller that configures inter-
connections, and manages the location and configuration of
process modules. OpenFlowwas used to implement intercon-
nection architecture. Processingmodules can be implemented
in hardware or software and can be relocated while the system
is operating, enabling real-time experimentation or migration
from the old implementation platform to the new one.

Another example of network-attached FPGA concept is
presented in [62]. A direct connection of FPGAs to a data
center network (DCN) using integrated network cards is
suggested. The FPGA is divided into three parts: (1) users
logic, which implements custom applications, (2) network
service layer which connects FPGA with DCN, and (3) man-
agement layer which performs resource management tasks.
The integration of the proposed architecture into the cloud is
envisaged using the new OpenStack service.
Network-on-chip enhanced FPGA - was used to develop

a new programmable packet processor [63]. The new form
of a packet processor, providing a high degree of flexibility
and throughput of 400 and 800 Gbps, has been developed by
interconnecting multiple protocol-specific processing mod-
ules. Instead of using the match tables that support the entire
set of protocols, in the proposed design, packets are sent to
the suitable modules depending on the protocol specified in
the packet headers. Each processing module determines the
actions that will be taken for that protocol, and which is
the next processing module in the packet processing chain.
Reconfigurable nature of the FPGA provides complete free-
dom in adapting and supplementing the processing modules
and effectively brings programmability directly into the data
plane.

2) SoC-BASED IMPLEMENTATIONS
In response to the code re-use problem in FPGA-based net-
working hardware, a new flexible legacy design support for
SoC and system on FPGA (SoFPGA) platformswas proposed
in [64]. The proposed architecture consists of the data plane
and control plane bridges, in which the data plane bridge
encapsulates the old design and integrates it into a new one.
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Integration of NetFPGA-1GOutput Port Lookupmodule into
NetFPGA-10G design is given as an example. In this case,
the data plane bridge is situated in the pipeline between the
input arbiter and the output queues and is connected using
the AMBA4 AXI-Stream interface. The control plane bridge
is connected via the AMBA4 AXI interconnection interface
to the data plane bridge. In this way, the control plane bridge
has access to the internal data registers of the data plane.
OpenFlow switch implementation on SoC - is presented

in [65]. The programmable platform ONetSwitch is based
on the Xilinx Zynq-7045 SoC, which features a dual-core
ARM Cortex-A9 Processor System and a Kintex-7 FPGA
Programmable Logic (PL) within the same chip. One side of
the Zynq PL is connected to four 1Gbps Ethernet and four
10Gbps SFP+ interfaces, and the other side is connected with
Zynq processor system. The switch data plane is based on
a hybrid software-hardware solution. The flow table lookup
is performed in hardware, and in if there is no matching in
hardware, the software is utilized. An algorithm, for flow
table distribution into hardware and software, uses switching
performance as an optimization criterion and is implemented
within the hardware abstraction layer (HAL).

The hardware-software co-design of OpenFlow switch
using SoC platforms is presented in [66]. The architecture
of the proposed switch consists of a software agent and a
hardware-based data plane. The agent is implemented as a
Linux application running on an ARM processor and per-
forms following tasks: sending packets to data plane, updat-
ing/deleting flow records, reading counters, and accepting
packets from the data plane. The data plane is implemented
as a modular pipeline on the programmable logic of SoC.
Packets can enter the pipeline, consisting of the packet parser
and lookup table, through the OpenFlow agent or physical
interface. The link between the OpenFlow agent and the data
plane is realized through the AMBA4 AXI-Stream interface,
the packet transfer, and the AMBA4 AXI-Lite interface, for
signaling.

3) NP-BASED IMPLEMENTATIONS
On the other hand, network processors have been used in a
considerably smaller scope for implementation of SDN’s data
plane than reconfigurable hardware, but it is still important to
review some of the most significant research.

ServerSwitch design, motivated by the cognizance that
commodity Ethernet switching chips have become pro-
grammable, is proposed in [67]. The switching Ethernet chip
is used for adaptive packet transfer while the server CPU is
used to control and process traffic in the data plane. The
prototype is implemented on the ServerSwitch card that uses
the Broadcom switching chip, and is connected to the server
via the PCIe 4x interface. Also, a software stack for card
management and traffic control and processing in the data
plane is implemented. The software stack contains the kernel
component through which the card driver is implemented
and the application component that provides the API to the
driver.

ForCES router implementation - based on Intel IXP net-
work processor is presented in [68]. Router architecture con-
sists of CE and FE, where CE implements management and
control planes, and FE implements management and data
planes. The data plane is split into a fast and a slow path.
Fast path is in charge of packet processing at line speed,
while routing, network management and packet exceptions
management are executed in a slow path. LFBs, that build up
the data plane, are implemented using multiple microblocks
in a flat plane. Microblocks differ from one vendor to another
and perform the single function. The FE prototype is imple-
mented on the Intel IXP network processor, where the fast
path is directly mapped to the MicroEngine layer, while the
slow path is running on the Intel XScale layer. Multiple FEs
were interconnected using a switch based on the Advanced
Telecommunications Computing Architecture (ATCA). The
presented implementation of ForTER was used for the real-
ization of LFBs defined in [35].
OpenFlow switch implementation - based on ATCA plat-

formwith architecture consisting of a data path (i.e., fast path)
for packet forwarding and a control plane (i.e., slow path)
for management and signaling, is presented in [69]. Data
plane elements are implemented using the Broadcom Ether-
net chipset on the AT8404 card that supports header parsing,
packet classification, and frame forwarding by header field
content. The packets which can not be directly forwarded are
encapsulated and delegated to the embedded processor.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
Data plane implementations based on network processors
have low flexibility from aspects of function placement and
operation. The network processor programmability is gener-
ally limited to configuring the parameters of the data plane
functions such as queue capacity, scheduling mechanism,
packet header filter, etc. On the other hand, in the reviewed
papers it has been shown that the use of reconfigurable
hardware and suitable hardware description languages can
achieve a high level of programmability, which positively
affects the data plane flexibility. NetFPGA project, which
stands out of all the reviewed approaches, simplified the
process of implementing innovative network hardware using
FPGA technology through the great support of the research
community. A step further in the hardware programmability
was made by SoC technology, which enabled the implemen-
tation of hybrid data plane architectures composed of a fast
hardware path and a highly programmable software path.

B. SOFTWARE-BASED IMPLEMENTATIONS
Only after increasing the processing power of conventional
computer systems, the software-based implementation of
SDN’s data plane became attractive both to researchers and
industry. However, development of the idea about a software-
based implementation of a programmable packet switching
node, which later served as a useful tool for SDN’s data
plane implementation, began several years ago. By reviewing
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the research dealing with software-based implementations,
we have noted the following categories:

1) pure software-based implementations,
2) implementations based on virtualization techniques,
3) implementations supported by hardware-based

acceleration.

1) PURE SOFTWARE-BASED IMPLEMENTATIONS
Click - a new software architecture for the realization of
configurable and flexible routers is presented in [70]. Each
Click router is built from the packet processing module, so-
called elements. The elements are performing simple router
functions such as queue processing, packet classification, and
providing an interface to network devices. For a description of
the router configuration, a declarative language that supports
user-defined abstractions has been proposed. The declara-
tive language, which is also readable to humans, is suitable
for machine processing and can be easily translated into a
directed graph, where elements are represented by nodes and
a packet transmission lines between elements with branches.

Similar to the idea of Click, the extensible open router
platform (XORP) is presented in [71]. Its design addresses
four key objectives: (1) features, (2) extensibility, (3) per-
formance i (4) robustness. XORP was conceived both as
a stable platform and as a research tool that would allow
smooth transfer of new ideas from the lab environment
to the production network. It consists of two subsystems:
(1) a high-level subsystem that performs routing protocols
and other management processes in the user space, and
(2) a low-level subsystem that manages data plane processes.
Data plane is realized using the Click modular router, but it
can also be implemented at the UNIX kernel level by exploit-
ing the forwarding engine abstraction layer that abstracts the
implementation-specific data to routing processes.

To increase the performance of the Click software router,
the RouteBricks architecture, which enables parallel process
execution on multiple processor cores within one or more
servers, is proposed in [72]. The design is based on the
Click Router extension with the support of allocating specific
elements of the Click router to particular processor cores.
To achieve this, the 10G network adapter driver is addition-
ally extended with support for multiple queues and support
for NIC-driven batching. This ensured that one packet is
processed on only one processor core, and the number of
input/output (I/O) transactions is also reduced. By imple-
menting a prototype RouteBricks router, named RB4, made
up of four servers connected by 10Gbps links in a full-mesh
topology, it has been shown that a bandwidth of up to 40Gbps
can be achieved.
OpenFlow switch implementation - based on Click modu-

lar platform is described in [73]. To create a hybrid model
that allows packet- and flow-based processing, an Open-
FlowClick element has been added within the Click router,
that enables rule tables management through the OpenFlow
protocol. OpenFlowClick runs as a Click kernel module, and
uses the secchan and dpctl tools to communicate with the

OpenFlow controller. Within the OpenFlowClick element,
the data path module performs a rule checking and packet
forwarding, and the control plane module manages the for-
warding rules table according to the controller commands.
Linear and hash tables are used for the implementation of
wildcard and exact matching.

Another software-based implementation of the OpenFlow
switch is presented in [74]. The switch architecture is based
on the NetBee library and consists of: (1) ports that use
(2) NetBee Link components for switch and network inter-
faces connection, (3) NetPDL [75] description of OpenFlow
1.3 protocol formatted in XML, (4) NetBee XML protocol
description parser, (5) flow table, (6) rules grouping table,
(7) meter table, (8) oflib library for OpenFlow messages
conversion to internal format and vice versa, and (9) secure
channel to the OpenFlow controller.

A cost-effective alternative to SDN implementation using
Raspberry Pi single-board computers and the OVS software
switch is proposed in [76]. Although the new architectural
aspects of the data plane SDN are not presented in this
paper, it has been shown that single-board computers can
be used as a platform for execution of software switches.
The performance of the prototype implemented is similar
to that achieved by using a hardware switch based on the
NetFPGA-1G platform.

In addition to the implementation of OpenFlow switches
that are published in research papers, here we list some other
open-source implementations of OpenFlow switches and sup-
porting libraries:
• OpenFlow v1.0 reference implementation [77] - written
in C,

• Indigo [78] - support for physical and hypervisor-based
switches written in C,

• Pantou [79] - port of OpenFlow implementation for
OpenWRT wireless platform written in C,

• OpenFaucet [80] - implementation of v1.0 written in
Python,

• OpenFlow Java [81] - OpenFlow stack written in Java,
• oflib-node [82] - implementation of v1.0 and v1.1 pro-
tocols in the form of libraries for Node.js.

Combination of emulation and simulation - to support the
realization of large network experiments is proposed in [83].
The proposed architecture, inspired by the idea of SDN,
separates the control and data planes so that the control plane
is emulated and the data plane is simulated. Within the sim-
ulated data plane, there are common elements of a network
simulator based on discrete-event simulations (DES):
• event queues,
• queue scheduler,
• event processor,
• network status and statistics register,
• topology containing a simulated logic of network nodes.

The following events are held in the queues: (1) start of an
application, (2) flow arrival, (3) flow departure, (4) arrival of
message from a control plane, and (5) departure of message
to the control plane. The flows consist of aggregated packets
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with common headers. The flows are separated into incoming
and outgoing, to take into account the traffic losses. In a pre-
sented example of the SDN implementation, switches and end
nodes are implementing the OpenFlow protocol within DES,
while controllers are running as real and independent soft-
ware instances.

2) IMPLEMENTATIONS BASED ON VIRTUALIZATION
TECHNIQUES
Machine virtualization technique - has been used for
the first implementation of virtualized data plane, called
Mininet [84]. Mininet is the networking virtualization envi-
ronment based on Linux virtual machines running on stan-
dard platforms such as VMware, Xen, and VirtualBox.
It allows the creation of virtual networks by setting up and
interconnecting the host processes within the network names-
pace. For host interconnection virtual Ethernet (veth) is used.
The user can use various building elements for implementa-
tion of the SDN-based virtual network: (1) links made as veth
pairs, (2) hosts realized as shell processes, (3) switches imple-
mented as OpenFlow software switches, and (4) controllers
that can be run anywhere in a real or simulated network.

