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ABSTRACT We consider the problem of channel estimation for millimeter wave (mmWave) systems, where
both the base station and the mobile station employ a single radio frequency (RF) chain to reduce the
hardware cost and power consumption. Recent real-world channel measurements reveal that the mmWave
channels incur a certain amount of spread over the angular domains due to the scattering clusters. The angular
spreads give rise to a joint sparse and low-rank channel matrix in the angular domain. To utilize this joint
sparse and low-rank structure, we address the channel estimation problem within a Bayesian framework.
Specifically, we adopt a matrix factorization formulation and translate the problem of channel estimation
into one of searching for two-factor matrices. To encourage a joint sparse and low-rank solution, independent
sparsity-promoting priors are placed on entries of the two-factor matrices, which aims to promote sparse
factor matrices with only a few non-zero columns. Based on the proposed prior model, we develop a
variational Bayesian inference method for the mmWave channel estimation. The simulation results show that
our proposedmethod presents a considerable performance improvement over the state-of-the-art compressed
sensing-based channel estimation methods.

INDEX TERMS mmWave channel estimation, angular spread, joint sparse and low-rank, compressed
sensing.

I. INTRODUCTION
Millimeter-wave (mmWave) communication is a promising
technology to cope with the ever-increasing need for band-
width and capacity in future wireless networks [1]–[4]. Due
to the high attenuation and severe signal absorption at the
mmWave frequency bands, mmWave communication sys-
tems have to employ large antenna arrays at both the base
station and the mobile station, and exploit beam steering
to provide an adequate link budget [5], [6]. In this setup,
accurate channel estimation is essential for the proper opera-
tion of directional precoding/beamforming in mmWave sys-
tems. Nevertheless, channel estimation in mmWave systems
is challenging due to the use of hybrid precoding structures
and the large number of antennas. In particular, hybrid pre-
coding structures employed in mmWave systems prevent the
digital baseband from directly accessing the entire channel
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dimension, which is referred to as the channel subspace sam-
pling limitation [7].

To address this difficulty, most previous studies exploited
the sparse scattering nature of mmWave channels and formu-
lated mmWave channel estimation as a compressed sensing
problem [7]–[15]. These methods can help achieve substan-
tial reduction of the training overhead. To overcome the
grid mismatch issue arising from conventional compressed
sensing techniques, super-resolution (off-grid) compressed
sensing methods were developed to improve the channel esti-
mation accuracy [16], [17]. In addition to the sparse scattering
characteristic, several real-world measurement campaigns in
dense-urban propagation environments suggest that mmWave
channels spread in the form of clusters of paths over the
angular domains [18]–[21]. This angular spread naturally
results in a structured sparsity pattern that can be exploited
to enhance the estimation performance [22]. Furthermore,
it was pointed out in [13] that, due to the spatial correlation
and the unsymmetric angular spreads over different domains,
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mmWave channels may exhibit a useful joint sparse and low-
rank structure whereby the rank is far smaller than the sparsity
level of the channel. To utilize this joint sparse and low-
rank structure, a two-stage compressed sensing scheme was
proposed and it was shown that the proposed scheme achieves
a lower sample complexity than a conventional compressed
sensing method that exploits only the sparse structure of
mmWave channels [13].

In this paper, we continue the effort towards developing
efficient channel estimation schemes for mmWave communi-
cations. To exploit the joint sparse and low-rank structure of
mmWave channels, we cast the channel estimation problem
within a Bayesian framework. Specifically, we adopt a matrix
factorization formulation which converts channel estimation
into a problem of searching for these two factor matrices.
Independent sparsity-promoting priors are placed on entries
of the two factor matrices, which helps promote sparse fac-
tor matrices with only a few non-zero columns and in turn
encourage a simultaneously sparse and low-rank channel
structure. Based on the proposed prior model, we develop a
variational Bayesian inference method for mmWave channel
estimation.

