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ABSTRACT In this paper, a new direction-of-arrival (DOA) estimation method based on multiple Toeplitz
matrices reconstruction is proposed for coherent narrowband signals with a uniform linear array (ULA). First,
the received signals impinging on the ULA are rearranged in a Toeplitz matrix, and a full set of correlation
matrices are computed by the Toeplitz-based matrix and the observed data of each sensor. Then, a weighted
summation by squaring these correlation matrices is obtained to form the full rank equivalent data covariance
matrix. Furthermore, a forward-and-backward scheme is presented to improve the estimation accuracy of
the covariance matrix. Based on the joint diagonalization structure of the covariance matrix with noise
contributions as a scalar matrix, the angle estimation problem can be resolved by combining it with subspace-
based methods. In comparison with currently known matrix reconstruction methods, the proposed algorithm
applies all information contained in the correlation matrices adequately without de-noising processing in
advance. Even in the case of a low signal-to-noise ratio and low snapshot number with half the array aperture
reduced, the newmethod provides good performance on estimation and resolution. Finally, simulation results
are demonstrated to verify the theoretical prediction.

INDEX TERMS Coherent signals, direction-of-arrival (DOA) estimation, Toeplitz matrix reconstruction,
uniform linear array (ULA).

I. INTRODUCTION
High-resolution direction-of-arrival (DOA) estimation [1]
is a major research issue in array processing [2] and has
been widely used in radar [3], sonar [4], and wireless
communications [5], [6]. Many subspace-based algorithms
including multiple signal classification (MUSIC) [7]–[9] and
estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [10] may provide good performance for
uncorrelated signals but suffer serious performance degrada-
tion when in the presence of coherent or highly correlated
signal environments owing to the rank loss of the covari-
ance matrix. An effective way to solve this problem is the
spatial smoothing (SS) technique and its variants such as
forward-only (FOSS) [11] and forward/backward (FBSS)
spatial smoothing [12]. These methods partition the total
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array into several groups containing overlapping subarrays,
and the average of the subarray covariance matrices with
restored full rank is employed to resolve the coherent signal
direction-finding combined with subspace-based algorithms.
However, the subarray number is determined by the number
of sources in advance, which leads to an effective decrease in
aperture size and therefore a decrease in resolution capability
for closely spaced arrivals.

Methods such as maximum-likelihood (ML) [13] or sig-
nal subspace fitting (SSF) [14] have been provided for
resolving the coherent narrowband array problem. These
methods have the advantages of not requiring eigendecom-
position and not being sensitive to the coherency between
impinging signals. The computation of these methods is
significant because they solve complicated multidimensional
iteration problems or transform multidimensional problems
into sequences of one-dimensional problems through alter-
nating maximization [15], [16].
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Recently, methods based on Toeplitz matrix reconstruction
and its variants [17]–[24] were presented to resolve coherent
signals. In [17], a data-based matrix decomposition method
was used to perform the singular-value decomposition of a
correlation matrix between a Toeplitz matrix constructed by
the received signals and the obtained signal from an extra
reference array. This makes the noise contribution a zero
matrix and may combine the eigenstructure methods under
a coherent signal environment. A computationally efficient
algorithm named ESPRIT-like and its variants [18]–[24] has
attracted the attention of researchers. In [18], the ESPRIT-
like method was applied to any single row of an array output
covariance matrix (AOCM). The noise effects were elimi-
nated in advance to construct a Toeplitz matrix whose rank
was only related to the DOA of the signals, and the signal
subspace could be estimated by using the ESPRIT algo-
rithm. According to the ESPRIT-like method, an improved
Toeplitz matrix-based method [19] was presented to increase
the dimension of the signal subspace by exploiting forward
and backward vectors. Reference [20] adopted an existing
ESPRIT-like scheme by exploiting half-rows of an AOCM
to form a set of Toeplitz matrices in the absence of noise.
The DOAs were estimated via a designed cost function that
did not require a priori information of the source number.
In [21]–[25], some matrix reconstruction decorrelation algo-
rithms based on spatial differencing ideas [26] were pro-
posed by constructing one Toeplitz matrix or several Toeplitz
matrices from the covariance matrix of the received data
under colored noise field. The maximum number of resolv-
able sources could potentially exceed the number of sen-
sors. However, in most of these spatial differencing based
methods, the DOAs of uncorrelated and coherent signals
are estimated separately, which increased the computational
burden.Moreover, their performancemay become poor under
a relatively small snapshot in the case of the non-zero residual
correlations between the presupposed structural properties to
be invalid.