The idea of scaling the Click modular router performance
by increasing the number of instances of Click routers run-
ning within miniature virtual machines is presented in [85].
These miniature virtual machines are called ClickOS, and are
running on a Xen hypervisor. Xen hypervisor has a shared
network netback driver, which communicates with hardware
on the one side, and through sharedmemorywith the ClickOS
netfront driver on the other side. The task of the netback
driver is to forward packets between from network adapter
to shared memory, and vice versa, over a virtual network
interface. On the other hand, the netfront driver is scheduling
packets from shared memory to the transceiving interfaces of
Click router (FromClickOS and ToClickOS), and vice versa.
This builds a bridge between the Click router and NICs while
preserving all gains of virtualization.
Network/NIC virtualization technique - can be used for

implementation of generic high throughput bus or in a con-
crete case for connecting virtual machines. In that sense,
a virtual local Ethernet (VALE) is proposed in [86]. VALE,
using the netmap API [86] as a communication mechanism,
exposes ports to hypervisors and processes. The core netmap
is based on shared memory, which represents the interface
between network hardware and packet processing applica-
tions. Within that memory, packet transmission and reception
buffers are assigned to each network interface, and two circu-
lar arrays called netmap rings for storage of metadata about
transmission and reception buffers.

The software switch mSwitch [87] has simultaneously
responded to several shortcomings noted in the previous
solutions by utilization of techniques for network inter-
faces virtualization and the separation of switching from
packet processing. mSwitch provides: (1) flexible data plane,
(2) efficient processor utilization, (3) high throughput,
(4) high packet processing intensity, and (5) high port

density. The central principle of the proposed architecture is
the division of the data plane into the switch fabric which
is responsible for packet switching and the switch logic,
which is the modular part of the switch, responsible for the
packet processing. This allowed a high throughput, while
maintaining the high level of programmability of the packet
processing functions.

Open vSwitch (OVS), a multilayer virtual switch presented
in [88], is intended for networking in virtual production
environments and supports most hypervisor platforms. In the
OVS architecture, the packet forwarding is performed using
two components:

1) ovs-vswitchd daemon in the user space which is identi-
cal for all operating systems,

2) high-performance datapath kernel module written for
the target operating system.

The datapath kernel module is responsible for receiving pack-
ets from a NIC or a virtual machine, and its processing
according to the instructions given by the ovs-vswitchd mod-
ule. In the case that there are no defined processing rules
for the specific packet in the kernel module, this packet is
forwarded to the ovs-vswitchdmodule, which then makes the
decision on further processing and returns it together with
the packet. When the OVS is used as an SDN switch, then the
agent side of the OpenFlow protocols is running inside
the ovs-vswitchd module.

3) IMPLEMENTATIONS SUPPORTED BY HARDWARE-BASED
ACCELERATION
The problem of the limited performance of the pure software-
based implementation of packet switching nodes has been
addressed in some research by utilization of hardware-based
acceleration.
Graphics processing unit (GPU) based acceleration

framework - has been used for development of a software
router PacketShader as presented in [89]. The challenge of
maintaining high forwarding rate while preserving sufficient
processing power for different routing applications is solved
as follows: (1) the I/O engine for fast and efficient packet
processing is implemented, (2) routing table lookup and IPsec
encryption are offloaded from the main processor to GPUs.
I/O engine functions, which are implemented at the kernel
level, are used for kernel-level packet handling operations.
The remaining packet processing operations are executing in
the multi-threading application in user space with the help
of three callback functions: (1) pre-shader, (2) shader, and
(3) post-shader. The pre-shader function performs fetching
of packet parts from the receiving queues to the GPU. The
shader function performs processing of the packet within the
GPU kernel, and the post-shader function delivers processed
parts of the packet to the destination ports. In this way,
an efficient pipeline for packet processing by FIFO principles
has been established. By implementing the prototype of the
router, it has been shown that high throughput such as 40Gbps
can be achieved.
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NIC-accelerated Ethernet switch implementation - called
CuckooSwitch [90], combines the hash-based forwarding
information base (FIB) design with Intel’s Data Plane
Development Kit (DPDK) [91] platform that performs
inbound/outbound packet transmission between hardware
and user-space threads. The packet processing pipeline has
three stages: (1) reception of the packet via the NIC and its
storage in the reception queue using direct memory access,
(2) processing of packets from queues using a worker thread
in the user space, and (3) scheduling of processed packets
into output queues associated with appropriate output ports.
The number of input queues has been chosen to correspond
to the number of worker threads, where each worker thread is
allocated to one processor core. In this way, competition and
synchronization overhead have been avoided. In the second
stage of the pipeline, the FIB search is performed based
on the destination MAC address of the Ethernet frame.
FIB supports dynamic updating of rules in real time and
reading of records from multiple concurrent worker threads,
eliminating the need for storage of numerous copies of
FIB content. By implementing a prototype, in [90] it has been
demonstrated that using a standard server with eight 10Gbps
Ethernet interfaces, processing power of 92.22 Mpps can be
achieved for 64B packets.
NIC-accelerated OpenFlow switch implementation -

based on the Intel DPDK library is presented in [92]. By using
the DPDK library, implementation costs have been reduced
in terms of the packet I/O overheads, DRAM buffering,
interrupt processing, kernel structure overheads, and copy-
ing data when changing the context from the kernel space
to the user space and vice versa. DPDK enables, through
Direct I/O mechanism, direct data transfer between
the program running in user space and input/output
cards.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
Pure software-based data plane implementations are char-
acterized by excellent flexibility due to high level of pro-
grammability and configurability of forwarding functions.
For example, software architecture of the modular router
Click allows the realization of arbitrary data plane struc-
tures using fully programmable packet processing mod-
ules. In the reviewed papers it has been shown that high
flexibility, in terms of the granularity of dynamic resource
management, may be achieved by parallel execution of
instances of software implementations on multi-core proces-
sors. Virtualization-based techniques additional contribute
to flexibility, as they enable efficient scaling of forwarding
functions. The use of hardware-based acceleration enables
the increase of performance of software-based implemen-
tations without losing inherent flexibility. A large number
of software-based implementations of the OpenFlow switch
indicates that the software-based approach to the realization
of the SDN’s data plane is powerful, especially if their appli-
cation is planned in modern data centers which often use
virtualization techniques.

V. IMPLICATIONS OF SDN-RELATED RESEARCH ON
DATA PLANE EVOLUTION
The previous sections focused on standard SDN’s data plane
architecture, such as ForCES and OpenFlow, and their imple-
mentation using software and hardware technologies. On the
other hand, an overview of SDN-related research whose
results have implied the data plane evolution, is given in this
section. Under the data plane evolution, we indicate a gradual
deviation from the original data plane architectures givenwith
ForCES andOpenFlow specifications, resulting in the need to
address the problem of programmability and flexibility of the
data plane in a more generic way. By reviewing these studies,
we have found that the treated problems can be classified into
the following categories:

1) performance,
2) energy consumption,
3) quality of service (QoS),
4) measurement and monitoring,
5) security and reliability,
6) support for various network technologies,
7) network and network functions virtualization.

Therefore, this section is organized in accordance with the
above mentioned categories. Within each category, reviewed
research is organized according to the problem-solving
approach. Given that many problem-solving approaches are
common to several categories of problems, here is given a
brief overview of identified problem-solving approaches.
Data plane programming - implies the introduction of pro-

grammed packet processing into the data plane. The machine
structure, which executes program instructions on packets,
is mainly fixed and predefined.
Stateful packet processing - allows packet processing

which is aware of the state of the data plane. A lot of research
examined in this section has shown that the stateless nature
of the OpenFlow switch does not provide adequate support
for processing of packets coming from a stateful protocol
(e.g., TCP, FTP) or the implementation of some mechanisms
such as a stateful firewall. Stateful packet processing is most
often achieved by introducing finite automata into the data
plane.
Reconfigurable architectures - most commonly based on

reconfigurable technology (e.g., FPGA), allow the implemen-
tation of a variable data plane structure. That has been used
in some research to solve a specific problem from the above
categories by increasing the flexibility of the data plane.
Physical layer management - is a frequently used tech-

nique for managing the energy consumption of the network
device’s physical interface.
New structures of flow tables - are introducing, in addition

to basic information such as packet headers of a specific flow,
additional data to support the treatment of issues related to
data plane performances, energy consumption, QoS, etc.
New mechanisms for flow tables lookup - often accom-

pany structural changes of flow tables. In some cases, new
mechanisms are based on the enhancement of existing Open-
Flow flow table lookup mechanisms.
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New packet classification mechanisms - allow packet
classification based on the header of higher-layer proto-
cols. In this way, they enable the implementation of advanced
mechanisms such as DPI.
Hybrid architectures - are data plane architectures imple-

mented using a combination of hardware and software tech-
nologies or using different types of hardware technologies
(e.g., FPGA and CPU). Such architectures enable efficient
distribution of packet processing tasks according to the affini-
ties of the particular technology.
New data plane architectures - are proposed in a signifi-

cant number of research as an answer to the limited flexibility
of OpenFlow and ForCES data plane architectures.
Hardware abstraction layer (HAL) - is a method for pro-

viding support for non-IP networking technologies in such
a way that specificities of target technology are abstracted
to the data plane through suitable processes and interfaces
independent of underlying network technology.

At the end of the section, we have established a cor-
relation between treated problems and problem-solving
approaches, which is the first step towards the generalization
of approaches to increase the programmability and flexibility
of the SDN’s data plane.

A. PERFORMANCE
The performance improvement problem of SDN has been
addressed by introducing various changes to the data
plane. The focus of [93]–[103] was on changes in the
flow table structure and the introduction of new flow
table lookup or packet classification mechanisms. On the
other hand, in [104]–[115], the focus was on changing
data plane architecture by using hybrid software-hardware
architectures or combinations of different types of hardware,
by introducing reconfigurability into the data plane, and by
introducing stateful packet processing,
New structure of flow table - which supports load balanc-

ing based on regular expressions, is proposed in [94]. Half-
SRAM was used on NetFPGA because in load balancing
scenarios, it is necessary to keep a large number of records
in flow tables. The hardware plane takes care of the longest
prefix matching (LPM) in the dFA structure, and the software
plane manages the data structure by inserting/removing the
rules in/from the forwarding table.

The implementation of the packet switch with Bloom-filter
based forwarding, called zFilter, is described in [93]. The pro-
posed forwarding mechanism is based on the identification of
links instead of nodes. Packet switching nodes do not need to
maintain any status except link identifier information for each
interface. The forwarding information is constructed based on
the aforementioned link identifiers and is transmitted in the
header of the packet as the Bloom filter structure. Based on
the presence of the link identifier in the Bloom filter structure
carried in the packet, each packet switching node decides to
which interface a packet should be forwarded.

The new method of the hardware-based organization of
the forwarding tables in SDN switches is presented in [103].

Given the advantages of parallel processing on the FPGA
chip compared to serial processing on network proces-
sors or general purpose processors, the proposed solution uses
all 512 bits of the header in a wildcard-based lookup.
New mechanism for flow table lookup - called DevoFlow,

which reduces the number of interactions on the switch-to-
controller interface and the number of records in ternary
content-addressable memory (TCAM), through the aggres-
sive use of wildcard rules, is introduced in [95]. The pro-
posed modification is based on the introduction of two new
mechanisms for devolving the control from the controller to
the switch: rules cloning and local actions. Rules cloning
allows the creation of new rules for micro-flows based on
templates, which rule search diminishes to direct matching,
thus reducing the use of TCAM. Local actions allow pre-
diction of rules and their establishment without contacting
the controller. Another contribution of DevoFlow is lessening
the need for statistics transmission for less dynamic flows
through the use of three mechanisms for efficient statistics
collection: (1) sampling, (2) triggering, and (3) approximate
counting.

The classic routing table lookup is modeled as the problem
of the LPM and is divided into three main categories:

1) TCAM-based solutions which provide a deterministic
and quick lookup,

2) hash-based solutions which provide a quick lookup
with simple table update mechanisms,

3) trie-based solutions.
Instead of optimizing classical models, the brand new model,
the Split Routing Lookup Model, is proposed in [102]. The
basic idea is to divide the original flow table into two
smaller, perform LPM lookup over them, and to aggregate
two results into one. This results in savings in chip resources,
and increased performance by introducing parallelism in the
lookup process.

KeyFlow, proposed in [98], is a new approach to building
a flexible network-fabric based model. The flow table lookup
mechanism in the forwarding engine was replaced by simple
operations based on the residual number system. Principally,
the proposed model is based on source routing. Unlike Mul-
tiprotocol Label Switching (MPLS) based solutions, where
there is a need for intensive communication between the core
and the controller to establish end-to-end connections, all
possible routes are ready for use in KeyFlow and only the
appropriate route identifier for the ingress packet has to be
allocated. In this way, round-trip time reduction was achieved
by more than 50 percent.