It should be noted that although the estimation of low-
rank matrices or sparse matrices from compressed linear
measurements has been extensively studied in various set-
tings [23]–[27], much less research has addressed the case
where the matrix of interest is characterized by simultaneous
low-rank and sparse structures. A recent study reveals that a
convex formulation combining the `1 norm with the nuclear
norm to exploit both types of structures may not perform
better than exploiting only one type of the structures [28].
To break the sample complexity barrier of simultaneously
sparse and low-rank matrix estimation, a two-stage convex
method was developed by assuming a nested structure of the
measurement operator [29]. Inspired by [29], a variant of the
two-stage scheme was developed for mmWave channel esti-
mation, which has been shown to achieve a near-optimal sam-
ple complexity [13]. Recently, a nonconvex method, named
sparse power factorization (SPF), was proposed for joint
sparse and low-rank matrix estimation [30]. It decomposes
the matrix as a product of two factor matrices and then
applies the alternating minimization scheme over the factor
matrices. Although SPFwas shown to have an optimal sample
complexity, it requires an accurate knowledge of the rank
of the underlying matrix to be estimated, which is usually
unavailable for practical problems. In contrast to the SPF, our
proposed Bayesian method can automatically infer the rank
of the matrix of interest. To our best knowledge, our work
presents the first attempt to address the joint sparse and low-
rank matrix estimation problem from a Bayesian framework.

The rest of the paper is organized as follows. The sys-
tem and the channel model are discussed in Section II.
In Section III, we propose a hierarchical Gaussian priormodel
to capture the joint sparse and low-rank structure of the
underlyingmmWave channel. A variational Bayesianmethod
is developed in Section IV for mmWave channel estimation.

Simulation results are provided in Section V, followed by
concluding remarks in Section VI.

II. SYSTEM MODEL
Consider a point-to-point mmWave system consisting of a
transmitter (e.g. the mobile station) and a receiver (e.g. the
base station), where the transmitter is equipped with Nt
antennas and the receiver is equipped with Nr antennas.
To reduce the hardware cost and power consumption, both
the transmitter and the receiver employ a single RF chain
for transmit beamforming or receive combining. At time
instant t , suppose the transmitter uses f (t) ∈ CNt as the
beamforming vector, and the receiver employs z(t) ∈ CNr

to combine the received signal. The received signal at the
receiver can be expressed as

y(t) = zH (t)Hf (t)s(t)+ w(t) ∀t = 1, . . . ,T (1)

where H ∈ CNr×Nt is the channel matrix, s(t) is the trans-
mitted symbol, and w(t) denotes the additive complex Gaus-
sian noise with zero mean and variance σ 2. For simplicity,
the transmitted symbol is set to s(t) = 1. Since z(t) and f (t)
are implemented using analog phase shifters, their entries are
of constant modulus. The problem of interest is to estimate
the channel matrix H from the received signal {y(t)}. In par-
ticular, we wish to obtain a reliable channel estimate by using
as few measurements as possible.

A conventional approach is to exploit the sparse scattering
property of mmWave channels and formulate channel esti-
mation as a sparse signal recovery problem. The mmWave
channel is typically modeled as [7]

H =
L̃∑
l=1

αlar (θl)aHt (φl) (2)

where L̃ is the number of paths, αl is the complex gain
of the lth path, θl ∈ [0, 2π ] and φl ∈ [0, 2π ] are the
associated azimuth AoA and azimuth AoD respectively, and
ar ∈ CNr (at ∈ CNt ) is the array response vector associ-
ated with the receiver (transmitter). In this paper, we assume
that uniform linear arrays (ULA) are used at the transmit-
ter and receiver. Due to the sparse scattering characteristic,
the mmWave channels have a sparse representation in the
beam space domain, i.e.

H = ArHvAHt (3)

where Ar , [ar (ψ1) . . . ar (ψN1 )] is an overcom-
plete matrix (N1 ≥ Nr ) with each column a steer-
ing vector parameterized by a pre-discretized AoA,
At , [at (ω1) . . . at (ωN2 )] is an overcomplete matrix
(i.e. N2 ≥ Nt ) with each column a steering vector parameter-
ized by a pre-discretized AoD, and Hv ∈ CN1×N2 is a sparse
matrix with L̃ non-zero entries corresponding to the channel
path gains {αl}.