Many other matrix reconstruction algorithms which were
based on higher-order cumulants [27] have also been devel-
oped for coherent signal DOA estimation in order to resolve
more signals in the presence of color Gaussian noise
fields. Reference [28] presented a fourth-order cumulants-
based Toeplitz matrices reconstruction (FOC-TMR) method
by arranging the cumulants elements of received signals
from two parallel uniform linear arrays (ULAs) to two
Toeplitz matrices. An effective decoherence method intro-
duced in [29] extended the ESPRIT-like algorithm to achieve
the DOA estimation of incident narrowband coherent sig-
nals by applying half-rows of an AOCM to reconstruct
a set of fourth-order cumulants-based Toeplitz matrices.
In [30], an improved FOC-TMR algorithm was addressed
to reconstruct two matrices by utilizing two parallel ULAs
and the changing reference array element. Unfortunately,
such methods require large numbers of snapshots and suffer
from burdensome computation. In addition, the data matrix
construction methods were also extended in many other

applications such as two-dimensional (2D) DOA estima-
tion [31]–[33] and multiple-input multiple-output (MIMO)
radar [34]–[36].

As mentioned above, there are two major problems
among the existing Toeplitz matrix reconstruction methods.
First, although they may be applicable by directly com-
bining with subspace-based methods by applying auxiliary
arrays or the central row of the AOCM to obtain a date-
based Toeplitz covariance matrix (which allows the noise
term to be a zero matrix or scalar matrix), adding an auxil-
iary array may increase costs and reduce the effective array
aperture.

Second, when employing one noncentral row or partial
rows of the AOCM for Toeplitz matrix construction, the noise
contribution of the resulting matrix cannot be a scalar matrix.
Therefore, DOA estimates should be obtained after the noise
contribution is eliminated, which increases the computational
burden. Furthermore, simply applying one row or partial
rows of the covariance matrix could result in incomplete
information utilization of the AOCM as well as a degrada-
tion in the resolving capability in terms of the estimation
accuracy.

In this paper, we propose a new algorithm to overcome the
aforementioned shortcomings of the existing methods. The
proposed algorithm can employ the complete information of
all array outputs to reconstruct the full set of Toeplitz matri-
ces and produce better estimates of the covariance matrix.
Unlike other Toeplitz matrix reconstruction methods, the pro-
posed approach does not require auxiliary array or noise
elimination.

This paper is organized as follows. We present the data
model in Section II and derive our algorithm in Section III.
Section IV provides numerical examples. Finally, we give our
conclusions in Section V.
Notation: Matrices, vectors and scalar quantities are

denoted by uppercase boldface, lowercase boldface, and low-
ercase letters, respectively. Superscripts (·)H , (·)T and (·)∗

represent a conjugate transpose, transpose and conjugate,
respectively. The operator E [·] is the expectation. 0m×n, Im
and diag (·) denote the m × n zero matrix, m × m identity
matrix, and the diagonal matrix, respectively.

II. PROBLEM FORMULATION
Consider a ULA with 2M + 1 isotropic sensors as shown
in Fig. 1. Suppose there are P (P < M + 1) narrowband far-
field sources impinging on the array from distinct directions
θp, p = 1, 2, . . . ,P. Let the index of the central array element
be 0. d = λ

/
2 is the spacing between the adjacent sensors,

and λ is the carrier wavelength.
For the sake of notational simplicity, we define the

(2M + 1) × 1 array output vector at time t in the noiseless
case as

x (t) = [x−M (t) , . . . , x0 (t) , . . . , xM (t)]T

= As (t) =
P∑
p=1

a
(
θp
)
sp (t) . (1)
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FIGURE 1. Antenna array model.

Then, in the presence of noise, the (2M + 1) × 1 array
output vector at time t is given as

y (t) = [y−M (t) , . . . , y0 (t) , . . . , yM (t)]T

= x (t)+ n (t) = As (t)+ n (t) . (2)

where s (t) = [s1 (t) , . . . , sP (t)]T denotes the P × 1 source
signal vector, where the P signals can be uncorrelated, par-
tially correlated, or coherent. A = [a (θ1) , . . . , a (θP)] is
the (2M + 1) × P array steering matrix with a

(
θp
)
=[

e−j(2π/λ)Md sin θp , . . . , 1, . . . , ej(2π/λ)Md sin θp
]T

as the
pth (2M + 1)× 1 steering vector. n (t)
= [n−M (t) , . . . , n0 (t) , . . . , nM (t)]T is the (2M + 1) × 1
Gaussian white-noise vector assumed to be uncorrelated to
signals with zero mean and variance σ 2

n .

III. PROPOSED ALGORITHM
First, we construct an (M + 1)×(M + 1) Toeplitz matrix via
x (t) as follows:

RX (t) =


x0 (t) x1 (t) · · · xM (t)
x−1 (t) x0 (t) · · · xM−1 (t)
...