The caching system for the SDN based on the wildcard
rules, calledCAching in Buckets (CAB), is presented in [101].
The basic idea of the CAB is the partitioning of the field into
logical structures, called bucket, and bucket caching along
with the associated rules. The CAB switch is implemented
as a two-stage pipeline consisting of bucket filters and flow
tables. In the first stage, the matching of the packets is done
in all buckets, and in the second stage, the flow table lookup
is performed. Packets that do not belong to a single bucket are
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encapsulated and sent to the controller. Logically, the bucket
filter and the flow table are two tables that can be imple-
mented using two separate TCAM memory or one multiple-
lookup TCAM memory. The CAB solves the problem of the
rules dependence and achieves efficient utilization of network
bandwidth by reducing communication between the switch
and the controller.
New packet classification mechanism - based on recur-

sive flow classification is presented in [96]. Extended recur-
sive flow classification (ExRFC), using the combination of
SRAM and TCAM memory, improves the parallelization
of the classification processes and exploits the hardware
resources of most hardware platforms better.

The 2-dimensional pipeline for packet classification on the
FPGA, which consists of multiple self-configurable process-
ing elements (PE), is presented in [97]. The proposed archi-
tecture achieves scalability, regarding the size of the rule set,
while maintaining a high-throughput packet classification in
the OpenFlow switch. The modular PE can performmatching
by the scope and by the prefix, making it suitable for different
types of packet headers. Connecting PEs in the 2-dimensional
pipeline is possible in two directions:

1) horizontal propagation of the bit vectors of the PE
output registers in a pipeline fashion,

2) vertical propagation of the packet header bits (PE input
registers) in a pipeline fashion.

A complex packet classification operations can be realized,
by using PEs striding and clustering problem-solving tech-
niques, whereby the clock signal frequency is not limited by
the length of the packet header and the size of the rule set.

The new hardware solution for the configurable packet
classification is presented in [99], [100]. The performance of
different classification algorithms was analyzed through two
approaches: (1) a multi-field lookup, and (2) a single-field
lookup. It has been shown that a parallel combination of dif-
ferent lookup algorithms based on one packet header field has
achieved better performance than using a lookup algorithm
based on multiple packet header fields. Therefore, the design
of a hardware-based classifier architecture is proposed, which
achieves optimal lookup performance by running the best
set of algorithms for a given type of record in the flow
table. Sharing memory resources between different lookup
algorithms has resulted in efficient memory utilization. The
SDN controller selects the best combination of search algo-
rithms, and following the decision, configures the appropriate
memory blocks on the hardware platform of the switch. The
packet classification process is performed within a four-stage
pipeline:

1) splitting of packet header into multiple fields over
which individual lookup algorithms will be performed,

2) parallel execution of lookups, using a selected set of
algorithms,

3) combining lookup results into a single tag with the
highest priority,

4) reading the highest priority match rule based on the tag
from the preceding stage.

The proposed architecture can follow the evolution of SDN
applications by the simple extension of the existing set of
lookup algorithms with a new one.
Hybrid architecture - consisting of hardware and software

components, was used in [104] for the implementation of
the uniform resource locator (URL) extraction mechanism
from the hypertext transfer protocol (HTTP). The hardware
component is an extension of the IPv4 reference router on
the NetFPGA platform, and is implemented by modifying
the Output Port Lookup module in the reference design. Its
task is to extract the HTTP GET request and send it to the
software component. The software component extracts the
URL from the HTTP GET request and updates the internal
database. This paper presents an approach to the performance
improvement of the deep packet inspection by applying the
hybrid architecture of the packet switching node.

The OpenFlow switch reference design, accelerated using
multi-core network processors, is presented in [105]. In the
proposed design, 16 micro-machines (programmable cores)
of the network processor are programmed to perform tasks
of receiving packets, sending packets, processing packets,
managing queues and serving orders, communicating via PCI
bus, etc. The implementation of the given design consists
of the software on the host and the network processor (NP)
acceleration card. On the host side, the OpenFlow software
communicates with the NP accelerator card via the PCIe
bus using the kernel module. The experiments carried out
showed a reduction in packet delay by 20% compared to the
conventional OpenFlow switch design.

The sNICh architecture, which is a combination of the NIC
and a data center switching accelerator, is proposed in [106].
sNICh uses acceleration hardware in the form of a PCIe card,
for offloading the server concerning the packet forwarding.
The data and control planes in the sNICh architecture are
separate, where the data plane is implemented in the NIC
hardware, and the control plane is implemented within the
sNICh backend. In addition to standard NIC functionality,
sNICh also realizes a flow-based switch whose flow table is
implemented using TCAM. In the data plane, a copy engine
and memory-to-memory direct memory access engine for
direct access to shared system memory are implemented,
to improve performance in communication between virtual
machines (VM) within the data center.

Inspired by the idea of the packet processing offloading
from the processor to the NIC, the architectural design that
improves the flow table lookup performance on a PC-based
OpenFlow switch is proposed in [107], [108]. The proposed
solution is based on flow caching and placing the lookup
process in the fast path of the switch. The acceleration of
OpenFlow flow table lookup process is achieved by using the
classification features of Intel 82599 10GbE controller found
on modern 10GbE NICs.

The use of the CPU in switches to handle not only control
traffic but data plane traffic as well is presented in [110].
A powerful processor has been added to a commodity
switch and connected by a high-bandwidth link to the
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application-specific integrated circuit (ASIC), which can be
programmed to redirect a portion of the traffic to the pro-
cessor. In this way, the design limitations of the switches,
regarding the forwarding table size and the depth of the
packet buffers, have been overcome. Additionally, adding
a CPU to the network device has increased the data plane
programmability.

CacheFlow, a new splicing technique of a large num-
ber of unpopular forwarding rules, from dependency chains,
to a small number of new rules, aiming for the cache pol-
lution avoidance, is presented in [111]. It combines high-
throughput hardware switches with large flow tables of
the software-based switches. Hardware switches implement
cache on TCAM, and in the case of cache miss, software
switches are engaged, thus avoiding unnecessary and time-
consuming communication with the controller.

Following the trend of adding powerful processors to con-
ventional switches, in [114] is argued that a hybrid software-
hardware switch can reduce the time needed to install rules in
the flow table. Accordingly, ShadowSwitch (sWs) was pro-
posed as the prototype of the OpenFlow switch which imple-
ments this design. Besides the hardware switch (HwSw),
a high-performance software layer (SwSw), which performs
packet forwarding, was introduced in the fast path of sWs
architecture. The control logic (sSwLogic), whose task is to
manage the record installation in the flow table, is placed
in a slow path of the switch. The prototype is implemented
using the commodity hardware-based OpenFlow switch and
the OVS instance which runs on the server.
Reconfigurable architecture - based on a virtual emulated

network on a chip, called Diorama network, is proposed
in [109]. The prototype is implemented on the dynamic recon-
figurable processor DAPDNA-2, which consists of a high-
performance digital application processor based on reduced
instruction set computer (RISC) architecture and distributed
network architecture (DNA). DNA connects 376 PEs and
is used to construct emulated nets on the chip, where each
PE emulates different functions of the actual router or link.
Test results have shown that the prototype can perform the
shortest path calculation 19 times faster than conventional
solutions.

FlexForward, which enables flexible adaptation of for-
warding algorithms in software-defined DCN, is proposed
in [112]. Reconfiguration of forwarding mechanism on
switches is supported by the OpenFlow protocol and imple-
mented by OVS extension. Forwarding mechanisms are
implemented between flow extraction and flow table lookup
processes. Performance improvements have been achieved by
introducing an additional feature to skip the flow table lookup
process. Supported forwarding mechanisms are:
• regular OpenFlow - used when FlexForward is switched
on, as long as the OpenFlow switch does not get com-
mand to change the forwarding mechanism,

• hypecube topology [116] - used in the server-
centric DCN,

• KeyFlow - used in arbitrary topology.

Stateful packet processing - enables offloading of simple
networking processes, such as filtering and counting, from
the control plane to the network switches. By using the open
packet processor (OPP) in [115], a stateful DPI application
was implemented as a pipeline consisting of two tables: one
for selecting an output interface and the other for implement-
ing DPI functionality. OPP will be described in more detail
in the Section VI.

The use of Paxos protocols for distributed and pro-
grammable network systems to improve SDN performance is
demonstrated in [113]. For Paxos protocol implementation,
it was necessary to add support for the roles of coordinator
and acceptor in the OpenFlow switch logic. According to the
Paxos protocol, the coordinator must support the generation
of a unique round number and a monotonically increment-
ing sequential number. The acceptor switch must support
the storage and stateful comparison of the received random
number with the appropriate field in the packet header, and
maintenance of the local state by the protocol. It is proposed
to implement these functionalities at the edge of the network
using programmable NICs.

B. ENERGY CONSUMPTION
The issue of energy efficiency and energy consumption in the
SDN has also been addressed in several ways. Some have
focused on reducing energy consumption in memory for stor-
ing flow table and introducing new flow table lookup mecha-
nisms. Others have decided to reduce the energy consumption
of network’s physical layer by introducing the support for
physical layer management and by abstracting underlying
hardware.
New structure of flow table - which stores flow identifiers

(Flow-ID), represented by a smaller number of bits, instead
of standard flow records, is proposed in [117]. The proposed
Compact TCAM summarizes the information about the flow
to the size needed to identify unique flows. It has been exper-
imentally demonstrated that it is possible to save energy by
about 2.5 times the standard layer 2 switches, and up to 80%
compared to OpenFlow switches.
New flow table lookup mechanism - based on flow tag-

ging, called Tag-In-Tag, is proposed in [118]. Tag-In-Tag is
based on a generally-perceived phenomenon in networks:
• flows travel by paths,
• paths form a deterministic set, i.e., all source and desti-
nation pairs are known in advance,

• multiple flows can travel along the same path.
Based on that, the proposed mechanism denotes a packet with
two tags: PATH TAG used for packet routing, and FLOW
TAG that associates the packet with the corresponding flow.
PATH TAG encapsulates within FLOW TAG. Within the
switch, the data path is divided into two TCAMs, one for
the incoming and the other for the outgoing packets. On edge
switches, TCAM for incoming packets contains full headers,
and TCAM for outgoing packets holds only PATH TAG
and FLOW TAG. In core switches there is only TCAM that
contains PATH TAG and FLOW TAG. In the end, the lookup
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is performed over a small number of bits in parallel, thereby
achieving a TCAM energy savings of up to 80%.

Motivated by the limitations of commercial switches at the
time, regarding latency and energy consumption, improve-
ments that simultaneously reduce energy consumption and
switch latency, while retaining the flexibility offered by the
OpenFlow, are proposed in [119]. The proposed enhance-
ments exploit local time stationarity of network traffic and
predict the affiliation of the packet to the flow for each
port of the switch. Thus, they try to avoid traditional flow-
based or TCAM lookups, which simultaneously reduces both
energy consumption and latency of forwarding.
Physical layer management - as an extension for Open-

Flow switch with support for different power saving modes is
presented in [120]. It includes the definition of new messages
within the OpenFlow standard and the design of a sepa-
rate controller that manages port powering. The prototype
is implemented by combining a NetFPGA platform and a
specially designed hardware controller.
Hardware abstraction layer - for a unified and straightfor-

ward representation of power management features in hetero-
geneous data plane hardware, called Green Abstraction Layer
(GAL), is presented in [121]. On the side of network devices,
manufacturers can implement power management primitives
(PMP) by introducing specific hardware-level elements such
as controllable clock generators, manageable power supplies,
sleeping transistors, etc. On the network management side,
the GAL abstracts the PMPs and enables simple power man-
agement through higher layer protocols.

C. QUALITY OF SERVICE
New structure of flow table - supporting fine-grained track-
ing of flows with a separate flow classification, is proposed
in [122]. The flow table is divided into three different tables:
the flow state table, the forwarding rules table, and the QoS
rules table. The forwarding andQoS information are searched
in the rule tables and linked to the record from the flow
state table on the arrival of the first packet from a new
flow. The arrival of the next packet from the same flow only
requires a referral to the flow state table without the need to
search through the forwarding rules table and the QoS rules
table again. To assure performance at the micro-flows and
the aggregate flows levels, a flow-based packet scheduling
algorithm was developed. The proposed architecture was
implemented using the Cavium OCTEON CN5650 multi-
core processor, whose 12 cores were assigned as follows:
one core for the OpenFlow agent, eight cores for flow-based
packet processing, one core for future functionalities, one
core for QoS coprocessing, and last core for the server. All
cores share data from the forwarding rules, QoS rules and
flow state tables, and queues.
New data plane architecture - is introduced in [123]

to support QoS experimentation in OpenFlow testbed
Ofelia [124]. The proposed QoS framework did not restrict
the configuration of queues regarding minimum and maxi-
mum speed, as was the case with OpenFlow. Configuration of

queues is provided through additional control protocols such
as OF-Config [125] and NETCONF [126].