In addition to the sparse scattering characteristic, real-
world measurement campaigns in dense-urban propagation
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environments (e.g. [18]–[21]) reveal that mmWave chan-
nels spread in the form of clusters of paths over the angu-
lar domains including the angle of arrival (AoA), angle of
departure (AoD), and elevation. As shown in [13], in the
presence of angular spreads, the mmWave channel exhibits
a simultaneously sparse and low-rank structure in which the
rank is far smaller than the sparsity level of the channel.
Specifically, due to the spatial correlation observed from real-
world channel measurements, the mmWave channel can be
approximately modeled as [13]

H =
L∑
l=1

( I∑
i=1

αl,iar (θl−ϑl,i)
)( J∑

j=1

βl,jaHt (φl−ϕl,j)
)

(4)

where L is the number of clusters, θl and φl denote the
mean AoA and AoD of each cluster, respectively, and ϑl,i
and ϕl,j represent the relative AoA and AoD shift from the
mean angle, respectively. Accordingly, the mmWave channel
matrix and its beam space version are related as

H =
L∑
l=1

AralbTl A
H
t = Ar

( L∑
l=1

albTl

)
AHt

, ArHvAHt (5)

where al ∈ CN1 and bl ∈ CN2 are the virtual representa-
tion over the AoA and AoD domain, respectively. Since the
angular spread occupies only a small portion of the whole
angular domain, both al and bl are sparse vectors with only a
few nonzero entries concentrated around the mean AoA and
AoD associated with the lth cluster. Also, notice that Hv has
a low-rank structure with rank(Hv) = L. Hence the beam
space channel Hv has a simultaneously low-rank and sparse
structure in which its rank is far smaller than its number of
nonzero entries.

III. PROPOSED HIERARCHICAL PRIOR MODEL
To exploit the simultaneously sparse and low-rank structure
of the underlying mmWave channel, we, in the following,
employ a matrix factorization formulation and enforce spar-
sity constraints on the factor matrices. The beam space chan-
nel matrixHv is expressed as a product of two factormatrices:

Hv =

N∑
n=1

cndTn = CDT (6)

where C , [c1 . . . cN ] ∈ CN1×N , D , [d1 . . . dN ] ∈
CN2×N , N , min{N1,N2}. To encourage a joint sparse and
low-rank structure, we place independent sparsity-promoting
priors on entries of the factor matricesC andD, which aims to
yield sparse factor matrices with only a few nonzero columns.

Here we employ a two-layer hierarchical Gaussian-inverse
Gamma prior model to promote sparse factor matrices. Let

c , vec(C) = [cT1 . . . cTN ]
T

d , vec(D) = [dT1 . . . dTN ]
T

In the first layer, the entries of c and d are assumed to follow
a Gaussian distribution

p(c|α) ∼
N1N∏
i=1

CN
(
ci; 0, α

−1
i

)
(7)

p(d|β) ∼
N2N∏
j=1

CN
(
dj; 0, β

−1
j

)
(8)

where α , {αi} and β , {βj} are non-negative hyperpa-
rameters controlling the sparsity of the entries in c and d ,
respectively. The second layer specifies Gamma distributions
as hyperpriors over the hyperparameters α and β, i.e.

p(α) =
N1N∏
i=1

Gamma(αi|a, b) =
N1N∏
i=1

0(a)−1baαa−1i e−bαi

p(β) =
N2N∏
i=1

Gamma(βi|a, b)=
N2N∏
i=1

0(a)−1baβa−1i e−bβi (9)

where 0(a) =
∫
∞

0 ta−1e−tdt is the Gamma function, a and
b are set to small values, e.g., 10−10, effectively making the
Gamma distribution a non-informative prior.

We assume entries of the additive noise {w(t)} are inde-
pendent and identically distributed (i.i.d.) random variables
following a Gaussian distribution with zero mean and vari-
ance σ 2

= γ−1. To learn γ , a Gamma hyperprior is placed
over γ , i.e.

p(γ ) = Gamma(γ |e, f ) = 0(e)−1f eγ e−1e−f γ (10)

The parameters e and f are set to small values, e.g. 10−10.
For clarity, the proposed hierarchical prior model is depicted
in Fig. 1.

