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ABSTRACT Non-binary low-density parity-check (NB-LDPC) codes show larger coding gain and lower
error floor than their binary counterparts in many cases. However, the existing soft decoding algorithms of
NB-LDPC codes generally suffer from high computational complexity. Recently, the trellis-based extended
min-sum (T-EMS) decoding algorithm has attracted much attention since it can achieve good decoding
performance with high parallelism and low computational complexity. In this paper, we propose two new
methods to further reduce the computational complexity and enhance the decoding performance. Firstly,
we introduce, with theoretical justification, a universal scheme called threshold-based shrinking (TS)
scheme, which facilitates significant reduction of computational complexity for decoding of NB-LDPC
codes. Secondly, we present a modified two-extra-column (TEC) scheme and apply it to the T-EMS. Further-
more, a high-performance low-complexity decoding algorithm, named TEC-TEMS algorithm, is obtained.
Combining the TS scheme with the TEC-TEMS, the new algorithm, named TS-TEC-TEMS algorithm,
achieves much lower computational complexity and has negligible performance loss compared to the TEC-
TEMS. For a 256-ary (256, 203) example code, compared to the T-EMS, the computational complexities of
the TEC-TEMS and TS-TEC-TEMS algorithms are reduced by more than 50% and nearly 90%, respectively.
Moreover, the TEC-TEMS and TS-TEC-TEMS both outperform the T-EMS by about 0.3dB when the frame
error rate (FER) is around 1075.

INDEX TERMS Error correction codes, nonbinary low-density parity-check (NB-LDPC) codes, min-sum

decoding algorithm, low computational complexity, forward error correction (FEC).

I. INTRODUCTION

Non-binary low-density parity-check (NB-LDPC) codes
over GF(g) were first introduced by Davey and Mackay
in 1998 [1], which have been proved to outperform their
binary counterparts especially for short and moderate
block lengths [2]. The g-ary sum-product algorithm (QSPA)
adopted in [1] is extended from the SPA for binary LDPC
codes, which can approach the Shannon limit perfor-
mance. However, its computational complexity is unbear-
able due to the use of massive multiplications and the vast
searching space. The complexity is reduced from O(g?) to
O(qlog g) using the Fast Fourier Transform-SPA (FFT-SPA)
algorithm [3]. However, it still suffers large computational
complexity from the complicated operations like divisions
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and multiplications. In order to remove multiplications from
the check node processing (CNP) and variable node pro-
cessing (VNP), the log-SPA [4] was proposed, which firstly
changed operations from probability domain to logarithmic
domain and introduced the max* operation for the CNP
instead. These simplified algorithms for QSPA bring no per-
formance loss, but they are still hardware-inefficient.

To improve the efficiency of NB-LDPC decoding, sev-
eral sub-optimal algorithms [5], [6] are proposed based on
the logarithmic domain, where only additions and compar-
isons are involved. Declercq and Fossorier proposed the
extended min-sum (EMS) algorithm [5]. In this algorithm,
the configurations for the CNP are chosen from the n,,
(n,, < q) most reliable values of each input vector and at
most n. entries are different from the order-O configuration.
If n,, = q and n. = d., the EMS is degenerated as the min-
sum (MS) algorithm. Simulation results showed that there is
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an increasing gap of performance loss between the QSPA and
the EMS as n,, and n, decrease. A scaling factor or offset is
introduced to compensate the performance loss. The min-max
(MM) algorithm [6] is derived to help prevent the growth of
the data width, by replacing the accumulation operations in
the CNP of the EMS with comparison operations. But there
is an about 0.2dB of bit error rate (BER) loss compared with
the SPA. Later, quite a few researchers have spent efforts to
further decrease the redundant configurations for the EMS
and extend the methods to the MM [7]-[17], whereas visible
performance loss is inevitably caused.

Note that the forward-backward scheme for the CNP
forms the bottleneck in the EMS and MM algorithms for
high-speed applications. Recently, a novel scheme, called
trellis-based scheme, has been proposed to enable a high
degree of parallelism and low computational complexity with
small performance loss. The trellis-based EMS (T-EMS)
algorithm [18] was proposed by applying this scheme to the
EMS. Then, this scheme is also used for the MM by many
researchers to reduce the decoding latency and the computa-
tional complexity [19]-[25]. However, their decoding perfor-
mance is substantially inferior to the T-EMS.

Besides, for the soft decoding of NB-LDPC codes, mes-
sages are processed over a complete Galois field GF(qg), i.e.,
to decode a codeword symbol, g candidate symbols require to
be taken into consideration. Indeed, vast redundant informa-
tion is involved, especially for a large g. Several works have
been proposed previously to remove the redundancy of CNP,
such as the modified EMS [7], X-EMS [12], and u-EMS [13]
algorithms. Nevertheless, all of the candidate symbols are still
considered and only the updated metrics are truncated. Addi-
tionally, they just concentrate on the complexity reduction of
CNP of the EMS and need to truncate and compensate the
messages sent to check nodes in each iteration. Meanwhile,
there is a growing performance loss when decreasing the
number of remaining values.

In this paper, based on the analysis above, we take the
T-EMS as the starting point and propose two methods to
further reduce the computational complexity and enhance its
decoding performance. On the one hand, we propose a novel
scheme, named threshold-based shrinking (TS) scheme, with
mathematical justification, to facilitate large reduction of
computational complexity for NB-LDPC decoding without
performance loss in most of the waterfall region. For the
first time, we jointly reduce the candidate symbols and their
metrics, directly deal with the source messages instead of
the updated messages, and obtain a large reduction on com-
plexity. This new scheme can be intuitively shown in Fig. 1.
For a certain code, two thresholds are employed in the ini-
tialization step; then two corresponding subsets of a Galois
field are fixed and adopted in the following iterative decod-
ing. On the other hand, inspired by the idea of the two-
extra-column (TEC) scheme for the TMM algorithm [24],
we modify the TEC scheme and apply it to the simplified
T-EMS algorithm. The new algorithm, called TEC-TEMS,
has better decoding performance and lower computational
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complexity than the T-EMS, which has been preliminar-
ily presented in our conference paper [26]. Combining the
TS scheme with the TEC-TEMS algorithm, the proposed
TS-TEC-TEMS algorithm further reduces the computational
complexity significantly and achieves nearly the same decod-
ing performance as that of the TEC-TEMS. Generally, more
than 50% computations can be saved by using this scheme.