B4, introduced in [127], is Google’s approach to SDN-
based DCN implementation with QoS support. The proposed
SDN architecture is based on OpenFlow, but due to the
limitation of existing switch architecture concerning low-
level behavior management, a custom hardware platform was
used. B4 switches consist of more commodity switching
chips organized in two-stage Clos topology. Each chip in the
first stage (input stage) of the Clos topology is configured
to forward incoming packets to a second stage (backbone)
except when the packet terminates on the same chip. Chips
from the second stage pass the packets to the chip from the
first stage depending on the packet destination. The specially
developed OpenFlow agent running inside the B4 switches
mediates in the configuration of the forwarding table in this
non-standard pipeline by translating the OpenFlow messages
into the corresponding chipset driver commands.

Since the OpenFlow switches implemented in the OVS did
not support the queue configuration at that time, the Queue-
Pusher architecture based on the OVSDB standard supported
in the OVS was designed in [128]. Since OVSDB is not part
of the existing OpenFlow controllers, QueuePusher has been
created as an extension of the existing Floodlight controller
interface to simplify the procedure for creating queues within
the OpenFlow switch. Although there were no direct changes
to the SDN’s data plane, it is remarked that there was an
OpenFlow protocol constraint regarding the configuration of
the queues which belong to the SDN’s data plane.

The API for configuration of priority queues on switch
ports, based on an extension of the interface between the
SDN controller and the switchwithOVSDBprotocol support,
is proposed in [129]. Unlike the solution proposed in [128],
the QoS abstraction model of OVS switch is defined here.
The model is stored within the OVS database and accessed
through the OVSDB protocol. A QoS object which specifies
the maximum speed that can be shared between the priority
queues is defined on each OVS switch port. The QoS con-
figuration module inside the controller does not keep infor-
mation about the state of switch queues, but only maps the
QoS configuration to the switch port. Retaining information
about the state of queues within switches makes it easier to
maintain data consistency.
Hybrid architecture - based on the combination of FPGAs

and commodity switching hardware, is proposed in [130].
Extending SDNflexibility bymaking queuing and scheduling
decisions inside a fast path of the switch is achieved by
adding small FPGAs, with well-defined interfaces to packet
queues on the switch, in a fast path of the switch. As proof
of the proposed concept, two scheduling schemes have been
described and implemented: CoDel and RED.

With the addition of the FPGA controller used for the
deterministic guaranteed-rate (GR) services, the relocation
of the network intelligence from the control plane to the
data plane is presented in [131]. The data plane within the
developed solution consists of eight FPGA controllers and
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packet switches of minimal complexity implemented on the
Altera Cyclone IV FPGA. The FPGA controller allows the
provision of deterministic GR services via IP routers, MPLS,
Ethernet, InfiniBand and Fiber Channel switches. By using
optoelectronic packet switches implemented on a single chip,
it is possible to achieve an aggregated capacity of 100 Tbps.
Stateful packet processing - was used in [132] to cre-

ate the autonomous QoS management mechanism in the
SDN (AQSDN). AQSDN enables the independent config-
uration of QoS features in the switch using the OpenFlow
and OF-Config protocols. Autonomy is ensured by imple-
menting the packet context-aware QoS (PCaQoS) model
inside the data plane, which enables the switch to know the
context of the packet and to respond locally. The PCaQoS
model consists of two components: packet context-aware
packet marker (PCaPM) and packet context-aware queue
management (PCaQM). PCaPM is based on a multi-color
DSCP-based packet marking, while PCaQM coordinates
these activities at the integrated flow level. The system pro-
totype is implemented by extending the software switch
Ofsoftswitch13 [74].
Hardware abstraction layer - for representation of phys-

ical network layer in the hierarchically autonomous QoS
model, is proposed in [133]. In the proposed model, a data
plane is precisely cut into multiple virtual networks with the
capabilities of the dynamic allocation of resources. For the
implementation of the proposed architecture, the following
mechanisms have been used:
• redistribution of virtual resources based on the context,
• network virtualization,
• autonomous network structure.

Redistribution of virtual resources is achieved by cutting
overall physical network infrastructure resources according
to the needs of a single service or application. Network
virtualization is enabled by introducing a flow structure with
an extendable packet matchingmechanism. Autonomous net-
work infrastructure is ensured by introducing control loops
in the control plane which are responsible for the settings
configuration on physical network elements.

D. MEASUREMENT AND MONITORING
New structure of flow table - to support sampling of pack-
ets covered by wildcard flow records in OpenFlow switch,
is proposed in [134]. In the mentioned paper is was noted
that traffic intensity between controllers and switches can be
significant in networks such as DCN, which may result in
slower forwarding of new flows. One way to reduce control
traffic is the usage of wildcard records for the creation of
default routes in the network. Since switches do not keep
track of the flows covered by wildcard records, the controller
has no more information about individual flows.
New data plane architecture - which, in addition to data

and control planes, introduces a history plane to support the
packet history logging regarding its entire journey through
the network is presented in [135]. The proposed history plane
includes NetSight servers and the coordinator. In addition to

basic SDN tasks, controllers are responsible for configuring
packet history filters (PHF) on switches. PHFs are described
in a language based on regular expressions, and specify the
path, switch state, and packet header fields for the history
of the packet of interest. When the packet passes through
the switch, a postcard is generated based on the PHF trigger
and delivered to the NetSight server. A postcard represents a
packet summary that contains elements essential to tracking
its journey through the network. NetSight servers collect
postcards, process them and store them in compressed lists,
and on the request submit compressed packet history to the
coordinator. The coordinator is responsible for processing the
history of the packet and generating useful information for the
network monitoring applications.

Concerning the evolution of OpenFlow-based SDN
founded on the principles of network devices generality, dis-
tributed control plane and simple packet processing, in [136]
they argue that three principles need to be satisfied to main-
tain vertical scalability:

1) control functionalities should remain in the control
plane domain, other than those which promote the effi-
ciency of packet processing and adapt to the hardware
and software requirements of the data plane,

2) control functionalities cannot change the basic data
plane processes,

3) the collection of statistics in the data plane should not
affect the accuracy and validity of the measurement and
should not cause an increase in the control plane load.

Following these principles, it is proposed to offload the
control plane from the control messages, by introducing a
statistical server that closely cooperates with network devices
in the data plane and submits collected statistics only at the
request of the controller.
Stateful packet processing - was used in StreaMon [137]

to separate the program logic of the traffic analysis applica-
tions from elementary primitives implemented in the network
device probes. StreaMon abstracts the measurement process
through three phases:

1) identification of the entity being monitored,
2) measurement by applying efficiently-implemented

primitives to the configurable fields of the packet
header,

3) making decisions using extended finite-state machines
(XFSM).

The implementation of this abstraction is enabled by using
a stream processing engine consisting of four layers: (1) a
layer of events that parse the recorded packets, (2) a layer
of metrics applied to parsed packets, (3) a layer of features
in which different statistics are derived from the calculated
metrics, and (4) a layer of decision in which the measurement
application logic is executed.
Hybrid architecture - which enables the introduction of

software-defined counters by connecting ASIC to the gen-
eral purpose processor and the cost-effective DRAM, and
replacing the classic counters with small buffers, is proposed
in [138]. The principle of work is the following. With the
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arrival of the packet, instead of incrementing the counter,
ASIC creates a record of that event and adds it to the buffer.
The buffer is divided into several blocks which, when filled,
are transmitted to a general purpose processor. A general
purpose processor based on the block content is updating the
counters located in the DRAM.

Similar to previous research, the software-defined mea-
surement architecture, OpenSketch, which separates data
plane measurement from the control plane, is proposed
in [139]. In data plane, OpenSketch provides a simple three-
stage pipeline: hashing, filtering, and counting. A measure-
ment library has been created, which enables the automatic
configuration of the data plane pipeline and the switch
memory allocation for each measurement task. The proto-
type is implemented on the NetFPGA platform, by inserting
packet header parsing, hashing and lookup modules, and
SRAM-based counters in the reference switch pipeline.
Data plane programming - as a solution for network mon-

itoring is proposed in [140]. Within the proposed solution,
there is a simple programmable interface which allows end
nodes in the network to query and calculate over the switch
memory using tiny packet programs (TPP). The TPPs are
embedded in the packet headers and contain several instruc-
tions for reading, writing or performing arithmetic opera-
tions over SRAM data or processor registers. The pipeline
of the proposed solution is based on an ASIC containing
a TPP processor (TCPU) between L2/L3/TCAM tables and
the memory of the output queues. TCPU is based on a
RISC processor, which executes instructions in five stages:

1) fetching,
2) decoding,
3) executign,
4) reading from memory,
5) writing to memory.

Examples of supported statistics which can be obtained from
the switch memory are: counters associated with L2/L3 flow
tables, link utilization, number of received/sent/dropped
bytes, queue size, etc.

E. SECURITY AND RELIABILITY
Although the security [141]–[144] and reliability [145]–[148]
issues of the network are of different categories, they are
commonly concerned with detection, isolation, and rapid res-
olution of problems that can degrade the performance or com-
pletely impair normal network operation. The SDN’s data
plane is attractive as a place where security and reliability
issues are solved because it is the first target for potential
threats to security or network reliability.

Despite the fact that there was no change in the switch
architecture, in [142] it is shown that by relocating relatively
straightforward access control operations to a data plane,
the load of the SDN controller can be reduced, thereby
increasing the scalability and security of the entire network.
New data plane architecture - which enables fast detection

of the impairments along the entire path, is proposed in [145].
It is shown that the data plane recovery can be achieved in less

than 50 ms by the relocation of the connection monitoring
from the control plane to the data plane. To do this, generators
of monitoring messages, whose absence on the destination
switch side can point to problems in the connection, were
added to the OpenFlow switch architecture.
New packet classification mechanism - as an OpenFlow

extension to support detection and blocking of the distributed
denial-of-service (DDoS) attack through content-oriented
networking, is introduced in [141]. In proposed extension an
OpenFlow switch can respond to the requested content based
on URL in requests. To achieve this, interceptor of the packet
with the appropriate URL and the rate limiter were added to
the hardware architecture of the OpenFlow switch.
Hybrid architecture - for packet classification, called

HyPaFilter, is proposed in [143]. HyPaFilter exploits the
advantages of parallel and massive hardware-based packet
processing and the large inspection capabilities of software-
based packet filters. It partitions user-defined policies for
packet processing into simple parts executed on special-
ized hardware and complex parts run in the software. The
firewall prototype is implemented by a combination of the
NetFPGA-SUME hardware platform and netfilter/iptables
software on the Linux-based system. Packets which come to
the proposed switching node are handled primarily on the
hardware, and only in case of need for complex operation
execution are redirected to the software.
Stateful packet processing - was applied in [146] for solv-

ing the problem of network failure. The ability of Open-
State [149] to respond to packet-level events has been utilized
to determine the fast path recovery mechanisms for the relo-
cation of flows affected by the network failure.

The connection monitoring workspace, called StateMon,
is proposed and implemented in [144]. To keep the data plane
as simple as possible, only the table of an open connection,
based on OpenFlow match-action abstraction, is added to the
end of the switch pipeline. The rest of the logic, which is in
charge of maintaining the global status table and the state
management tables, is implemented in the controller. Due
to the OpenFlow communication limitations, the switch has
been extended with a new protocol for the open connections
table programming. Using StateMon, the stateful firewall and
the port knocking application were implemented.

Because the current abstractions of the SDN’s data plane,
for the detection of network failures, did not provide the abil-
ity for fine tuning the detection mechanism in the switches,
the new data plane design, called SPIDER, is proposed
in [147]. SPIDER is a pipeline similar to OpenFlow which
allows: (a) failure detection mechanisms based on periodic
link checking on switches, (b) rapid redirection of traffic
flows even in the case of remote failures, regardless of the
availability of controllers. A model of flow structure based
on the stateful data plane abstraction such as OpenState and
P4, and the corresponding behavior model, are presented.

The feasibility of using the abstraction of a programmable
data plane in the iptables offloading from the server pro-
cessor to the smart network card is investigated in [148].
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On a smart network card, based on the NetFPGA-SUME
platform, an open packet processor based on the XFSM has
been implemented.

F. SUPPORT FOR VARIOUS NETWORK TECHNOLOGIES
Since the inception of SDN idea, the research focused on
Ethernet and IP network technologies. However, a significant
need for the expansion of the SDN, to support other network
technologies such as optical circuit switching (OCS), optical
packet switching (OPS), gigabit passive optical networks
(GPON), data over cable service (DOCSIS) and so on, has
been noted. Some of the research focused on introducing
reconfigurability into the data plane architecture, especially
in the domain of the physical layer, while others opted for
data plane abstraction to make it independent of lower-layer
technology.
New structure of flow table - is proposed in [150] as an

extension of OpenFlow v1.0 to support MPLS technology.
The proposed extension allows an OpenFlow switch without
the ability to route IP traffic to forward MPLS traffic. This
is accomplished by having three packet header modification
operations implemented in the switching node of the data
plane:

1) push - adding new labels to the MPLS label stack,
2) pop - removing labels from the MPLS label stack,
3) swap - replacing the label at the top ofMPLS label stack

with a new label.
The prototype is implemented on the NetFPGA platform.