FIGURE 1. Proposed hierarchical Gaussian prior model, in which double
circles denote the observable variable, single circles denote the hidden
variable, and the boxes denote pre-specified hyperparameters.

To understandwhy our proposed priormodel has the poten-
tial to encourage a low-rank structure, note that even if both
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cn and dn are nonzero sparse vectors, their out-product cndTn
is equal to zero as long as their support sets are disjoint,
which is very likely the case since independent sparsity pri-
ors are placed on entries of cn and dn. Note that our prior
model is different from the prior model proposed in [26].
In [26], the sparsity constraint is placed on the columns,
instead of individual entries, of the factor matrices to promote
structured-sparse factor matrices consisting of only a few
non-zero columns. As a result, the prior leads to a low-rank
but not necessarily a sparse matrix.

IV. VARIATIONAL BAYESIAN INFERENCE
As discussed earlier, our objective is to estimate the mmWave
channel matrix H from the received signal {y(t)}. Let z̃(t) ,
AHr z(t) and f̃ (t) , AHt f (t), the received signal y(t) can be
expressed as

y(t) = z̃H (t)Hv f̃ (t)+ w(t) ∀t = 1, . . . ,T (11)

We now develop a variational Bayesianmethod for estimating
Hv. Let y , {y(t)} denote the observed data, and z ,
{c, d,α,β, γ } denote the hidden variables in our graphical
model. The rationale of variational Bayesian is to obtain
q(z), an approximate of the posterior distribution p(z|y), via
maximizing the evidence lower bound defined as

L(q) =
∫
q(z) ln

p(y, z)
q(z)

dz (12)

To maximize L(q) with respect to q(z), a factorized form
of q(z) over the component variables in z is usually
assumed [31], i.e.

q(z) = qc(c)qd (d)qα(α)qβ (β)qγ (γ ) (13)

With such a factorized form, we can maximize the evidence
lower bound L(q) in an alternating fashion, which yields

ln qc(c) = 〈ln p(y, z)〉qd (d)qα(α)qβ (β)qγ (γ ) + const

ln qd (d) = 〈ln p(y, z)〉qc(c)qα(α)qβ (β)qγ (γ ) + const

ln qα(α) = 〈ln p(y, z)〉qc(c)qd (d)qβ (β)qγ (γ ) + const

ln qβ (β) = 〈ln p(y, z)〉qc(c)qd (d)qα(α)qγ (γ ) + const

ln qγ (γ ) = 〈ln p(y, z)〉qc(c)qd (d)qα(α)qβ (β) + const (14)

where the ‘‘const’’ in (14) are normalizing constants to make
sure the terms on the left-hand side of (14) are probability
density functions. Details of the Bayesian inference are pro-
vided next.
Update of qc(c): Before proceeding, we substitute the fac-

torized form of Hv (6) into (11) and express y(t) as

y(t) = z̃H (t)Hv f̃ (t)+ w(t)

= z̃H (t)CDT f̃ (t)+ w(t)

=

(
(f̃
T
(t)D)⊗ z̃H (t)

)
vec(C)+ w(t)

= (f̃
T
(t)⊗ z̃H (t))(D⊗ IN1 )c+ w(t) (15)

Collecting all measurements {y(t)}Tt=1 and stacking them into
a vector, we have

y =


f̃
T
(1)⊗ z̃H (1)

...

f̃
T
(T )⊗ z̃H (T )

 (D⊗ IN1 )c+ w

, 8cc+ w (16)

where w , [w(1), . . . ,w(T )]T .
The approximate posterior distribution of qc(c) can be

calculated as

ln qc(c) = 〈ln p(y, z)〉qd (d)qα(α)qβ (β)qγ (γ ) + const

= 〈ln p(y|c, d, γ )〉 + 〈ln p(c|α)〉 + const

= −〈γ 〉
〈
(y−8cc)H (y−8cc)

〉
− cH 〈A〉c+ const

= −(c− µc)
H6−1c (c− µc)+ const (17)

where

µc , 〈γ 〉6c〈8c〉
Hy (18)