The main contributions of this paper are summarized as
follows:

1) A universal complexity-reduced scheme, called TS
scheme, is proposed with theoretical justification,
to enable drastic reduction of computational complex-
ity for general NB-LDPC decoding with negligible
performance loss.

2) Based on the T-EMS, a new decoding algorithm,
called TEC-TEMS, is developed, which achieves better
decoding performance and lower computational com-
plexity than the original T-EMS.

3) We incorporate the TS scheme into the TEC-TEMS,
yielding the TS-TEC-TEMS decoding algorithm,
which verifies the effectiveness of this scheme. We
also provide two other example algorithms, i.e., the
TS-EMS and TS-TEMS to demonstrate the feasibility
and universality of the TS scheme.

Simulation results and complexity analysis are also
included in this paper. The results show that for a (256,
203) example code over GF(2%), the TEC-TEMS and
TS-TEC-TEMS achieve an extra coding gain of about 0.3dB
compared with the T-EMS at the FER of nearly 107>,
while the computational complexities of the TEC-TEMS and
TS-TEC-TEMS are reduced by more than 50% and nearly
90%, respectively.

The rest of this paper is organized as follows. Section II
introduces the notations and several typical NB-LDPC decod-
ing algorithms. The TS scheme for NB-LDPC decoding algo-
rithms is proposed with theoretical justification in Section III.
In Section IV, the TEC-TEMSA and TS-TEC-TEMSA are
proposed. Simulation results and complexity analysis are
presented in Section V. Finally, conclusions are drawn in
Section VI.

Il. BACKGROUNDS

In this section, basic notations are introduced first. Then,
a general decoding process for NB-LDPC codes is presented,
and several mainstream decoding algorithms follow.
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A. NOTATIONS

Considering an (N, K) NB-LDPC code over GF(g) (¢ = 27)
with block length N and information length K, parity check
matrix H is a matrix over GF(g) with M rows and N columns.
Each element of H is denoted as #; j, where i and j are the
row and column indices, 0 < i < M,and 0 <j < N. The
check node degree and variable node degree are denoted as d.
and d,, respectively. M(j) is the set of check nodes connected
to the j-th variable node (VNj). N (i) is the set of variable
nodes connected to the i-th check node (CN;). If d, and d,
are constant, such a code is referred to as a (d,, d.)-regular
code; otherwise, it is an irregular code. @ and ® respectively
denote the addition and multiplication over GF(q).

Let C = (cg,c1,...,cny—1) denote a codeword. The
received channel probability vector of a codeword symbol
¢j is g-tuple, denoted as P; = (Pj(0), Pi(1),...,Pi(g —
1)), where its corresponding tentative symbol z; =
arg max Pj(a). Assuming that X; is arandom symbol of the

aeGF(q)

J-th variable node, the channel log-likelihood ratio (LLR) is
defined as

PX; = zj)

Lj(a) = log PXi=a)’
=

(1)
where a € GF(q).

A soft message from CN; (or VN;) to VN; (or CN;) is
denoted as C; j(a) (or V;j(a)) for a € GF(q), which is also
called c2v (or v2c) soft message. A soft message is also
defined as a metric. Let Aj(a) be the j-th posterior message.
Loy 18 the maximum number of iterations.

B. DECODING ALGORITHMS FOR NB-LDPC CODES
Algorithm 1 presents the general decoding flow in the loga-
rithmic domain for NB-LDPC codes. After the initialization
step, the iterative step follows, which is decomposed into
four parts: 1) check node processing (CNP); 2) variable node
processing (VNP); 3) tentative decision (TD); and 4) post-
processing (PP).

In the CNP, steps 2 and 4 are the direct and inverse per-
mutations, where ¢ denotes the scaling factor. The key oper-
ation is expressed by the function @, whose input variable is
the permuted v2c message V! i (@) and output variable is the
permuted c2v message C (a) Different decoding algorithms
lead to different express1ons of @.

In the VNP, before computing v2c messages, the posterior
message Aj(a), which is used not only in this part but also in
the TD, is firstly updated. Then, V; ;j(a) is calculated in Step 6
of Alg. 1.

In the TD, a tentative codeword is firstly computed with
updated posterior messages. The decoding process will be
terminated if the syndrome vector equals zero vector. On the
other hand, a decoding failure is declared when the maximum
number of iterations is exceeded.

The PP will be executed unless the decoding is termi-
nated. This part is inevitable since the quantized LLR mes-
sages encounter the overflow problem due to the iterative

50982

Algorithm 1 General Decoding Flow for NB-LDPC
Codes

Input: H, Iy, Li(a), z;.
Initialization:
1: SetV; j(a) = Lj(a) and k = 0.
Iteration:
1) Check node processing:
2: Vi/’j(l’li,j ®a) =V, ja)
3: C’ (a) (D(V’ (a))
4; ,](h] ®a)—c C’ (a)
2) Variable node processmg
s A@ =L@+ Y Cija)
ie M(j)
6: Vij(a) = Aj(a) — C; j(a)
3 ) Tentative decision:

7: z =arg min Aj(a)
acGF(q)

8: If syndrome s = H - ()T = 0, return 7.
9: If k = I;4x, declare a decoding failure.
4) Post-processing:
10: V,',j(a) = V,-,j(a) — aerg}pn V,-,j(a)
11: Then, k — k 4+ 1 and skip back to Step 2.
Output: z.

accumulation. The v2c messages are offset by subtracting the
minimum values to deal with this problem.

The expressions of function @ for several typical decoding
algorithms are outlined as follows:

o Min-Sum Decoding Algorithm The MS is a kind
of sub-optimal decoding algorithm evolving from the
QSPA, where the complex operations like the multipli-
cations are removed. The @ function is computed as:

Clj@=min YV .(a), )
aj eL(ilaj=a),

JeNG/j

where L(ila; = a) denotes the set of configurations
verifying the check node i such that a; = a for a €
GF(g) and j € N(i).