An extension of OpenFlow v1.1 architecture to support
switch management in multi-technological transport layers is
presented in [151]. The circuit flow table, which is not used
for search, but contains information about existing connec-
tions, is proposed. This enabled support for hybrid switches
that perform both the circuit and the packet switching. The
proposed extension can be used for a smooth migration to
fully packet-optical integrated nodes where, for example,
packet routers would contain reconfigurable optical add-drop
multiplexers (ROADM).
Reconfigurable architecture - called Open Trans-

port Switch (OTS), which enables packet-optical cross-
connections (XCON) and allocation of bandwidth on the
optical element, is proposed in [152]. OTS consists of the
following building elements: (1) a discovery agent which is
in charge of detecting and registering resources, (2) a control
agent which is in charge of surveillance and propagation of
alarms and notification to the controller, and (3) the data
plane agent which is responsible for programming the data
path of the network element. Data plane entities can be time
slots, XCONs, or MPLS labels. OTS is integrated into the
SDN framework using the OpenFlow protocol.

The first demonstration of a fully-programmable space
division multiplexing (SDM) optical network consisting of
three architecture on demand (AoD) nodes interconnected by
multi-core fibers (MCF) is presented in [153]. AoD nodes
dynamically implement a node architecture based on the
traffic requirements and consist of an optical backplane that

interconnects MCF/single mode fiber (SMF) inputs, modules
such as a spectral selective switch (SSS) or EDFA (erbium-
doped fiber amplifiers) and MCF/SMF outputs. Later, a pro-
grammable FPGA-based optical switch and interface card
(SIC) replacing traditional NIC and allowing direct intercon-
nection of servers via optical top-of-the-rack (ToR) switches
is proposed in [154]. Additionally, SIC enables the aggrega-
tion of the OCS and the OPS within the AoD.

The SDN-enabled OPS node for reconfigurable DCN is
represented in [155]. The OpenFlow protocol has been
extended to support wavelength management, management
of spatial and time switching elements, and flow manage-
ment of the OPS node. The data plane of the OPS node is
modular allowing the constant reconfiguration time (in the
order of nanoseconds) regardless of the number of node ports.
Optical flows generated by the ToRs contain an optical tag
by which an FPGA-based controller performs an OPS table
lookup and determines the OPS port to which flows are
forwarded. Given the nature of statistical multiplexing, con-
tention between input signals from the same ToR is possible.
Therefore, between the FPGA-basedOPS and ToR controller,
bidirectional flow control with ACK and NACK signals has
been established. To enable communication between OPS
and OpenFlow controllers, an OpenFlow agent has been
implemented.

The SDN-based integration of time and wavelength divi-
sion multiple access - passive optical metro networks
(TWDM-PON) is demonstrated in [156]. The proposed solu-
tion is based on a simple OpenFlow controller that runs
on one node where network nodes are implemented using
additional cards. The prototype, made of two optical network
units and two optical service units of the 10Gbps Ethernet-
based TWDM-PON, is implemented using two Altera FPGA
Stratix IV GT chips. It has been experimentally demonstrated
that such an architecture can achieve a reconfiguration time
of the node in a data plane below 4 ms.

TheNEPHELE network architecture, featured in [157], has
a scalable data plane built on verified commodity photonics
technology. The NEPHELE data plane works in the time-
division multiple access (TDMA) mode, where each slot is
dynamically reserved for one communication on the rack
to rack relation. Building blocks of the data plane are ToR
and pod switches. ToR switches connect devices within the
datacenter rack and in their northern ports have specially-
configured optical transceivers working in TDMAmode. Pod
switches, interconnected by the wavelength-division multi-
plexing (WDM) technology in the ring topology at the top
of NEPHELE architecture, enable interconnection of all the
ToR switches in the star topology. Within the pod switches,
switching is performed using the array waveguide grating
routers. The integration of the data plane of NEPHELE archi-
tecture into the OpenFlow-based SDN architecture is enabled
through the implementation of the support for three types of
interaction:

1) ability to advertise a device in the data plane (e.g., avail-
able wavelengths, active ports, available time slots),
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2) operational configuration of the device (e.g., adding
records to the flow table, creating cross-connections),

3) data plane monitoring, including asynchronous notifi-
cations and statistics download.

In a practical example, mentioned interactions are supported
by implementing an SDN agent that acts as a proxy between
the switches and the controller.
New data plane architecture - called SplitArchitec-

ture [158], allows flexible mapping of control plane layers
to data plane layers in a hierarchically structured model.
Additionally, SplitArchitecture separates the forwarding and
processing functionalities of the data plane element. The
ability to process data in the data plane enables the imple-
mentation of OAM functionality as support for tunneling in
carrier networks (PPPoE, pseudo-wire emulation, etc.).

A programmable and virtualizable all optic network infras-
tructure for DCN is presented in [159]. Its architecture is
hybrid, and the data stream consists of SDN-enabled OPS and
ToR switches connected to the SDN-enabled optical back-
plane with support for multicast circuit and packet switching.
The optical backplane includes optical function blocks such
as wavelength selective switches (WSS), OPSs and split-
ters, which can be dynamically configured to the arbitrary
topology according to the requirements of a specific applica-
tion. For intra-rack server interconnection, a programmable
FPGA-based OPS/OCS hybrid NIC is used.

Since OpenFlow specifications did not include optical
layer constraints at the time, the use of hybrid switches was
discussed in [160]. A typical core network transmits a com-
bination of packet and circuit services. It is implemented as
one of the following multilayer architectures:

1) layered architecture in which the packet switching is
positioned above the circuit switching,

2) parallel architecture in which circuit and packet switch-
ing are located at the same level of the hierarchy,

3) hybrid architecture in which a hybrid switch provides
complete flexibility in the aggregation of circuit and
packet switching on individual wavelengths.

This flexibility is enabled by the use of software-defined
transceivers and the flexible network of ROADMs.

One approach to the integration of optical networking
devices into an OpenFlow-based SDN architecture is pre-
sented in [161], [162]. The architecture of the software-
defined optical network (SDON) with a hierarchical data
plane structure is proposed. The data plane is divided into
four layers to achieve more accurate resource management.
Integration was achieved by introducing transport controllers
between data and control plane. The task of the transport
controller is an abstraction of the optical network infrastruc-
ture to the unified controller as a set of virtual resources,
using the techniques of inter-layer provisioning and resource
adaptation.
Hardware abstraction layer (HAL) - architecture, pre-

sented in [163]–[165], consists of two parts: a cross-hardware
platform (CHPL) and a hardware-specific layer (HSL).
CHPL enables virtualization and realization of OpenFlow

mechanisms, independent of the hardware platform below,
with an efficient pipeline. The pipeline is processing packet
abstractions rather than actual packets, where packet abstrac-
tion contains a reference to the actual packet stored in the
network device memory. HSL is a set of hardware drivers
which implement primitive network instructions, specific to
different hardware platforms. Examples of HAL architecture
adaptations are presented for three groups of network devices:
(1) optical devices, (2) point to multi-point devices and
(3) programmable platforms. Therefore, an example of the
dense wavelength division multiplexing (DWDM) ROADM
optical switch for optical devices is presented. In this exam-
ple, the optical fiber specificities are abstracted by a cross-
connection flow table containing information about the input
port, the output port, and the wavelength at which the
established communication is performed. Additionally,
an adaptation of the proposed HAL architecture for GPON
technology is presented in [166]. As an example one on
multiple architectures, adaptation to the DOCSIS system is
provided in [164]. In this case, the entire data plane of the
DOCSIS system consisting of the cable modem terminating
system, cable modems and residential gateways is abstracted
as a one aggregated switch. Since the DOCSIS platform is
a closed system and configuration is only possible through
standard interfaces, a DOCSIS proxy is introduced between
the OpenFlow Controller and the DOCSIS system that per-
forms described abstraction. Technical details of the DOCSIS
proxy implementation are presented in [167]. Adaptation of
HAL architecture for programmable platforms is provided for
an EZappliance platform, based on the EZchip NP-3 network
processor, and the NetFPGA board.

All-optical DCN architecture is presented in [168]. The
data plane of the proposed architecture consists of OCSs
based on large-port-count fiber switches, above which the
MCF switch is settled. MCF switch forwards traffic between
data centers. Two layers of OCS combined with SMF and
MCF devices, under SDN control, form a flat DCN archi-
tecture. Besides MCF switches, additional components (such
as FPGA based high-speed TDM switches and NICs) are
placed in the data plane tomeet different requirements. Above
the presented data plane, OpenStack-based virtualization has
been established, which simplifies the process of provision-
ing and SDN-based network management.

G. NETWORK AND NETWORK FUNCTIONS
VIRTUALIZATION
The network functions virtualization (NFV) relies on host
and network virtualization technologies, which enable the
mapping of entire classes of network node functions to build-
ing blocks. Interconnecting (chaining) of building blocks cre-
ates complex communication services (e.g., firewalls, IDSs,
traffic caches). Network functions virtualization complement
the SDN so that it enables the organization of elements on
the path through the data plane. Because of an unbreakable
connection between NFV and SDN, research in the field of
virtual networks and NFV has also implicated changes in
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the data plane of the SDN. An overview of these research is
provided below.
Reconfigurable architecture - for virtualized middle-

box acceleration, called OpenANFV, is presented in [169].
From top to bottom, OpenANFV’s architecture consists of:
(1) an OpenStack orchestration platform, (2) a virtual net-
work function (VNF) controller, (3) a NFV infrastructure,
and (4) a network functions acceleration platform (NFAP).
In short, when a specific middlebox needs to be realized, each
VNF that builds it is instantiated as a VM node. The VNF
controller takes care of the resource management required
by each VM. NFAP is implemented using a PCIe card that
contains a FPGA chip with static and partially reconfig-
urable (PR) regions. Functionalities of packet classification
and switching are implemented in the static region. When
required, accelerators are implemented using PR and connect
to a switch in a static region.

The use of FPGAs as a platform for the NFV is pro-
posed in [170]. In the proposed conceptual solution, FPGAs
can be dynamically configured to provide hardware sup-
port to a specific application or another hardware. The plat-
form should support hardware accelerators from different
vendors, by defining a standard interface between these
modules (NFV-IF). The NFV controller would perform the
configuration of individual modules on the FPGA via the
NFV configuration interface (NFV-Config-IF).
Data plane programming - using P4 was used to create a

portable virtualization platform HyPer4 [171]. HyPer4 con-
sists of a P4 program, named persona, running on a network
device, a compiler and a data planemanagement unit. Persona
is a generic P4 program that can be dynamically configured
to mimic the functionality of other P4 programs through three
phases:

1) parsing and setup,
2) match-action emulation,
3) egress phase.

In the parsing and setup phase, a packet is received and
prepared for the processing according to the specifications of
the P4 program, which is emulated in the second stage. The
output phasemanages output-specific primitives and prepares
the packet for sending. To be able to emulate arbitrary P4 pro-
grams, the persona supports:
• programmable parsing,
• arbitrary definition of the packet field representation,
• matching to arbitrary fields,
• actions which can be complex collections of
P4 primitives,

• virtual networking based on the recirculation of packets
from one virtual device to another.

As proof of the proposed concept, using HyPer4 are emulated
L2 Ethernet switch, IPv4 router, ARP proxy and firewall.
New data plane architecture - based on ForCES network

elements with support for virtualization and programmability
is proposed in [172]. A virtualization support in ForCES
network elements has been achieved by introducing virtual
machine technology in CE and FE. The virtual ForCES

router, called vForTER, is designed as a proof of the pro-
posed concept. The vForTER architecture consists of virtual
control elements (vCE), virtual forwarding elements (vFE)
and a particular FE called switching element (SE). SE is in
charge of managing the virtualization of CE and FEs and the
internal scheduling of traffic between virtualized elements.
Also, an FE algorithm for the dynamic allocation of FE
resources is executed on the CE. In the proposed vForTER
design, the data plane consists of one FE and two vFEs.
vFE performs the processing of packets received from the SE,
using functions provided by LFBs. The vForTER prototype
was implemented using VMWare ESXi hypervisor and the
Click modular router.

A virtual filtering platform (VFP), based on a pro-
grammable virtual switch, is presented in [173]. The VFP is
running on a Hyper-V extendable switch on the Microsoft
Azure cloud platform and consists of match-action tables
(MAT) and the packet processor. MATs are realized as layers
that support configuration using a programming model and
the operation with multiple controllers. The programming
model is based on the configurable hierarchy of VFP objects:
(1) ports on which the filtering policies are performed,
(3) rules asMAT records, and (4) rule groups inside the single
layer. By testing VFP on over a million hosts, over a period
of 4 years, there have been several conclusions regarding data
plane design:

• the design should be conceived as a stateful from the
beginning,

• a precise semantic of the forwarding table layering is
needed,

• physical layer protocols need to be separated from the
data plane,

• all operations should be modeled as actions (e.g., tun-
neling as encapsulation and decapsulation),

• forwarding should be kept simple,
• commodity NIC hardware is not ideal for the SDN.