6c ,
(
〈γ 〉〈8H

c 8c〉 + 〈A〉
)−1

(19)

A , diag(α) (20)

Therefore, qc(c) follows a complex Gaussian distribution, i.e.

qc(c) = CN (c;µc,6c) (21)

Update of qd (d): Similarly, we express y(t) as

y(t) = z̃H (t)CDT f̃ (t)+ w(t)

= f̃
T
(t)DCT z̃∗(t)+ w(t)

=

(
(z̃H (t)C)⊗ f̃

T
(t)
)
vec(D)+ w(t)

= (z̃H (t)⊗ f̃
T
(t))(C ⊗ IN2 )d + w(t) (22)

Therefore y can be written as

y =


z̃H (1)⊗ f̃

T
(1)

...

z̃H (T )⊗ f̃
T
(T )

 (C ⊗ IN2 )d + w

, 8dd + w (23)

The approximate posterior distribution of qd (d) can be
calculated as

ln qd (d)= 〈ln p(y, z)〉qd (c)qα(α)qβ (β)qγ (γ ) + const

= 〈ln p(y|c, d, γ )〉 + 〈ln p(d|β)〉 + const

=−〈γ 〉
〈
(y−8dd)H (y−8dd)

〉
−dH 〈B〉d+const

=−(d − µd )
H6−1d (d − µd )+ const (24)

where

µd , 〈γ 〉6d 〈8d 〉
Hy (25)

6d ,
(
〈γ 〉〈8H

d 8d 〉 + 〈B〉
)−1

(26)

B , diag(β) (27)
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Therefore, qd (d) follows a complexGaussian distribution, i.e.

qd (d) = CN (d;µd ,6d ) (28)

Update of q(α): The variational optimization of qα(α)
yields

ln qα(α) = 〈ln p(y, z)〉qc(c)qd (d)qβ (β)qγ (γ ) + const
= 〈ln p(c|α)〉 + 〈ln p(α)〉 + const

=

N1N∑
i=1

lnαi −
N1N∑
i=1

〈|ci|2〉αi

+(a− 1)
N1N∑
i=1

lnαi − b
N1N∑
i=1

αi + const

, (a1 − 1)
N1N∑
i=1

lnαi −
N1N∑
i=1

b1iαi + const (29)

where

a1 , a+ 1 (30)
b1i , b+ 〈|ci|2〉 (31)

Therefore, qα(α) follows a Gamma distribution, i.e.

qα(α) =
N1N∏
i=1

Gamma(αi; a1, b1i) (32)

Update of q(β): The variational optimization of qβ (β)
yields

ln qβ (β) = 〈ln p(y, z)〉qc(c)qd (d)qα(α)qγ (γ ) + const
= 〈ln p(d|β)〉 + 〈ln p(β)〉 + const

=

N2N∑
i=1

lnβi −
N2N∑
i=1

〈|di|2〉βi

+(a− 1)
N2N∑
i=1

lnβi − b
N2N∑
i=1

βi + const

, (a2 − 1)
N2N∑
i=1

lnβi −
N2N∑
i=1

b2iβi + const (33)

where

a2 , a+ 1 (34)
b2i , b+ 〈|di|2〉 (35)

Therefore, qβ (β) follows a Gamma distribution, i.e.

qβ (β) =
N2N∏
i=1

Gamma(βi; a2, b2i) (36)

Update of q(γ ): The variational optimization of qγ (γ )
yields

ln qγ (γ ) = 〈ln p(y, z)〉qc(c)qd (d)qα(α)qβ (β) + const

= 〈ln p(y|c, d, γ )〉 + 〈ln p(γ )〉 + const

= T ln γ − γ
T∑
t=1

〈
|y(t)− z̃H (t)CDT f̃ (t)|2

〉
+(e− 1) ln γ − f γ + const

, (e1 − 1) ln γ − f1γ + const (37)

where

e1 , e+ T (38)

f1 , f +
T∑
t=1

〈
|y(t)− z̃H (t)CDT f̃ (t)|2

〉
(39)

Therefore, qγ (γ ) follows a Gamma distribution, i.e.

qγ (γ ) = Gamma(γ ; e1, f1) (40)