« Extended Min-Sum Decoding Algorithm Based on the
MS, the EMS [5] is proposed to reduce the space of
L(ilaj = a), as:

Cl/,](a) = min Z Vi/,j/ (aj/)’ (3)
ay econf (nm,ne),
JeN®/i
where conf (ny, ne) is a sub-space of L(ilaj = a).

ny, is the number of selected values from each and
every incoming message vector and n. is the largest
number of deviations from the order-0 configura-
tion. Later, conf(n;,,n;) is constantly studied and
simplified [8], [14], [16].

o Min-Max Decoding Algorithm The MM [6] is the vari-
ant of the EMS, replacing the accumulation operation
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with the comparison operation by using the infinity norm
theory, shown as:
C; (@) = min max
b ay econf (nym,nc),

JeN W/

o Trellis-Based Extended Min-Sum Decoding Algo-
rithm Note that the above presented decoding algo-
rithms are based on the forward-backward scheme,
requiring a large number of cycles for the decoding. The
trellis-based scheme, benefiting low-complexity high-
speed decoder designs, is another kind of schemes,
whose @ function is shown in Alg. 2. For convenience,
it transfers the operations from normal domain to delta
domain using the v2c hard message b and realizes the
inverse transformation using the c2v hard message beta.
The key computation is temporarily represented by func-
tion W. For T-EMS [18], an extra column AW is added
to realize parallel processing. The formulated process of
W has two steps as shown in the following:

Vi (). “)

AW(a) = Z AV} (n4(@)),

&)

n(a)emnf (nr,nc)

AC]; (nf (@) ® a) = min{AC]; (n] (@) & a),
AW(a) — AV, (@)}, (6)

where the n, most reliable v2c messages of each row
are chosen, and n”(a) is the configuration that has the
metric AW (a). The vacant positions are filled with either
the first minimum or the second minimum values of the
corresponding rows. In [18], n; is set to 2 and n, to 3.

o Trellis-Based Min-Max Decoding Algorithm The
TMM [19] is an extended version of T-EMS. The main
difference lies in the way to compute the extra column
AW, which is shown as follows:

AW (a) = min

max AV, . 7
n(a)econf(1,2) t l’]’(m(a)) )

In addition, many simplifications for (7) are proposed
[20]-[25]. In [24], equation (6) is also modified by fill-
ing the vacant positions with a second extra column
instead of the first or second minimum values of rows
when necessary.

lIl. THRESHOLD-BASED SHRINKING METHOD FOR
NB-LDPC DECODING ALGORITHMS

In this section, a novel scheme, which can be applied to
generic decoding algorithms of NB-LDPC codes, is pro-
posed. This scheme is called as threshold-based shrink-
ing (TS) scheme, where two thresholds are introduced to
truncate the channel messages and help build two subsets
of Galois fields. By limiting the decoding processing on the
two subsets, the computations of the whole decoding are
effectively reduced. We will first separately present the two
thresholds of this scheme with mathematical justification, and
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Algorithm 2 Trellis-Based Decoding Scheme
Input: V; J(@.
The v2c hard messages:
: forj € N(i) do

1
2. bj=arg min V/(a
gaEGF(q) ’J( )

3: end for
for j € N(i) do
5. The c2v hard messages:
B= > by
JEN @/
6:  Normal domain to delta domain:

AVZ.”].(a @ b)) = Vl{j(a)
7: end for
Computing c2v messages:
8: ACZ-"j(a) = lI—’(AVZ.’,]-(a))
Delta domain to normal domain:
9: C/ (a) AC/ (a @ B))
Output C/ H(@).

ke

then explain how to combine it together with existing soft
decoding algorithms. Without loss of generality, decoding
algorithms processing on the logarithmic domain are consid-
ered in the following discussion.

A. MATHEMATICAL ANALYSIS

1) THE FIRST THRESHOLD

For decoding algorithms of LDPC codes over GF(g), a code-
word symbol is selected out of g symbols. A larger g means
more redundant channel information with respect to a code-
word symbol.

The first threshold is denoted as T, to truncate channel
messages at the initialization step. And then, only the remain-
ing messages will be used in the iterative step. The purpose
is to possibly abandon the redundant messages while keeping
the codeword symbol in. The following definition is used for
convenience:

Definition 1: Let A be a channel LLR vector of size q.
A shrunk version B of A is composed of values smaller than
the threshold Tpg.

According to Definition 1, B is the remaining vector trun-
cated by T and its complementary vector B’ is the discarded
one. The feasibility and validity will be justified in the fol-
lowing.

The representation of B is written as:

= {Ala]l € A | Ala] < Tg, a € GF(q)}. (8)

Based on (1), assume there exists a probability Pr, that makes
the following equation hold:

P

= T3, 9
Pr, B 9
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where P,, denotes the maximum probability. Equation (9) can
be rewritten as follows:

Py,
PTB = eTB (10)
Since 0 < P, < 1, we have:
0<PTB=P—”’<i. (11)
els ~ eIs

It should be noted that, when ¢ increases, the upper bound
in (11) is much less possible to be approached. For simplicity,
we still use this equation to draw a rough conclusion.

Given that the number of elements in B is ng, the number of
elements in B’ is g—np. ¢—np can be regarded as a variable to
characterize the degree of computational complexity reduc-
tion. The total probability of the discarded symbols (elements
of B') satisfies the following equation:

q—nB

q
ZPB’E(CI_”B)'PTB <

where ¢ is an error-tolerant factor, which is expected to be as
small as possible. To achieve a smaller &, we can increase
Tp or decrease g — np. However, larger ¢ — np is desired
to reduce more computations. According to Definition 1,
the selection of Tp directly influences the vector B. The larger
Tp is, the more elements B may have, i.e., the larger np might
be. And then ¢ — np may be decreased. On the other hand,
q — np is also related to the order of a Galois field and a
given channel model which has many variables. Hence, g—np
is a function of these variables and we temporarily express
this function as ¢ — ng = f (T, ¢, - . .). Then the rightmost
inequality of (12) can be rewritten as:
f (TB’ q, .- )
els =

Note that the AWGN has been widely used in literatures
on information theory. Usually, it is true that if a decoding
algorithm of LDPC codes is good over the AWGN, it will
also be good over other channels, like the Rayleigh-fading
channel. To further explore the relationship of 7p and the
function f, without loss of generality, we take the additive
white Gaussian noise (AWGN) channel with binary phase
shift keying (BPSK) modulation as an example. We denote
the j-th received modulated noisy codeword vector as y; =
0,05 -5 Yjrs -5 Yjp—1)Tor0 <j<Nand 0 <r < p. The
received channel probability is formulated as:

.
o se (12

(13)

p—l 2

1 Oj.r — (1 —2a,))
PX;: = alyv)= — , (14
(X; = aly) 1:[0 = Xl 57 ) (4

where a, is the r-th bit of the symbol @ and o2 is the channel
noise variance. The corresponding channel LLR of (1) can be
reformulated as:

PX; = zily;
Li(a) = logw
P(X; = alyj)
2
= 5D _irar — 5. (15)
r=0
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FIGURE 2. The relationships between f and SNR for two high order
codes, with Tg equal to 18, 20, and 22. (a) For the 32-ary (837, 726) code.
(b) For the 256-ary (256, 203) code.