Virtual data planes, as described in [174], can be realized
as software objects called virtual network objects (VNO),
to which multiple network infrastructures can be mapped.
The network slice can be created as needed by configur-
ing the logical network via VNO, which liberates users
from the need for expert knowledge in the field of virtual
networks.
Hardware abstraction layer (HAL) - model for data plane

resources orchestration based on UNIFY BiS-BiS [175] is
presented in [176]. In the proposed model, each hardware
element which affects delay and bandwidth must be taken
into account, e.g., processor cores, memory modules, phys-
ical or virtual network interfaces, etc. Fast and efficient
resource orchestrator (FERO) generates an abstract model
based on hardware infrastructure during a bootstrap process.
Incoming network service requests are mapped to available
resources using the generated graph model. The prototype
of the proposed solution was implemented using Docker and
various software switches with added support for DPDK.
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TABLE 2. Correlation of treated problems and problem-solving approaches.

KEY FACTORS FOR DATA PLANE EVOLUTION
By reviewing the research which had addressed different
problems by the categories listed in this section, we observed
several common problem-solving approaches. Then we
established a correlation between treated problems and
problem-solving approaches. Afterwards, we identified the
key limitations of ForCES and OpenFlow data plane archi-
tectures which have conditioned the specific problem-solving
approach. Based on identified key limitations, we generalize
the approaches to addressing the problem of programmability
and flexibility of the SDN’s data plane in four categories:
A) data plane languages,
B) stateful data plane,
C) deeply programmable networks,
D) new data plane architectures and abstractions.

Table 2 shows the correlation of treated problems and
approaches to addressing an issue of programmability and

flexibility of SDN’s data plane, as well as a generaliza-
tion of problem-solving approaches based on identified key
limitations.

From the motivations and results of the research presented
in this section, we can conclude that the perceived limitations
of ForCES- and OpenFlow-based data plane architectures
cannot be relatively simply overcome. The programmability
of the internal data plane structure is imperative for the future
flexibility of the SDN from the aspects of flows, functions,
resources and topology.

VI. GENERIC APPROACHES TO IMPROVE THE DATA
PLANE FLEXIBILITY AND PROGRAMMABILITY
Before entering a critical review of the research which
through the four generic approaches achieved the improve-
ment of the programmability and flexibility of the SDN’s data
plane, we will make a brief recapitulation of the work done
so far. In the first sections, an overview of the ForCES and
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OpenFlow data plane architectures, as well as its hardware-
and software-based implementations, is provided. After-
wards, an overview of SDN-related research is presented,
whose results implied the evolution of data plane, under
which we meant a gradual deviation from the original
architecture given by ForCES and OpenFlow specifica-
tions. By establishing a correlation between problems treated
by SDN-related research and problem-solving approaches,
we identified key limitations of ForCES and OpenFlow
data plane architectures. Based on identified key constraints,
we generalized approaches to addressing the problem of
programmability and flexibility of the data plane, into four
categories which represent the organizational units of this
section.

A. DATA PLANE LANGUAGES
By contemplating research which dealt with the definition of
data plane language, we have recognized two categories:

1) data plane description languages,
2) data plane programming languages.

1) DATA PLANE DESCRIPTION LANGUAGES
Data plane description languages enable the description of
the data plane structure and its components (e.g., an order
of elements in the packet processing pipeline, parameters of
elements). A review of the most relevant research from this
category is given below.

The high-level language for programming packet pro-
cessors, called P4, is proposed in [177]. When designing
the P4 language, three goals have been set: (1) to enable
on-demand reconfigurability of parsing and processing the
packet, (2) to ensure protocol independence by enabling the
specification of the packet header parsing and the match-
action table, and (3) to achieve independence from the tar-
get platform. For the definition of P4 language, an abstract
forwarding model was used in which the switch forwards
packets to the pipeline through the programmable parser. The
pipeline is composed ofmultiplematch-actionmodule stages,
which can be arranged in a parallel, in a series or in a combi-
nation. The P4 program contains the following components:
• packet header definition,
• parser definition,
• match-action tables,
• constructions of actions made of simple protocol-
independent primitives,

• control programs which determine the order of applica-
tion of the match-action tables on the packets.

In short, by using the P4 language the programmer defines
the packet processing mode in the data plane without taking
into account the implementation details. The written P4 pro-
gram is compiled into a table dependency graph which can
be mapped to a specific software or hardware switch. The
design of the P4 compiler for reconfigurable matching tables
(RMT) [178] and Intel FlexPipe programmable ASICs is
presented in [179]. A hardware abstraction, which is common
for both chips, is defined to achieve the independence of the

compiler from the target platform. The physical pipeline of
the chip is modeled as a directed acyclical graph of processing
stages, while the memory is abstracted with match tables
which support records corresponding to the type of memory
(e.g., TCAM as a ternary match table, SRAM as an exact
match table).

Considering existing P4 language constraints when
describing the DCN data plane, the P4 language extension is
proposed in [180]. Additional constructions were introduced:
(1) cloning the packet, (2) rejecting the packet, (3) generating
Digest, and (4) adding CRC-16 hash to a specific packet field.
It has also been shown that existing P4 language constructions
enable the description of a significant number of DCN switch
functionalities.

The PISCES, a P4 programmable software switch pre-
sented in [181], is a modified version of OVS in which pars-
ing, matching, and action execution codes are replaced with a
C code generated by a P4 compiler. In order to customize the
OVS function to the P4 principles, additional changes were
made in the OPS: (1) support for arbitrary encapsulation and
decapsulation was provided by adding two new primitives to
manipulate the header of the packet, (2) support for condi-
tioned action execution has been added, and (3) support to
the generic verification and checksum updatemechanismwas
provided. The PISCES compiler generates the source code of
the OVS software switch based on the P4 program, which
then needs to be compiled into executable files of the switch.

Since FPGA technology has become popular in prototype
network hardware, the P4FPGA framework which enables
compilation of the P4 program into the FPGA firmware is
proposed in [182], [183]. P4FPGA generates the appropri-
ate BSV code suitable both for simulation and synthesis,
based on the P4 program. Generated BSV code contains
a description of the P4 pipeline and additional supporting
infrastructure. The supporting infrastructure includes FPGA
memory management and the pipeline communication with
other peripheral units on the target platform (e.g., PCIe inter-
connection, 10G Ethernet interface).

In [184], Xilinx, one of the leading manufacturers of
FPGA chips, has presented its contribution toward the imple-
mentation of reconfigurable network elements in both control
and data plane in the form of the development environment
SDNet. It allows the specification of packet switching node
elements in a domain-specific language (e.g., P4), translation
into hardware description languages (HDL), like VHDL and
Verilog, and its synthesis and deployment on a broad range
of FPGA and SoC chips. The basic features of SDNet envi-
ronment include:
• generating custom hardware components to perform
specific tasks (e.g., editing, searching, parsing),

• generating a specially customized data plane hardware
subsystem according to the application or the user
requirements,

• generating a particularly customized firmware for
designed SDNet hardware architectures,

• generating testbench for validation and debugging.
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As an example of using the SDNet environment, the next gen-
eration NIC architecture, called the Softly Defined Line Card,
has been presented. In the card architecture, the customized
data plane consists of a packet processor and a programmable
traffic controller. Also, IP cores for MAC, forward error cor-
rection (FEC), physical coding sublayer (PCS) and switch-
ing functionality can be used from the extensive network
SmartCORE library. Other standard interfaces (e.g., exter-
nal memory interfaces) are available from the LogiCORE
IP library.

An intermediate data plane language, called NetASM,
is proposed in [185]. NetASM is conceived as a link between
high-level languages (e.g., P4) and a diverse and growing
set of hardware platforms. The instructions of NetASM lan-
guages are executed sequentially or concurrently on packet-
related states, or on persistent states at the pipeline level.
By introducing a packet-related state, it is possible to par-
allelize the pipeline. The NetASM language instruction set
contains 23 instructions and enables: (1) data loading, (2) data
storing, (3) calculation, (4) branching, (5) operations on the
packet header, and (6) special operations such as hash and
checksum.

2) DATA PLANE PROGRAMMING LANGUAGES
On the other hand, data plane programming languages enable
the implementation of new algorithms in the data plane
(e.g., new packet scheduling mechanisms, new packet clas-
sification methods), and the most important representa-
tives are Protocol-oblivious Forwarding (POF) [186], and
Domino [187].

POF does not need to know the packet format. Its only task
is to extract the search keys from the header of the packet
according to the controller’s instructions, search the table,
and then execute associated instructions. The instructions
are given in the form of an executable compiled from the
code written in the Flow Instruction Set (FIS) language. FIS
instructions allow manipulation of packet headers, forward-
ing tables contents, and statistical counters. Thus, support
for new protocols is provided without changes in the data
plane.

Domino is an imperative language with a syntax simi-
lar to C language and allows writing programs for packet
processing using packet transactions. Packet transactions are
inseparable sequential code blocks. The execution of Domino
packet transactions is foreseen on the new machine model
of the programmable line-rate switches, called Banzai. The
Banzai machine architecture consists of an ingress and an
egress pipeline. Parsing a packet is out of the scope of the
Banzai model, and it is assumed those packet headers which
are entering pipeline are already parsed. The pipeline con-
sists of many stages that contain atoms, i.e., vectors of pro-
grammable units for packet header processing. The Domino
compiler extracts the code fragments, which are executing
atomically, from the description of the algorithm and maps
them to the appropriate configuration of atoms in the Banzai
machine.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
In the first category - data plane description languages - P4
is particularly emphasized, which treated limited SDN’s data
plane flexibility by increasing the programmability of pars-
ing, matching and action processes. Protocol independence
was achieved by introducing reconfigurability in the packet
parsing and processing, and target platform independence
was achieved by hardware abstraction. However, in this way,
some packet processing functionalities, such as queuing,
scheduling and physical layer management, are neglected,
limiting flexibility in term of forwarding function operation.
As P4 does not envisage the use of hybrid architecture as a
target platform, its flexibility in terms of function scaling and
function placement is significantly limited.

On the other hand, the alternative to the P4 language are
hardware description languages, which provide high pro-
grammability but with a complicated and time-consuming
development process. Although such a limitation can be
partially overcome using compilers which translate domain-
specific languages into HDL, domain-specific languages
should retain sufficient details specific to target hardware
which would allow the programmability of all data plane
processes.

The second category includes data plane programming
languages in term of implementation of arbitrary packet pro-
cessing algorithms directly in the data plane. Such languages
achieve high flexibility in term of function operation through
the programmability of all data plane processes. However,
their dependency on the destination platform (specific packet
processors or packet machines) limits the flexibility from the
aspects of function scaling and placement.

Therefore, as open problems which should be addressed by
future research, we highlight the following:

1) the lack of adequate constructs of current languages
which would allow complete programmability of all
data plane processes, and

2) the inability of the existing languages to adequately
abstract the details specific to the destination platform,
which would ensure independence from the destination
platformwithout losing the granularity in programming
the data plane processes.

B. STATEFUL DATA PLANE
As already noted in the Section V, an approach based on
the introduction of finite state machines into the data plane
has been applied to solve a significant number of data plane
problems. A review of the most important research aimed at
generalizing the introduction of state-aware packet process-
ing into the SDN’s data plane is provided below.

A stateful forwarding abstraction (SFA) in SDN’s data
plane is presented in [188]. The co-processor unit, called
Forwarding Processor (FP), is implemented within the SDN
switch using the CPU. Extended OpenFlow instructions
are used to redirect packets or flows from flow tables to
the FP, in which complex processing functionalities are
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implemented. This has enabled stateful network processing
on the higher layers of the protocol stack.

The new stateful datacentre architecture (SDPA) is pro-
posed in [189] as a follow-up of the research presented
in [188]. Unlike the standard match-action OpenFlow
paradigm, a new ‘‘match-state-action’’ paradigm has been
proposed in which state information is maintained within the
data plane without the heavy involvement of the SDN con-
troller. The SDN switch architecture, which supports SDPA
in such a way that the FP, the state table and the policymodule
are added to the standard architecture of the SDN switch,
is proposed. FP’s task is to maintain the flow or the packet
states. The policy module is used to customize and manage
processing policies issued by the controller. Based on the
proposed architecture, hardware and software prototypes of
SDPA switches and application examples such as stateful
firewall, defense against the domain name system (DNS)
reflection attack and network address translation (NAT) func-
tionality have been implemented.