Calculation of Some Expectations: Some of the expecta-
tions and moments used during the update are summarized as
follows. Define

8FZ ,


f̃
T
(1)⊗ z̃H (1)

...

f̃
T
(T )⊗ z̃H (T )

 ,8ZF ,


z̃H (1)⊗ f̃

T
(1)

...

z̃H (T )⊗ f̃
T
(T )


(41)

RFZ , 8H
FZ8FZ RZF , 8H

ZF8ZF (42)

Ri,jFZ , RFZ [(i− 1)N1 + 1 : iN1, (j− 1)N1 + 1 : jN1]

Ri,jZF , RZF [(i− 1)N2 + 1 : iN2, (j− 1)N2 + 1 : jN2]

Ri,jc , 〈C[i, :]H 〉〈C[j, :]〉 + 〈C[i, :]HC[j, :]〉

Ri,jd , 〈D[i, :]H 〉〈D[j, :]〉 + 〈D[i, :]HD[j, :]〉 (43)

The expectations 〈8H
c 8c〉 and 〈8H

d 8d 〉 used in the update of
qc(c) and qd (d) can be calculated as

〈8H
c 8c〉 =

N2∑
i=1

N2∑
j=1

(1N×N ⊗ Ri,jFZ )� (Ri,jd ⊗ 1N1×N1 ) (44)

〈8H
d 8d 〉 =

N1∑
i=1

N1∑
j=1

(1N×N ⊗ Ri,jZF )� (Ri,jc ⊗ 1N2×N2 ) (45)

and the expectation in (39) can be calculated as

T∑
t=1

〈
|y(t)− z̃H (t)CDT f̃ (t)|2

〉
(46)

=

T∑
t=1

|y(t)|2 − 2Re{y∗(t)z̃H (t)〈C〉〈DT 〉f̃ (t)}

+

N∑
i=1

N∑
j=1

z̃H(t)〈C(:,j)C(:,i)H 〉z̃(t)f̃
H
(t)〈D∗(:,i)D(:,j)T〉f̃ (t)

(47)

For clarity, the proposed variational Bayesian learning
approach for mmWave channel estimation is summarized
in Algorithm 1. Note that the algorithm is considered to
be convergent when the normalized difference between two
consecutive estimates of Hv is less than 10−2.

We analyze the computational complexity of our proposed
method. Note that the major computational task of our pro-
posed method involves calculating 6c ∈ CN1N2×N1 N2 and
6d ∈ CN1N2×N1 N2 , both of which require to perform inverse
of anN1 N2×N1 N2 matrix. Therefore our proposed algorithm
has a computational complexity of O(N 3

1N
3
2 ). To reduce the
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FIGURE 2. Geometric channel model: Success rates and NMSEs of respective algorithms vs. T (a) Success rates vs. T (b) NMSEs vs. T when
SNR = 10dB. (c) NMSEs vs. T when SNR = 5dB.

Algorithm 1 Proposed Variational Bayesian Algorithm

Input: y, {z̃(t)}Tt=1 and {f̃ (t)}
T
t=1.

Output: qc(c), qd (d), qα(α), qβ (β), and qγ (γ ).
Initialize 〈c〉, 〈d〉, 〈α〉, 〈β〉, 〈γ 〉, 〈cHc〉, and 〈dHd〉;
while not converge do
Update qc(c) via (21), with qd (d), qα(α), qβ (β), and
qγ (γ ) fixed;
Update qd (d) via (28), with qc(c), qα(α), qβ (β), and
qγ (γ ) fixed;
Update qα(α) via (32), with qc(c), qd (d), qβ (β), and
qγ (γ ) fixed;
Update qβ (β) via (36), with qc(c), qd (d), qα(α), and
qγ (γ ) fixed;
Update qγ (γ ) via (40), with qc(c), qd (d), qα(α), and
qβ (β) fixed;

end while

computational complexity, similar to [32], we can resort to
the generalized approximate massage passing (GAMP) tech-
nique to obtain approximate posterior distributions of qc(c)
and qd (d), thus circumventing cumbersome matrix inverse
operations. This will be a topic for our future work. As a
comparison, we consider the computational complexity of
some conventional compressed sensing-based channel esti-
mation methods. For the fast iterative shrinkage-thresholding
algorithm [33], the main computational task is dominated by
evaluating the proximal operator per iteration, which has a
complexity of O(N 2

1N
2
2 ). The approximate message passing

(AMP)-based Bayesian method [10], [34] involves some sim-
ple matrix-vector multiplications, which has a computational
complexity of O(TN1N2).