The relationship between the channel noise variance and the

signal-to-noise ratio (SNR) in dB is as follows:
1

—).

2Ro

where R is the code rate. Then, equation (15) is transformed

as:

SNR = 101og,,( (16)

SNR [7—1
Li(a) =4R-1070 - "y, (a, — 7). (17)

r=0
Replacing vector A with vector L;, function f represents the
number of LLR values where Lj(a) > Tp for a € GF(q).
Hence, the variables of f, besides Tp and ¢, also include R,
SNR, yjr, and (a, — zj,r). Due to the nature of randomness
of variable yj ,, the value of f for a channel LLR vector is
also random. There is no point in calculating an individual
message. Therefore, we use a sufficiently large frames of
codeword samples to get an average value for function f as f .

Let us turn back to (17). Note that the channel LLR L;(a)
is in exponential growth with the variable SNR and in lin-
ear growth with the other variables, which means that L;(a)
is more sensitive to SNR. Using Monte-Carlo simulation,
we firstly try to study the relationship between f and SNR for
specific Tg. If Lj(a) is not smaller than a T, these kind of val-
ues will be counted and averagely calculated for a codeword
symbol. The statistically counting results are shown in Fig. 2,
where two high order codes are considered and 10° frames of
either one are simulated.

From Fig. 2, we can see that if Tp = 22 and SNR = 4,
roughly 50% redundant symbols will be reduced for the (837,
726) code and more than 70% redundant symbols reduction
for the (256, 203) code will be obtained, while keeping the
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error-tolerant factor smaller than 10~8. In terms of the trend, f
increases almost linearly with SNR for a given T. Moreover,
the curves shown in Fig. 2(a) or 2(b) are nearly in parallel with
each other and the gaps between adjacent curves are almost
the same, which inspire us to build two mathematical models
for the first threshold Tp as below:

« Constant Model Considering the simplicity of imple-
mentation, Tg is set as a constant value:

Tp = To, (18)

where Ty is a positive value.
By using this model, equation (13) can be expressed as:

S(SNR)
elo

e, (19)
where f is a linearly increasing function of SNR, which may
deteriorate the decoding performance as SNR increases. For-
tunately, as ¢ decreases exponentially with 7( but increases
linearly with £, it is possible to choose a proper Ty to achieve
an acceptable ¢ and meanwhile keep a relatively small f.

o Linear Model The linear model is designed for better

decoding performance, which is presented as follows:

Tg=a-x+0b, (20)

where a (a > 0) and b are the coefficients, and x denotes
the variable SNR.

In this way, the relationships between f and SNR can be
illustrated as the dashed lines as in Fig. 2. Take the lower
dashed line of Fig. 2(a) as an example. Using the coordinates
SNR = 3, Tg = 18 and SNR = 3.5, Tg = 20, a line as
Tp = 4-SNR + 6 is constructed. This line almost parallelizes
the X-axis and f is nearly equal to 15. Meanwhile, we can
reformulated (13) as follows:

Jo

ell‘SN—R-l-b <eg, 21)
where fy can be approximately regarded as a constant.
It should be noted that when SNR is small, the decoding
performance of a code is mainly affected by the noise. The
negative impact introduced by the truncation operation is
negligible. But when SNR increases, the noise is reduced
and the small error classification probability caused by this
operation may gradually play a part. However, with this
model, the upper bound ¢ can be exponentially reduced as
SNR grows. It means that the proposed linear model for Tp
has a quite small impact on the decoding performance even
with a large SNR while achieving a significant complexity
reduction.

2) THE SECOND THRESHOLD

It should be noted that the CNP is the most computationally
complicated step in the whole decoding and the main task
of this part for a symbol is to find a configuration that
satisfies the minimal checksum in a vast searching space
(¢%~2 configurations in total) made up of v2c messages.
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Additionally, this process usually shows robustness when
finding an optimal configuration, i.e., if a sub-optimal con-
figuration is used, the decoding performance may not be
affected. Many simplifications have been proposed to reduce
the redundancy as introduced before. All of them require to
sort the inputs of CNP in each iteration. In this subsection,
we propose a novel scheme to effectively decrease the compu-
tational complexity of the CNP without any extra operations
like sorting or truncating operations in the iteration step. The
mathematical analysis is as follows.

Firstly, we reformulate Step 6 of Alg. 1 for the v2c message
as

Vij@) =L@+ Y. Cija). (22)

e MG)/i
Notice that, V; j(a) is dominated by the channel LLR L;j(a)
and tuned by an iteratively-updated accumulation term

Y Cy j(a), which motivates us to efficiently simplify the
e M()/i
input(é)/of CNP by directly making a prior truncation based
on the channel messages at the initialization. As the redun-
dancy of CNP is much larger than those of the other steps,
we try to use another smaller threshold to more aggressively
truncate the channel messages, and denote this new threshold
as Tc, where Tc < Tp. Then, the following assumption is
proposed:

Assumption 1: If a channel LLR Lj(a) for a € GF(q)
satisfies the inequality Li(a) > Tc, this value and the
corresponding symbol will be removed at the initialization
step, and then, those symbols and their corresponding soft
messages will be no longer involved in the following iterative
calculations of the CNP.

According to this assumption, the CNP of the existing
decoding algorithms can be effectively simplified. Following
simulation results will show that the performance has negligi-
ble degradation when a relatively small T¢ is adopted. Simi-
larly, the constant and linear models can be easily constructed
as:

o Constant Model
Te =T, (23)

where T is an arbitrary positive value.
« Linear Model

Tc=e-x+g, 24)
where e (e > 0) and g are the coefficients, and x denotes

the variable SNR.

B. THRESHOLD-BASED SHRINKING SCHEME FOR
NB-LDPC DECODING ALGORITHMS

The TS scheme is developed from the two thresholds 7 and
Tc introduced above. Based on these two thresholds, two
subsets of a Galois field GF(g) are defined as:

Fa(q) 2 {a € GF(q) | Li(a) < Tg},
Fe(q) 2 {a € GF(q) | Li(a) < Tc}.
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TABLE 1. Four TS schemes formed by combining different models of Tg
and T¢.