Although the OpenFlow architecture is limited regarding
programmability within the switch, a non-trivial subclass of
stateful control functions, which can be abstracted as Mealy’s
FSMs, and are already compatible with OpenFlow hardware
from version 1.1 with minimal architectural changes, is advo-
cated in [190]. The proposed approach, OpenState [149],
focuses on introducing programmable states and transition
to the OpenFlow. The control logic uses packet-level events
as triggers for the change of forwarding rules at wire speed
inside the device itself. OpenState introduces the stateful
block as an extension to a single flow table and can imple-
ment: (1) state table associated with flow identities, and
(2) the XFSM table which performs a search based on the
state label and packet header fields, and returns the associated
forwarding action and the next state label. Stateful blocks
can be chained into the pipeline with other stateful blocks as
well as the classic OpenFlow tables. The proposed abstrac-
tion generalizes the OpenFlow match-action rules by using
XFSMs which are directly executed within the switches,
thus offloading controllers and creating abilities for complex
control operations at the packet level in a fast data plane.

The contribution to the improvement of the data plane
programmability by introducing stateful packet processing
within network switches is presented in [191]. The proposed
solution is called an Open Packet Processor (OPP), and its
primary goal is to provide an ability for direct packet pro-
cessing in the fast path, with efficient storage of flow state
informations. OPP is based on the abstraction of the match-
action phase of the OpenFlow using XFSM. The forward-
ing evolution is described by the FSM, where each state
defines the forwarding policy, and the packet-level event
initiates the transition to the next state. The workflow of the
OPP architecture consists of four phases: (1) flow context
table lookup, (2) conditions evaluation, (3) XFSMs execu-
tion, and (4) update of registers and flow context tables. The
OPP prototype was implemented using the NetFPGA-SUME
platform, where SRAM and TCAM were utilized for the

flow context table and XFSM implementation, respectively.
Later in [192], the same authors have presented several cases
of OPP usage in the implementation of advanced network
functions:
• packet forwarding based on load balancing,
• topology discovery based on L2 data,
• load balancing in the private network with static NAT.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
The introduction of the match-state-action paradigm in the
data plane has, through the increase in programmability of
actions, improved the flexibility of the data plane from the
aspect of the function operation. In the proposed solutions,
the control logic is dependent on the state of the data plane
and driven by packet-level events. Since the control plane
does not have the ability to monitor and manage the state of
the data plane, the flexibility from the aspect of the function
placement is limited. Additionally, the lack of adequate syn-
chronization of the data plane state reduces flexibility from
the function scaling aspect.

Although reviewed research has addressed the problem
of introducing state-aware packet processing into the SDN’s
data plane adequately, we notice some key issues that have not
been solved and which lead us back from the basic SDN idea
- managing the data plane from the control plane. Therefore,
we highlight the following open issues:

1) state monitoring and management,
2) data plane state synchronization.

C. DEEPLY PROGRAMMABLE NETWORKS
The deeply programmable network (DPN) is mentioned for
the first time in [193], and implies a step further to increase
the data plane programmability in the SDN. The DPN’s goal
is to enable advanced packet processing functions such as
caching, transcoding, and DPI, and to support new protocols,
through increased data plane programmability below the flow
table configuration level.

1) ORIGINAL APPROACH TO THE REALIZATION
OF DPN IDEA
Realization of the DPN idea has started through a VNode
design which consists of slow and fast paths. The slow
path represents a programming environment which consists
of Intel Architecture servers, while the fast route performs
network traffic processing using network processors. VNode
relies on the generic router encapsulation (GRE) for tunneling
of frames which come from different protocols. The exten-
sion of the VNode architecture with a physical node called
Network ACommodation Equipment (NACE) is presented
in [194]. NACE performs a dual role: (1) a gateway between
a virtual network and an external Ethernet/virtual local area
network (VLAN) network, and (2) a virtual switch between
slices of the virtual network. To implement the data plane,
NACE relies on 10Gbps Ethernet hardware including an
L3 switch which supports VLAN and IP routing functions,
and a service module card which performs conversion of
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packet formats between external and slice-internal formats.
The internal format is based on GRE, according to VNode
architecture, while the external format is based on the VLAN.
Due to VNode’s limitations regarding the complexity of fast
path programming and the inability to handle other frames
besides the conventional Ethernet frames, a new DPN node
design inspired by the POF idea, called FLARE node, is pro-
posed in [195]. FLARE can handle arbitrary protocol frames
thanks to the PHY designed to support any frame. This means
that there is no need for traffic tunneling which reduces over-
head and increases network bandwidth and performance. The
FLARE node architecture has supported the implementation
of the multiple switching logic within a single node by divid-
ing physical node resources into many fully programmable
slivers, through the virtualization technology. Interfaces to
physical ports of the node, a sliver management system,
and a classification machine named packet slicer are imple-
mented at the lowest level of architecture. The sliver man-
agement system enables dynamic installation and removal
of slivers. The packet slicer performs fast packet scanning
and its multiplexing or demultiplexing from or to slivers.
A programmable control and data planes and virtual ports are
available to the user within one sliver of the FLARE node.
The data plane consists of a fast and slow path. The fast path
of the FLARE node is implemented using a Click modular
router, which runs as a multithreaded application on multi-
core processors. The OpenFlow protocol support modules are
implemented within a slow path of the FLARE node. Each
sliver allows the implementation of arbitrary switch logic,
e.g., one sliver can implement OpenFlow 1.0 and the other
OpenFlow 1.3. The benefits of this approach are reflected in
the abilities of instant replacement of the switch software, and
the gradual upgrade of the network while maintaining com-
patibility with the legacy technologies. The general advan-
tages of FLARE architecture are supporting the extension
of SDN capabilities and the development of new protocols
(e.g., non-IP protocols) in the research community. Later,
improvements in VNode infrastructure using the FLARE
node have been presented in [196]–[199]. Support for edge
network virtualization and better resource management has
been added. Different use cases of DPN-based NFVwere also
presented:
• application-specific traffic control,
• smart M2M gateways,
• custom actions for OpenFlow switches,
• content/information-oriented networks.

The use of the DPN in the application-specific slicing of the
data plane of themobile virtual network operators (MVNO) is
shown in [200]. FLARE node is used for classification of traf-
fic specific to the particular application or the device. In this
way, it enables: (1) fine-grained QoS application, (2) traffic
engineering based on the type of application, device, and
other status information, (3) implementation of application-
specific value added services, (4) support for intra-network
security and parental control, and (5) improvement the
bandwidth utilization based on statistical data on particular

applications and devices. A context-aware IoT architecture
based on the MVNO switch, as shown in [201], has been
built on the ground of this idea. In the proposed architecture,
data collected through different sensors are transmitted over
the IoT gateways to MVNO switches, which then forwards
the received data to the central service controller for further
processing. MVNO switches are realized as a slice of the
FLARE node, and for packet forwarding are using informa-
tion from the application layer content of the packet. As a
fresh example of using the FLARE node, it is also worth
mentioning the concept of network slicing in the 5G mobile
network [202]. FLARE is used for the implementation of
eNodeB and evolved packet core (EPC) nodes. eNodeB is
running as a virtual machine instance within a FLARE slice.
EPC is also implemented as a FLARE slice, where for-
warding and processing of user data (e.g., Serving Gateway
and Packet Data Network Gateway) are implemented in the
data plane and signaling entities (e.g., Mobility Management
Entity) in the control plane.

The model of the L7 switch which forwards packets based
on the application layer content using the regular expres-
sion, and offers a south-bound API for configuring regular
expressions as needed during switch operation, is proposed
in [203]. The switch is realized by implementing two addi-
tional Click elements on the FLARE node: (1) L7Classifier
and (2) L7Register. L7Classifier performs the identification
of packet flows based on the IP address and TCP port num-
ber, and packet forwarding to the output interface or the
L7Register element based on the content of the flow table.
L7Register performs the matching of the packet contents of
the particular flow with a regular expression. When there
is matching with the regular expression in the L7Register
element, an output interface is being updated in a flow table.
By cascading multiple L7Register elements, it is possible to
implement more complex processing of the application layer
content.

The TagFlow architecture for packet forwarding based on
flow tags, which is implemented using a FLARE node, is pro-
posed in [204]. TagFlow’s architecture is based on a DCN
which has two edges: the ingress edge and the egress edge.
The ingress edge includes switches which connect the DCN’s
core with application servers and the egress edge is the point
where packets leave DCN. The TagFlow working principle is
as follows: (1) when the packet comes to the ingress edge,
the edge switch performs the classification and tagging of
the packet and forwards it to the next hop, (2) the packet is
forwarded based on the tag to the egress edge, (2) the egress
edge switch removes the tag from the packet and forwards
it to the destination. The classification of the packet can be
any application layer classification, where each traffic class
can have its tag and be treated as a separate flow. The tag
is added to the end of the packet (i.e., trailer tagging) to
keep compatibility with current network technologies that are
unaware that the tag exists. The tag-based packet forward-
ing is reduced to the forwarding table lookup on each core
switch. The forwarding table contains ordered pairs <flow
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identifier, action> as records, with supported actions similar
to those from the OpenFlow.

The extension of TagFlow architectures with user-defined
actions, designed to provide full flexibility and programma-
bility of the SDN’s data plane, is presented in [205]. The net-
work operator describes user-defined actions using high-level
languages on commodity hardware. Implementations of user-
defined actions on TagFlow andOpenFlow architectureswere
presented, and experimental comparison of its performance
was performed. The TagFlow-based solution was 33% faster
than OpenFlow-based.

The application of the DPN concept to improving the
performance of DPI-based routing of applications transmitted
via UDP traffic is presented in [206], [207]. The proposed
solution is demonstrated on two UDP-based applications:
(1) file reading and (2) database access. Unlike the stan-
dard methods which perform destination servers’ load bal-
ancing using the round-robin method, the proposed solution
conducts the forwarding of application requests to servers
based on the content of the request. In the first case it
is the file name, and in the second case, the database
name. Later, an upgraded DPN switching node solution
based on the FLARE node, for TCP-based applications,
was presented in [208]. The demonstration was done on the
HTTP application, where the DPN switching node mediated
in communication between the client and the server. By ana-
lyzing the content of a client’s request, when possible,
the DPN node generates HTTP responses to the client without
server engagement, thereby improving the performance of the
application.

2) OTHER APPROACHES TO THE REALIZATION
OF DPN IDEA
Although the idea of DPN was developed by a group of
researchers from the University of Tokyo, other researchers
have also generated a significant contribution to this area.
Thus SwitchBlade, a platform for the implementation of
custom protocols on programmable hardware, is intro-
duced in [209]. It enables the implementation of individual
hardware modules on the fly without the need for hardware
resynthesis. The SwitchBlade pipeline includes customiz-
able hardware modules which implement the most common
data plane functionalities. By combining these modules, it is
possible to implement support for new protocols. For more
complex tasks which can not be implemented on hardware,
there is support for software processing based on packet
rules or flow rules. Given the need to simultaneously runmul-
tiple protocols on the same hardware, the resource isolation
mechanism was implemented by using separate forwarding
tables. The prototype of the proposed solution is implemented
on NetFPGA platform.

Another example of DPN idea realization is a split SDN
data plane (SSDP), presented in [210] as a new switch
architecturewhich combines non-flexible commodity switch-
ing chips and a deep programmable co-processor system
to resolve the limitations of the SDN innovation potential.

The SSDP architecture consists of two data paths: (1) a
commodity switching chip which uses TCAM to forward
aggregated flows, so-called macro-flows, and (2) NP units
which perform micro-flows processing most often on L4 and
higher layers. The SSDP prototype is implemented on the
Dell PowerConnect 7024 platform which uses 24x1Gbps
switching chips connected to the programmable subsystem
(PS) via the XAUI interface. The PS is based on a 4-core
microprocessor without interlocked pipeline stages (MIPS)
running an OPS-based OpenFlow v1.0 software switch. The
principle is that packets which do not match records in the
TCAM of the switching chip are forwarded to the PS, where
software flow tables are looked up. The OpenFlow controller
determines where the particular flow will be written: in the
TCAM on the hardware or in the software flow table.

The solution presented in [211] is based on the idea of an
edge network node supporting user-driven data plane appli-
cations which can monitor and, if necessary, modify net-
work traffic in transit. User-driven applications are intended
to be executed within a network slice associated with the
corresponding actor (e.g., network service provider, end user,
content provider, etc.). The proposed edge network node
architecture consists of the following components:
• software switch,
• network hypervisor,
• controller,
• embedded web server,
• network gateway,
• management server.

The software switch, implemented by OVS, performs packet
forwarding based on the flow rules list. The FlowVisor-based
network hypervisor performs virtualization and splitting of
the network into so-called network slices, which allows con-
nection of the node to multiple OpenFlow controllers. The
controllers execute data plane applications on the encapsu-
lated data obtained by the network hypervisor. Other compo-
nents implement the functionalities of network node manage-
ment and its connection to the rest of the network.