V. SIMULATION RESULTS
In this section, we carry out experiments to illustrate
the performance of our proposed Bayesian method. The
proposed method is referred to as the joint Sparse and
Low-rAnk Bayesian learning (SLAB) algorithm. We com-
pare our proposed method with the approximate message

FIGURE 3. Geometric channel model: NMSEs of respective algorithms
vs. SNR.

passing (AMP)-based Bayesian method developed
in [34], [10], and the fast iterative shrinkage-thresholding
algorithm (FISTA) proposed in [33]. These two conventional
compressed sensing methods are respectively referred to as
CS-EMGMAMP and CS-FISTA. Note that it was shown
in [13] that the CS-EMGMAMP method empirically outper-
forms the two-stage compressed sensing method [13] which
was devised to exploit the joint sparse and low-rank structure
of mmWave channels. Therefore the two-stage compressed
sensing method was not included for comparison. In our
experiments, the beamforming vectors {f (t)}Tt=1 and the
combining vectors {z(t)}Tt=1 are randomly generated with its
entries independently drawn from the unit circle.

We consider the scenario where both the transmitter and
the receiver employ a uniform linear array (ULA) with
Nt = Nr = 32 antennas. The distance between neighboring
antenna elements is assumed to be half the wavelength of the
signal. The mmWave channel is generated according to the
geometric channel model (4), where the number of clusters
L is set to L = 2 and L = 3. When L = 2, the mean
AoAs/AoDs for these two clusters are set to θ1 = φ1 =

π/6, θ2 = φ2 = −π/6, respectively. For the case of L = 3,
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FIGURE 4. Geometric channel: Success rates and NMSEs of respective algorithms vs. T for the non-symmetrical case: Nr = 16 and Nt = 32.
(a) Success rates vs. T (b) NMSEs vs. T when SNR = 10dB. (c) NMSEs vs. T when SNR = 5dB.

FIGURE 5. Geometric channel model: Success rates and NMSEs of respective algorithms vs. T , where the number of RF chains at the receiver is
set to 4. (a) Success rates vs. T (b) NMSEs vs. T when SNR = 10dB. (c) NMSEs vs. T when SNR = 5dB.

the mean AoAs/AoDs for these three clusters are set to θ1 =
φ1 = π/6, θ2 = φ2 = −π/6, θ3 = φ3 = −10.8π/180,
respectively. The angular spreads (over the AoA and the
AoD) of each cluster are set to δθ = δφ = 16π/180,
and the relative AoA/AoD shifts are uniformly generated
within the angular spreads, i.e. ϑl,i ∈ [θl − δθ/2, θl + δθ/2],
ϕl,i ∈ [φl − δφ/2, φl + δφ/2]. The number of paths per
cluster is set to 100, i.e. I and J in (4) are set to 10. In our
simulations, we discretize theAoA/AoD domains into 32×32
grid points, i.e. N1 = N2 = 32. In this case, δθ and δφ span
across about 5 grid points on the AoA and the AoD domain,
respectively.

To evaluate the recovery performance of respective algo-
rithms, two metrics are considered, namely, the normalized
mean squared error (NMSE) and the success rate. The NMSE
is calculated as

NMSE = E

[
‖Ĥ −H‖2F
‖H‖2F

]
(48)

where Ĥ denotes the estimate of the true channel H . The
success rate is computed as the ratio of the number of suc-
cessful trials to the total number of independent runs. A trial is
considered successful if the normalized reconstruction error
‖Ĥ −H‖2F/‖H‖

2
F is no greater than 10−2.

FIGURE 6. The RX power angular profile of the simulated channel.