Schemes CC LC CL LL
T (model) | constant linear constant | linear
Tc (model) | constant | constant linear linear

A macroscopic illustration of our scheme for NB-LDPC
decoding is shown in Fig. 1. More precisely, let us employ the
two fields in Alg. 1. At the initialization step, the two fields
are firstly obtained. Then, in the CNP step, the c2v messages
over field Fp(q) are computed by using the v2c messages
over field Fc(g). In the rest steps, the posterior messages and
tentative decisions are updated only when the corresponding
symbols are in field Fp(q), and the v2c messages are updated
and normalized on field F¢(g). It should be noted that, for the
CNP, the configurations containing abandoned elements are
ignored. Particularly, if all of the configurations of a symbol
are ignored, an approximate value will be chosen, where this
kind of symbol is usually not the final codeword symbol.
According to the mathematical models for T and T¢, four
TS schemes (the CC, LC, CL, LL schemes) can be obtained
as shown in Table 1. The results by using the constant combi-
nation (namely, the CC scheme, Tp = Ty and T¢ = T1) have
been presented in our conference paper [27]. They show a
large complexity reduction with negligible performance loss
at the FER of about above 10~ (corresponding to the BER of
about 10_7), which conforms to our aforementioned analysis.
A further discussion for these schemes will be given later.
Compared with the conventional truncation (CT) scheme
used like in the EMS [7], the essential difference is that the TS
based algorithm has irregular number of kept messages after
the initialization processing while the CT based algorithm
has a regular structure all the time. This irregularity helps the
proposed TS scheme have the following advantages:

o The TS scheme consumes fewer computations than the
CT scheme. The TS scheme only truncates the channel
LLR messages using two thresholds at the initialization
step and then two subsets of Galois field are built and
fixed for the iterative step, whereas the CT scheme has to
sort the v2c¢ and c2v messages in the initial and iterative
steps to keep the regularity.

o To reduce the computational complexity, the CT scheme
only considers the CNP, but in the TS scheme, besides
the CNP, the other parts are also covered.

o There is no performance gap between the algorithm
with the TS scheme and the original algorithm in most
of the waterfall region, but the algorithm with the CT
scheme suffers from an increasing decoding gap when
the parameter n,, is decreased.

IV. PROPOSED NB-LDPC DECODING ALGORITHMS

A. TEC-TEMS ALGORITHM

The TEC-TEMS is developed based on the T-EMS [18],
inspired by the idea of the TEC-TMM [24]. As the min-max
operation of the TMM itself reduces the accuracy of metrics,
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Algorithm 3 Two-Extra-Column T-EMS Algorithm
Input : AVZ.” j(a)

1 {mi(a), 1)} = Min{AV]; (@)lf<_}

2 {AW1(a), AW3(a), p1(a), p2(a)} =

2_min{ Y (mi((@)lk=1,2))}
nk(a)econf (1,2)

AWz (a) = min{AW(a), TTeC}

fork =1tod. do

if k # pi(a) && k # pa(a) then

AC!. (a) = AWi(a)

i-jk
else

e L N At AW

AC!. (a) = AWy (a)

L]k

11 end if

Output: AC] H@)

the performance improvement is limited in [24]. Note that the
original motivation to replace the min-sum operation with the
min-max operation is to help prevent the growth of the data
width, which works well in the forward-backward scheme
that requires recursive accumulation operations. Neverthe-
less, in the trellis scheme, these configurations are simul-
taneously calculated and usually no more than three terms
are included. There is no need to use this kind of approx-
imation for the trellis scheme considering the performance
degeneration.

Therefore, we here use the T-EMS as the baseline to
increase the precision of the reliable metrics to improve the
decoding performance. On the other hand, since the met-
rics are nonnegative numbers and the reliability of a metric
decreases along with the increase of the metric, we modify the
TEC scheme by suppressing the precision of the large metrics
to prevent the growth of the data width. We can simply
use a threshold to truncate a metric to fulfill it. To achieve
a lower computational complexity, we apply the modified
TEC to a simplified T-EMS where n, = 1 and n, = 2
and denote the new algorithm as TEC-TEMS. The detailed
process of W function for the TEC-TEMS is presented
in Alg. 3.

In Step 1, as we set n, to 1, function Min only needs
to find the minimal value and its corresponding index in
each row. conf (1, 2) in Step 2 covers configurations with at
most 2 deviations based on these minimum values. Then,
function 2_min is used to compute the two extra columns
(AW and AW;) and the corresponding positions of AW;
(p1 and p3). The min operation in Step 3 is used to truncate
the second extra column, where T7rc denotes the thresh-
old, set as T¢ in our simulations. Steps 3-10 are to obtain
the c2v messages by using the two extra columns and the
positions.

As the original T-EMS (n, = 2 and n, = 3) in [18] is well-
known for its good decoding performance and high degree
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FIGURE 3. An example to compute two extra columns by the T-EMS, with
dc =5 over GF(4).

Cy Cy C3 Cs Cs AW1 A W2
0 0 0 0 0 0 0
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n= \\f/ e . * ) (] L) [

FIGURE 4. An example to compute two extra columns by the TEC-TEMS,
with d¢ = 5 over GF(4).

of parallelism, to better demonstrate the effectiveness of the
proposed TEC-TEMS, we will further discuss the difference
between the T-EMS and the TEC-TEMS. Assume the second
minimum value vector computed by the T-EMS as a second
extra column my. We can illustrate a CN processed by the
T-EMS and TEC-TEMS as shown in Figs. 3 and 4, where the
CN has a check node degree of 5 over GF(4) and n denotes
the symbol in delta domain ranging from 0 to g — 1.

We can see that the first extra columns vector AW and vec-
tor AW, computed by the T-EMS and TEC-TEMS respec-
tively, are equal to each other, either of which represents the
most reliable metrics of the leftmost corresponding symbols.
The second extra columns are used to approximate the second
most reliable metrics. It shows that vector m; and vector AW,
are almost the same except the circled location where n = 2.
The configuration set of = 2 of this CN equals {9 (02), 17
(163),18(02), 18 (143),19 (1 3), ... }, where the values
in the parenthesis are the configuration symbols for n = 2.
Hence, the second most reliable metric of n = 2 equals 17,
and the TEC-TEMS finds the correct values. The statistical
data in [24] also shows that the values selected by the TEC
scheme are closer to the real second most reliable values than
directly using the first or the second minimum v2c values of
rows. We set the threshold T7gc to 15 so AW>(2) is equal
to 15 instead of 17, which could effectively reduce the data
width while keeping the first and second most reliable metrics
distinguished. It is generally true that the error performance is
heavily influenced by the choices of the second most reliable
metrics for the vacant positions (p; and p;). We can see from
the simulation results in the next section that though n, is set
to 1 and n. to 2 in our proposed algorithm, the TEC-TEMS
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Algorithm 4 Threshold-Based Shrinking TEC-TEMS
Algorithm

Input : AVi’,j(a), aeFq(g)

1 for a € GF(q) do

2 I(a)=0

3| imi@), @) = min{AV], @I}, a € Fl(q))
4 AWi(a) = Trs, AWa(a) = Trs, pi(a) =

0, pa(a) =0
5 {AWi(a), AW(a), p1(a), p2(a)} =
2_min{ > (m1(nk(@)|k=1,2))}

| nk(a)econf’(1,2)
fork =1tod. do

6
7 for a € Fy(q) do

8 if k £ p1(a) && k # p2(a) then
9

10 AC,.’!J.k (@) = AWi(a)

11 else

12 AC{)jk (a) = AWs(a)

13

14 end if

Output: ACi/’j(a), a e Fy(q

still shows better decoding performance than the original
T-EMS (n, = 2 and n, = 3) due to the use of the modified
TEC scheme, especially for high-order NB-LDPC codes.