The implementation of a customizable and programmable
PC-based switch, called the NetOpen switch, which sup-
ports different traffic processing functionalities within a data
plane, is presented in [212]. The NetOpen switch architecture
consists of interconnected processing modules and forward-
ing elements. The processing modules are working inde-
pendently of the other modules, and by combining different
modules, it is possible to create a data plane specially adapted
for each traffic flow. Each processing module consists of a
serially connected submodules: (1) pre-processing, (2) pro-
cessing, and (3) post-processing. The forwarding element is
responsible for the transfer of the packet between the network
interfaces and the processing modules, following the service
functionalities of the particular traffic flow. The topology and
configuration of individual processing modules within the
data plane are generated from the flow table. Hence, the flow
table is used as a programmable interface between the data
plane and the controller.
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The Scalable Programmable Packet Processing Platform
(SP4) based on the software router is proposed in [213]. The
SP4 data plane architecture is a component-based pipeline
supporting three types of components: (1) serial, in which
packets are processed in strict FIFO order, (2) parallel,
in which concurrent threads can process multiple packets,
and (3) parallel, context-oriented components where packets
are grouped by the context-key and within the group are
processed according to the order of arrival in the system. The
operation of the proposed solution is demonstrated in several
use cases: analysis of simple mail transfer protocol (SMTP)
traffic, interception of voice over IP (VoIP) calls, and DDoS
attack detection.

A new pipeline architecture of the switching chip based
on the RMT is proposed in [178]. RMT enables changes in
the data plane without hardware modification. This is accom-
plished with the help of a minimal set of action primitives
which specify how to handle the packet header in hardware
through: (1) definition of arbitrary headers, (2) definition of
arbitrary matching tables over arbitrary header fields, (3) def-
inition of the packet header modification mode, and (4) main-
tenance of the states associated with packets. The architecture
consists of a large number of stages of the physical pipeline,
mapped by the logic stages of the RMT, and according to the
resource needs of each logic stage. The components of the
physical pipeline are the configurable parser, the configurable
matching memory, and the configurable action machine.
These components enable the implementation of arbitrary
match-action processing of the packet.

Inspired by the ideas of chemical reaction engineering,
the realization of data plane functions using chemical algo-
rithms (CA) was proposed in [214], [215]. It has been shown
that CA can be easily and quickly modified and repro-
grammed on FPGA hardware without the need for translation
into an intermediate program or HDL code. By using CA, it is
possible to give an expressive and straightforward represen-
tation of rule-based algorithms for network dynamics man-
agement, which is suitable for extending the functionalities
of the SDN’s data plane.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
We believe that applying the DPN paradigm can solve a wide
range of problems caused by insufficient programmability
and flexibility of the SDN’s data plane. For example, a deeply
programmable node FLARE, using virtualization techniques,
positively affects the flexibility from the aspect of function
scaling. By introducing deep programmability into the Click-
based software path, FLARE node achieves high flexibility
in term of forwarding function operation.

However, one group of researchers focused on the use
of conventional servers eventually equipped with special
network processors, while others decided to use FPGA
technology. That partially limits the flexibility in term of
the forwarding function placement. Consequently, we claim
that all reviewed DPN architectures have one common

disadvantage - they are not independent of the target platform,
which remains an open problem for future research.

D. NEW DATA PLANE ARCHITECTURES AND
ABSTRACTIONS
In the last category of generic approaches to improve the
programmability and flexibility of the SDN’s data plane,
an overview of research which generated new architec-
tures or abstractions of existing data plane architecture is
given. Although approaches to creating new data plane level
architectures are diverse, they share the same motivation -
overcoming limitations imposed by the original architecture
of the OpenFlow-based SDN.

1) NEW DATA PLANE ARCHITECTURES
The conceptual solution presented in [216] is based on intro-
ducing a new component called network fabric. Network
fabric has been defined as a group of forwarding elements
whose primary function is the transmission of the packet. The
working principle of the proposed solution can be described
in the following steps: (1) the source node sends packets to the
input edge switch which, after providing network services,
forwards packets to the network fabric, (2) the network fabric
performs fast forwarding of packets to the egress edge switch,
(3) the egress edge switch sends packets to the destination
node. The network fabric is transparent to the end nodes.
The management of edge switches and the network fabric is
supported by the control plane.

Several dynamic scenarios which illustrate the main chal-
lenges associated with the development of a framework for
software-defined middleboxes are presented in [217]. The
representation of the middlebox state, the middlebox manip-
ulation and the implementation of the control logic are listed
as the main challenges. The abstraction which exploits the
inherent mapping of the status to the value of the protocol
header has been proposed for the representation of the mid-
dlebox state. The introduction of three basic operations has
supported the manipulation of the middlebox state: (1) state
retrieval, (2) state addition, and (3) state deletion. The control
logic remains under the control of the SDN controller.

In [218] it is argued, through the use of practical applica-
tion scenarios, that flow tracking is required to ensure the
consistent implementation of network management policies
in the presence of traffic dynamics. To achieve this, the exten-
sion of the SDN architecture has been proposed. In the pro-
posed extension, middleboxes add tags to outgoing packets
to provide the required context, and these tags are used by
switches and other middleboxes for systematic implementa-
tion of the management policies. The context carried by the
tag refers to middlebox-specific internal information which
is critical for the implementation of management policies,
such as the ratio of the number of hits and misses on the
proxy or public-private NAT mapping. For the implemen-
tation of the proposed solution, switches must support the
operations of inserting the tag into the header or the packet
content and matching of the packet with the corresponding
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tag, while the purpose of the tag remains in charge of the
controller.

The SDN architecture which enables application-aware
packet processing is presented in [219]. The basic idea is
to intercept the packet before sending it to the controller
and applying the application processing logic within the
switch. The proposed solution has been implemented by
extending the OVS with the support for special flow tables,
so-called application tables, and application modules pro-
cessing the traffic for which there is a matching within the
application table. The pipeline of the OpenFlow data plane
has been preserved with minor changes. Immediately after
OpenFlow flow table lookup, packets for which there is no
record in the flow table are forwarded to the additional appli-
cation table lookup, instead of encapsulation and sending to
the controller. Application modules can implement differ-
ent functionalities such as firewall and context-aware load
balancing.

2) DATA PLANE ABSTRACTIONS
On the other hand, the data plane abstraction motivation is
established on the fact that a majority of data plane imple-
mentations depend on the physical layer network technol-
ogy or the target hardware- or software-based platform. Some
approaches to the data plane abstraction are presented below.

New hardware abstraction, called Programmable Abstrac-
tion of Datapath (PAD), for various network devices such
as access devices, network processors, and optical devices,
is proposed in [220]. PAD enabled data plane behavior
programming through protocol and function header defini-
tions, and by using generic byte-oriented operations. The
PAD architecture consists of several functional elements:

• ports,
• search engines,
• search structures,
• execution engines,
• forwarding functions.

The PAD’s working principle is as follows: (1) the received
packet is merged with metadata and forwarded to the search
engine, (2) after a successful search, the packet metadata
together with the search results are forwarded to the exe-
cution engine, (3) the execution engine calls the function
on the packet based on the results of the preceding search,
and finally (4) the packet is forwarded to the output port.
Multiple packet processing through the above steps can be
implemented using loopback ports. PAD configuration man-
agement is possible through the PAD API on the north-
bound interface. The PAD API functionalities are as follows:
(1) retrieval of information about data plane capabilities sup-
ported by specific hardware, (2) managing search structures,
functions, and network protocol definitions, and (3) adding
and deleting records in search structures. Specially designed
languages such as NetPDL and P4 can be used to define
network protocols and operations running on the execution
engine.

The Network Abstraction Model (NAM) is proposed
in [221] as a unique model for packet forwarding and net-
work functionalities in SDN and NFV. The proposed model
should enable the control, management, and orchestration
of processes and network functionalities in the data plane,
with the help of a unique protocol. It has been noted that
the network device has a forwarding plane based on building
blocks (BB) which together create required functions and the
operating plane which is in charge of maintaining the state
of the device. Based on the observed, ForCES was selected
as the framework for the realization of the abstraction model.
Additionally, the ForCES LFB-based model does not see the
difference between a physical and a virtual device, which
makes it convenient for NFV abstraction. The architecture of
NAM is organized in such a way that BBs map to LFBs, and
VNFs to one or more network devices.

TableVisor, a transparent proxy layer which enables
pipelined packet processing and extension of hardware flow
tables usingmultiple hardware switches, is proposed in [222].
Pipelined packet processing is enabled by emulating single
multi-table switch using multiple hardware switches. On the
other hand, emulation of large hardware tables by combining
TCAM memory from multiple switches is also supported.

REMARK ON FLEXIBILITY AND PROGRAMMABILITY
New architectures, analyzed in this subsection, have tended
in various ways to improve the flexibility of the data plane.
In some research, a separation of the edge functions from the
core forwarding functions influenced the flexibility from the
aspect of function scaling. In other studies, by introducing a
context into the packet processing process and using middle-
boxes, they improved flexibility in term of function operation.

Also, different data plane abstractions have contributed
to flexibility. Thus, hardware abstractions enabled greater
flexibility in term of function scaling, while network func-
tionalities abstractions had a positive effect on the flexibility
from the aspect of the function operation.

However, neither approach has given satisfactory improve-
ments to all of the considered aspects of flexibility, which
remains an open problem which should be addressed by
future research.

VII. FUTURE RESEARCH DIRECTIONS AND CONCLUSION
Considering that previous surveys of the SDN-related
research did not focus sufficiently on the data plane, this
paper provides a comprehensive survey of the wired data
plane in the SDN. The prerequisites for advancing the devel-
opment of SDN’s data plane are created through the pro-
posal of future research directions which adequately address
problems of programmability and flexibility. The complete
process from identifying problems to the definition of future
research directions, as shown in Figure 5, is carried out
through the following steps:

1) An overview of actual SDN’s data plane architectures
is provided.
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FIGURE 5. The pursuit of novel data plane architecture through future research directions.

2) An overview of software- and hardware-based support-
ing technologies which enabled data plane implemen-
tations is provided.

3) A review of SDN-related research with the aim of iden-
tifying key factors influencing the data plane evolution
is given.

4) A critical review of generic approaches to improving
the data plane flexibility and programmability is given.

In the realization of the first step, standardization of the
SDN concept and architecture has been elaborated through
the historical context. A particular attention is dedicated to
the specification of ForCES architecture and to first attempts
to realize SDN following that architecture such as NEon
and Ethane. Since OpenFlow, albeit different from ForCES,
emerged as a realization of the SDN idea, the most critical
aspects of its architecture were compared with ForCES.

Afterwards, an overview of the definitions of network flex-
ibility and programmability and some general considerations
of flexibility in other domains is given. Then, a review of
the constraints of ForCES and OpenFlow-based data plane

architectures, through the considered definitions and aspects
of flexibility and programmability, is presented. Given that a
lot of reviewed research is established on the experimental
evaluation, an overview of hardware- and software-based
technologies which served as good support for data plane
implementation is given.

To address problems of flexibility and programmability
of the SDN’s data plane, a lot of research generated solu-
tions which have implicated the data plane evolution. The
evolution of data plane denotes a gradual deviation from
original data plane architectures given by ForCES and Open-
Flow specifications. A comprehensive review of SDN-related
research was made to identify the key factors influencing the
data plane evolution. Then, the correlation between treated
problems and problem-solving approaches was established
and shown in the correlation table. Afterwards, key limita-
tions of ForCES and OpenFlow data plane architectures were
identified, which set the conditions for selecting a particular
problem-solving approach. Based on identified key limita-
tions and using subjective metric, approaches to address the
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problem of programmability and flexibility of SDN’s data
plane were generalized in four categories, as illustrated in the
outer belt of the Figure 5:
A) data plane languages,
B) stateful data plane,
C) deeply programmable networks,
D) new data plane architectures and abstractions.

Open issues were identified by a critical review of generic
problem-solving approaches in terms of flexibility and pro-
grammability, as shown in the middle belt of Figure 5. This
establishes the ground for future research directions proposal
(inner belt of the Figure 5) as follows:
• Development of platform-agnostic language for both
description and programming of all processes in the data
plane.

• Development of fully synchronized stateful data plane
with support for state monitoring and management.

• Development of novel and platform-agnostic deeply
programmable network architecture.

In closing of this paper, it is important to emphasize that the
research surveyed in this paper did not provide the complete
solution to recognized problems. Since simple extensions
cannot solve problems of programmability and flexibility of
the existing data plane architectures, we advocate the idea of
creating an entirely new SDN’s data plane architecture which
will provide a high degree of flexibility for the upcoming
network evolution, as illustrated in the center of Figure 5.
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