We first consider the noiseless case. Fig. 2(a) depicts the
success rates of respective algorithms as a function of the
number of measurements T , where both L = 2 and L = 3 are
considered. We see that our proposed method SLAB presents
a significant performance improvement over the CS-FISTA
and a clear performance advantage over the CS-EMGMAMP.
This performance improvement is primarily due to the fact
that our proposed method exploits the joint sparse and low-
rank structure of mmWave channels, whereas the other two
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FIGURE 7. Simulated channel: Success rates and NMSEs of respective algorithms vs. T (a) Success rates vs. T (b) NMSEs vs. T when SNR = 10dB.
(c) NMSEs vs. T when SNR = 5dB.

methods only utilize the sparsity pattern of mmWave chan-
nels. As a result, our proposed method has the potential
to achieve a lower sample complexity than the other two
methods. Fig. 2(b) and Fig. 2(c) plot the NMSEs of respective
algorithms vs. T in the noisy case, where the signal-to-noise
ratio (SNR), defined as 10 log(‖H‖2F/(NrNtσ

2)), is set to
10dB and 5dB, respectively. It can be seen that our proposed
method achieves a higher estimation accuracy than the other
two methods. Fig. 3 plots the NMSEs of different methods
as the SNR varies, where we set T = 120. We see that our
proposed algorithm yields decent performance even in a low
SNR regime, and outperforms the other two methods across
the whole SNR region.

We also consider a non-symmetrical scenario where
Nr = 16 and Nt = 32. Fig. 4 depicts the success rates and
NMSEs of respective algorithms as a function of the number
of measurements T . The results in Fig. 4, again, demonstrate
the superiority of the SLAB method. Our proposed method
can be easily extended to the scenario where multiple RF
chains are employed at the receiver. Suppose there are R RF
chains at the receiver. In this case, the receiver can collect R
measurements at each time instant. Fig. 5 depicts the success
rates and the NMSEs of respective algorithms vs. T , where
we set R = 4. Our results show that the time complexity
can be significantly reduced at the expenses of increasing the
number of RF chains.

Next, we examine the performance of our proposedmethod
with a more practically relevant channel. We simulate a
channel according to recent real-world mmWave channel
measurements. Specifically, the RX power angular profile of
the simulated channel is depicted in Fig. 6, which is similar to
the RX power angular profile measured at a typical TX-RX
location pair at 28GHz [21]. From Fig. 6, we see that, due
to the angular spreads over the AoA and AoD domains,
the mmWave channel exhibits a joint sparse and low-rank
structure in which the rank of the channel is far smaller than
the number of dominant entries of the beam space channel.
Fig. 7 plots the success rates for the noiseless case and the
NMSEs for the noisy case as a function of the number of mea-
surements T , where, in the noisy case, the SNR is set to 5dB

FIGURE 8. Simulated channel: NMSEs of respective algorithms vs. SNR.

and 10dB, respectively. From Fig. 7, we see that our proposed
method achieves significant performance improvements over
the competing algorithms. The performance advantage is
more pronounced compared to the results reported in previous
figures. This is probably because the simulated channel has
a more prominent low-rank structure as compared with its
number of nonzero entries, which is a case more favorable for
our proposed method. Fig. 8 shows the NMSEs of respective
methods under different SNRs, where the number of mea-
surements is set to T = 200. We observe that our proposed
method yields a lower estimation error in the moderate and
high SNR regime.

VI. CONCLUSION
We studied the problem of channel estimation for mmWave
systems, where both the base station and the mobile sta-
tion employ a single RF chain for analog beamform-
ing/combining. To exploit the simultaneously sparse and low-
rank structure arising from angular spreads, we addressed the
channel estimation problem within a Bayesian framework,
where a matrix factorization formulation is adopted to trans-
late the channel estimation problem into one of searching
for two factor matrices, and independent sparsity-promoting
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priors are placed on entries of the two factor matrices to
encourage a joint sparse and low-rank solution. A variational
Bayesian inference method was then developed based on the
proposed prior model. Simulation results were provided to
demonstrate the superiority of our proposed method over
state-of-the-art compressed sensing-based mmWave channel
estimation methods.
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