B. TS-TEC-TEMS ALGORITHM

As mentioned before, the proposed TS scheme can be
applied to almost all of the NB-LDPC decoding algorithms.
In this subsection, we employ this scheme in the proposed
TEC-TEMS as an example and get a new algorithm named
TS-TEC-TEMS algorithm as shown in Alg. 4, where Fy(g)
and F(-(q) are the fields of Fp(q) and Fc(q) after permutation
and transformation, respectively. Step 2 is to initialize /(a) to
zero as a flag signal, which will be used in Step 5. If I(a) = 0,
a configuration 1 (a) containing the corresponding a will be
ignored; configurations not involving such elements make up
the set conf’(1, 2). If the case where there is no configuration
remained for a symbol happens, an approximation will be
given as in Step 4, where Trg is an undetermined value and
can be optimized by Monte-Carlo simulation. In the follow-
ing simulations, T is set as T¢c. At last, the c2v messages
over field Fp(q) are computed and output.

Note that the TS scheme used in CNP directly affects the
choice of mi(a) and I(a) (Step 3 of Alg. 4). If none of the
values in vectors AW; and AW, are approximately chosen,
the decoding performance will be the same as that of the
TEC-TEMS. Additionally, because the configurations with
large metrics are removed by the TS scheme, the proposed
TS-TEC-TEMS owns good decoding performance and mean-
while effectively suppresses the growth of the data width
without consuming extra comparisons.

50987



IEEE Access

J. Tian et al.: Efficient T-EMS-Based Decoding Algorithms for High-Order LDPC Codes

FER

—a— MM[6], c=1.0
—— TMM[19], ¢=0.2
—— EMS[5], c=0.48
—e— T-EMS[18], ¢=0.2
—v— TEC-TEMS, ¢=0.32

" f—a— MM[6], c=1.0

s [——EMSI5], c=0.55

6 |—%— TS-TEC-TEMS, ¢=0.38|

—— TMM[19], ¢=0.35

—e— T-EMSJ[18], ¢=0.32
—v— TEC-TEMS, ¢=0.38

—a— MM[6], c=0.875
—<— TMM[19], c=0.375
—— EMSI5], ¢=0.54
—e— T-EMS[18], ¢=0.32
—v— TEC-TEMS, c=0.41

—%— TS-TEC-TEMS, ¢=0.32
1E-6 1 1 1 1 1 1

—*— TS-TEC-TEMS, c=0.41
1 1 1 1 1 1 1 1 i 1 1 1 1 i 1 i 1

3.0 32 34 36 38 4.0 42 4.4 24 26 28 3.0 32 34 36 38 4.0 36 37 38 39 4.0 4.1 42 43
SNR SNR SNR
(2) (b) (©

FIGURE 5. The decoding performance of NB-LDPC decoding algorithms for three codes. (a) For the (256, 203) code C; over GF(28). (b) For the

(64, 41) code C, over GF(2°). (c) For the (837, 726) code C5 over GF(25).
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FIGURE 6. Performance comparisons of decoding algorithms applied with the four TS schemes (i.e., the CC, LC, CL, LL schemes) for the three codes.

(a) The TS-TEC-TEMS. (b) The TS-EMS. (c) The TS-TEMS.

V. SIMULATION RESULTS AND COMPLEXITY ANALYSIS
A. SIMULATION RESULTS

In this subsection, the simulation results of the proposed
decoding algorithms will be given. We have done exten-
sive experiments. In these results, we have selected three
NB-LDPC codes with different code rates over different
Galois fields. The first code C; is a (4, 16)-regular (256, 203)
NB-LDPC code over GF(2%) with a rate of 0.79. The second
code C, is a rate-0.64 (4, 8)-regular (64, 41) NB-LDPC
code over GF(2%). The third code C3 is a (4, 27)-regular
(837, 726) NB-LDPC code over GF(2°) with a rate of 0.87.
The first two codes are constructed based on the parallel
bundles of lines in Euclidean geometries by using geometry
decomposition [28], and the last code is structured by array
dispersion [29]. The characteristics of these codes, like the
Shannon limit, can also be referred to in the corresponding
references. As the proposed two algorithms are modifications
to the T-EMS with theoretical justification given in the paper,
we think these examples are sufficient to explain the effec-
tiveness of the proposed algorithms. We take the BPSK over
the AWGN channel into account. The maximum number of
iterations I,y is set to 50.

As shown in Fig. 5, the proposed TEC-TEMS and
TS-TEC-TEMS algorithms are simulated for the three
codes. The EMS [5], T-EMS [18], MM [6], and TMM [19]
algorithms are also simulated for performance comparisons.
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The scaling factors (c) are also appended in the figures.
The adopted parameters for the TS-TEC-TEMS for the three
codes are the same, namely, (a 4, b = 4) for Tp and
(e 3, g 2) for T¢, which can be well tuned to
achieve a good tradeoff between the decoding performance
and computational complexity. The results show that the
code rate mainly decides the waterfall region of a code as
usual. The EMS has the best decoding performance among
them, which is also very close to that of the QSPA and the
Shannon limit shown in [5]. For the proposed TEC-TEMS
and TS-TEC-TEMS in each sub-figure, we can see that their
decoding performances are almost the same, comparable to
that of the MM, slightly inferior to that of the EMS, and better
than those of the T-EMS and TMM, especially for NB-LDPC
codes over high-order Galois fields. For example, both of
them obtain an about 0.3dB extra coding gain compared to
the T-EMS for the (256, 203) code.

To practically verify the universality of the proposed TS
schemes, two other TS based example algorithms, i.e. the
TS-EMS and TS-TEMS, are also designed and simulated.
The performance comparisons of three decoding algorithms
applied with the four TS schemes for the three codes are
shown in Fig. 6. The adopted parameters of different schemes
for different algorithms with different codes are presented
in Table 2. The simulation results show that the decoding per-
formances of the TS based decoding algorithms are strictly
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TABLE 2. Parameters and coefficients used for simulations in Fig. 6.

Algorithms the (256, 203) code the (64, 41) code the (837, 726) code
Lo [Ti[(ab) (g | ¢ [To[Th|(ab)[(eg)| ¢ [To[Ti[(abd)[(eg) [ ¢
TS-TEC-TEMS | 20 | 12 | (4,4) | (3,2) | 032 | 18 | 12 | (4,4) | (3,2) | 0.38 | 20 | 12 | (4,4) | (3,2) | 041
TS-EMS 20 | 12| (4,4) | (3,2) | 048 | 18 | 12 | (4,4) | (3,2) | 055 | 20 | 12 | (4,4) | (3,2) | 0.54
TS-TEMS 20 | 16 | (4,4) | (3,6) | 0.2 | 18 | 16 | (4,4) | (3,5) | 032 | 20 | 16 | (4,4) | (3,4) | 0.32
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FIGURE 7. The decoding performance of TEC-TEMS and TS-TEC-TEMS for three NB-LDPC codes. (a) For the (256, 203) code over GF(28). (b) For the

(64, 41) code over GF(28). (c) For the (837, 726) code over GF(25).

the same as those of the original ones even when the FER is
about 107>. Then, usually, the LL based algorithms still per-
form well even in a much lower error rate. However, the CC
based algorithms show slight error floors in most cases. And
the LC and CL based algorithms have performances between
the LL and CC based algorithms. These performance degra-
dations indicate that the small error classification probability
plays a non-trivial role in these regions, just as analyzed in
Section III. Note that there is no performance gap between the
original algorithms and the new ones in most of the waterfall
regions, different from the EMS in [7].

As the LL scheme is more practical than other schemes,
we are going to introduce the way we use to select its param-
eters. As explained in Section III-A, when setting the param-
eter f as constant, the linear model for Tp is obtained based
on the dashed lines parallelizing to the X axis shown in Fig. 2.
In those cases, the parameter « is fixed. For the two example
codes in Fig. 2, a is equal to 4. And b is used to shift the curve
up and down. Based on the constraint shown in (21), when a
specific upper bound for the error classification probability
is chosen, b can be decided correspondingly. Different from
Tp, Tc cannot be directly deduced. Of course, any effective
methods can be used to optimize this parameter. However,
the Monte Carlo method is usually widely used and very
suitable to optimize the parameters of NB-LDPC decoding
algorithms, and the compared algorithms in the literatures
were only optimized by using the Monte Carlo method. Thus,
we adopt the estimated density evolution simulated by means
of Monte Carlo estimations of densities to determine e and
g of its linear model, using a sufficiently large number of
samples. In order to discuss the separate effectiveness of Tp
and T¢ for the decoding performance, five sets of parame-
ters for the TS-TEC-TEMS are given for the three different
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NB-LDPC codes shown as in Fig. 7. The TEC-TEMS curve
is also provided as a baseline. Generally, these curves in each
sub-figure show consistent performances with the original
ones when the FER is not too low in the waterfall regions.
As the SNR continuously increases, the divergence gradually
occurs. These differences are highlighted in these partial
enlargements. To further detail the influence caused by the
two thresholds, the five sets, marked as TS 1, TS 2, TS 3,
TS 4, and TS 5, can be classified into two groups. The first
group including the TS 1, TS 2, and TS 5, is used to verify the
effect of the first threshold Tp. The second group, covering
the TS 3, TS 4, and TS 5, is designed to test the impact of T¢c.
For fair comparisons, only the constant coefficients, i.e. the
parameters b and g, are changed with an interval of 2. We can
see that a significant performance improvement appears in
the first group when increasing the value of b. But this kind
of improvement is not obvious in the second group as g
increases. In contrast, we notice that there is a better decoding
performance with a smaller g in some cases, such as the TS
3 curve versus the TS 5 curve in Fig. 7(b) and the TS 4 curve
versus the TS 3 curve in Fig. 7(c). It means that the proposed
approximation related to T¢ has a compensation for the
cases with overestimation caused by the original estima-
tion method. It can also explain the phenomenon where
the TS based algorithms perform slightly better than the
original ones in some cases. In other words, there is a
robustness when choosing the coefficients of T¢. In brief,
in order to effectively reduce the computational complexity
and achieve a comparable decoding performance, the first
threshold T cannot be too small, but the second threshold
Tc can be aggressively reduced. A tradeoff can be made
between the complexity and performance based on the two
thresholds.
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TABLE 3. Analysis of computational complexity per iteration for the proposed algorithms and the T-EMS.

T-EMS [18] TEC-TEMS TS-TEC-TEMS'
FA (3de —2)M + (3¢ — 1)d (3de —2)M + 2q6 (3de —2)M + (ng + nc)o
M (2¢ + 2)0 (2¢ + 2)0 (nB +nc +2)0
RM qo qo neo

RA | (4q— )0+ 4(q/2 —1)(q — )M

3¢0 +(¢/2—1)(¢g— )M

(ng +2n0)0 + (t —1)(q — )M

(g—1)N +4(¢g—-1)5

CS 1 (79/2+2d. — 10)(q = DM

(g—1)N +3(g—1)¢
+(Bq/2+dc —4)(¢ - )M

(q + nB)N/Imaz
+(nB —1)N 4+ (2ng + nc — 3)d
+(3t+ng —5)(g— )M

FA: Finite-Field Addition FM: Finite-Field Multiplication
RM: Real Multiplication RA: Real Addition CS: Comparison and Selection
! ¢ denotes the average number of remaining pairs of configurations for a symbol.

nrc:ncv%c.

B. COMPLEXITY ANALYSIS

Note that the T-EMS is the starting point of the TEC-TEMS
and TS-TEC-TEMS. We will analyze and compare the com-
putational complexity of them in the following.

According to Algs. 1-4 and the description for T-EMS
in [18], the computational operations of the three algorithms
can be summarized into five categories: the finite-field addi-
tion (FA), finite-field multiplication (FM), real multiplication
(RM), real addition (RA), and comparison and selection (CS).
Because the proposed two methods have an impact on the
whole decoding, we will take the computation complexity of
the complete decoding process into consideration and count
the number of operations by per iteration. The computational
complexity of the initialization step is averagely distributed
to each iteration. The number of nonzero values in H matrix
is denoted as § = d.M = d,N.

For the TEC-TEMS, we can first focus on Alg. 1. It can be
easily calculated that, except the @ function, the other parts
take (d. — 1)M FAs, (2g + 1)§ FMs, g6 RMs, 3¢5 RAs, and
(g — D(N + 8) CSs per iteration. In Alg. 2, Step 2 can be
divided into two sub-steps as:

b = in V;i(a), 25
j = arg aenGlll’}}q) ij(@ (25)
bj = bj/ ® hi,j~ (26)

Note that the first sub-step has been computed in Step 10
of Alg. 1. Therefore, the trellis-based decoding for the @
function costs (2d. — 1)M + 2q8 FAs and § FMs to compute
the v2c and c2v hard messages, and the direct and inverse
domain transformations. The TEC-TEMS for the W function
is shown in Alg. 3. Step 1 requires (d. — 1)(¢ — 1)M CSs
and Steps 3-10 need (¢ — 1)(26 + M) CSs. Back to Step 2,
the worst case is that the g/2 — 1 pairs of configurations for
a symbol have different column indexes and all need to be
computed. Considering that case, it takes (g/2 — 1)(g — )M
RAs and (¢ — 3)(g — DM CSs. In addition, comparing the
column indexes requires (¢/2 — 1)(g — 1)M CSs.

For the proposed TS-TEC-TEMS, according to the intro-
duction in Section III, the initial step averagely takes (g +
np)N /Lax CSs per iteration. Thanks to the use of the two
fields Fp(q) and Fc(q), in the iterative step, except the W
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TABLE 4. Numerical analysis of the computational complexity.

the 256-ary (256, 203) code
T-EMS [18] TEC-TEMS | TS-TEC-TEMS
FA | 788,352 (1.00) | 527,232 (0.67) | 70,927.4 (0.09)
FM | 526,336 (1.00) | 526,336 (1.00) | 10,031.4 (0.13)
RM| 262,144 (1.00) | 262,144 (1.00) | 51,312.6 (0.20)

RA 19,338,112 (1.00) [ 2,859,072 (0.31) | 911,098.9 (0.10)

CS

16,091,520 (1.00)

7,311,360 (0.45)

2,631,379.9 (0.16)

Total,

27,006,464 (1.00)

11,486,144 (0.43)

3,734,750.2 (0.14)

the 32-ary (837, 726) code

T-EMS [18] TEC-TEMS | TS-TEC-TEMS
FA | 327,856 (1.00) | 224,068 (0.68) | 79,568.3 (0.24)

FM | 220,968 (1.00) | 220,968 (1.00) | 76,468.3 (0.35)
RM| 107,136 (1.00) | 107,136 (1.00) | 48,646.4 (0.45)
RA | 655,836 (1.00) | 379,068 (0.58) | 148,442.9 (0.23)

CS 1,040,763 (1.00) | 610,235 (0.59) | 305,890.0 (0.29)

Total 2,352,559 (1.00) | 1,541,475 (0.66) | 659,017.9 (0.28)

function, the complexity of the other parts can be computed
by replacing the parameter g with np or nc. Algorithm 4
shows the computing process of the W function. In Step 3,
the number of the v2c messages of a row for a symbol is
averagely computed as n. = nc - e Then, this step costs
(ng — (g — DM CSs. Steps 6-14 take 2(np — 1)§ CSs.
For Step 5, we assume ¢ as the average number of remaining
pairs of configurations for a symbol, which can be statistically
obtained by the Monte-Carlo simulation. The complexity of
this step can be formulated as (x — 1)(¢ — 1)M RAs and
(B3x —4)(g — )M CSs.

Computing the computational complexity of the T-EMS is
referred to [18], where n, is 2 and n, is 3. The computations
per iteration of the three algorithms are concluded in Table 3.
Obviously, the complexity of the TEC-TEMS is less than that
of the T-EMS, and that of the TS-TEC-TEMS is also signif-
icantly reduced. To be more precise, the numerical analyses
for C; and C3 codes are presented in Table 4. The parameters
ng, nc, and t for the TS-TEC-TEMS with the LL scheme
(TS 5) are statistically counted with 107 frames of either code
when the FER is about 10~, as shown in Table 5.

The total numbers of operations are also listed in Table 4
as a reference. Based on the normalization in the brackets,
compared with the T-EMS, the complexity of the proposed
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TABLE 5. The statistical values of the parameters for NB-LDPC codes at
the FER of lower than 104,

Code (256, 203) | (837,726)
SNR (dB) 4 4.2
np 50.11 14.53
nc 16.28 6.31
t 51.64 15.97

TABLE 6. The extra coding gains between the proposed algorithms and
the T-EMS.

code |T-EMS [18]|TEC-TEMS|TS-TEC-TEMS
(256, 203) 0 +0.3dB +0.3dB
(837, 726) 0 +0.03dB +0.03dB

TEC-TEMS is reduced by more than 50% for C1 and by
about 35% for C3. The complexity of the proposed TS-TEC-
TEMS is further significantly reduced. Generally, more than
half of computations can be saved by the introduced TS
scheme. Compared to the T-EMS, nearly 90% complexity
is reduced for code C1 and more than 70% complexity for
code C3. Meanwhile, the proposed algorithms achieve better
FER performance than the T-EMS. For example, as listed
in Table 6, an extra coding gain of about 0.3dB is obtained for
C1 and that of about 0.03dB for C3 at the FER of about 107>,

VI. CONCLUSION

In this paper, we have proposed two methods to reduce the
computational complexity and enhance the decoding perfor-
mance for the T-EMS algorithm of NB-LDPC codes. At first,
the TS scheme is presented with theoretical justifications,
which facilitates large complexity reduction for the decoding
of NB-LDPC codes. Then, the TEC scheme is modified and
applied to the T-EMS algorithm. The proposed two new algo-
rithms, the TEC-TEMS and TS-TEC-TEMS, both achieve
better decoding performance and lower computational com-
plexity than the T-EMS that is well-known in achieving good
decoding performance with low computation complexity.
Considering a 256-ary (256, 203) example code, compared
to the T-EMS, both the TEC-TEMS and TS-TEC-TEMS
achieve an extra coding gain of about 0.3dB. In addition,
the computational complexity of the TEC-TEMS is reduced
by more than 50% and the TS-TEC-TEMS has almost 90%
computational complexity reduction.
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