...
. . .

...

x−M (t) x−M+1 (t) · · · x0 (t)

 (3)

Let S (t) = diag {s1 (t) , . . . , sP (t)}. Then, (3) can be
rewritten as

RX (t) = ÃS (t) Ã
H
. (4)

Here, Ã = [ã(θ1), . . . , ã(θP)] is the (M + 1) × P
array steering matrix with ã(θp) = [1, e−j(2π/.λ)d sin θp , . . . ,
e−j(2π/.λ)Md sin θp ]T . The correlation between RX (t) and
obtained signal xi(t) from the ith array (i = −M , . . . , 0,
. . . ,M ) is given by

RXi=E
[
RX (t) x∗i (t)

]
= ÃE

[
S (t) x∗i (t)

]
Ã
H
= ÃS̃iÃ

H
(5)

where S̃i = E
[
S (t) x∗i (t)

]
represents the correlation matrix

between S (t) and xi (t).
Similar to (3), a (M + 1) × (M + 1) Toeplitz data matrix

formed by y (t) has the following expression:

RY (t) =


y0 (t) y1 (t) · · · yM (t)
y−1 (t) y0 (t) · · · yM−1 (t)
...

...
. . .

...

y−M (t) y−M+1 (t) · · · y0 (t)


= RX (t)+ RN (t). (6)

where RN (t) =


n0 (t) n1 (t) · · · nM (t)
n−1 (t) n0 (t) · · · nM−1 (t)
...

...
. . .

...

n−M (t) n−M+1 (t) · · · n0 (t)

 is the

(M + 1)× (M + 1) Toeplitz matrix constructed by the noise
vector n (t).
In a similar way, the (M + 1)×(M + 1) correlation matrix

between RY (t) and the ith element output yi (t) is written as

RYi = E
[
RY (t) y∗i (t)

]
= E

[
RX (t) x∗i (t)

]
+ E

[
RN (t) n∗i (t)

]
= RXi + σ 2

n Ĩ(M+1),i. (7)

where Ĩ(M+1),i is an (M + 1)×(M + 1)matrix with all zeros
except for the unity elements on the ith diagonal, and Ĩ(M+1),0
equals the (M + 1)× (M + 1) identity matrix IM+1 with i =
0, in particular.
From (7), we observe that the correlation matrix RYi that

is obtained between RY (t) and the received signal from
ith array yi (t) is equivalent to employing the ith row of
the AOCM RY=E

[
y (t) yH (t)

]
for constructing a Toeplitz

matrix, similar to the ESPRIT-like method in [18]. Obviously,
utilizing the central array (i = 0) output yi (t) and RY (t) to
obtain RYi, Ĩ(M+1),0 of (7) results in an identity matrix, which
allows us to perform eigenvalue decomposition directly for
acquiring the solution of the signal subspace.
When selecting the noncentral array (i 6= 0) element

to obtain RYi, the noise components from σ 2
n Ĩ(M+1),i are

uniformly distributed along the diagonal line parallel to the
main diagonal line of the noise matrix. This means the noise
term cannot become a scalar matrix, and the signal subspace
cannot be obtained by directly carrying out the eigenstructure
methods from RYi for the DOA estimate.
To avoid only utilizing the partial information of the

AOCM and depressing the noise process, which may lead
to degradation of the DOA estimation performance, a new
reconstructed Toeplitz matrix method is proposed by exploit-
ing the overall signal and noise information of RYi from i ∈
[−M ,M ]. The DOA estimation can be realized by obtaining
the diagonalization structure of the noise term without requir-
ing denoising processing in advance.
Given R̃ by the sum of squaring RYi respectively from i ∈

[−M ,M ],

R̃ =
M∑

i=−M

RYiRHYi

=

M∑
i=−M

[(
RXi + σ 2

n Ĩ(M+1),i
) (

RXi + σ 2
n Ĩ(M+1),i

)H]

=

M∑
i=−M

RXiRHXi +
M∑

i=−M

RXiσ 2
n Ĩ

H
(M+1),i

+

M∑
i=−M

σ 2
n Ĩ(M+1),iR

H
Xi +

M∑
i=−M

σ 4
n Ĩ(M+1),iĨ

H
(M+1),i.

(8)
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Considering the first term of (8), inserting (5) into the first
term of (8) gives

M∑
i=−M

RXiRHXi = Ã
M∑

i=−M

S̃iÃ
H
ÃS̃

H
i Ã

H
. (9)

For the second term of (8) (see Appendix A for details),
we can write that

M∑
i=−M

RXiσ 2
n Ĩ

H
(M+1),i = σ

2
n Ã

M∑
k=0

DkRS
(
Dk
)H

Ã
H
. (10)

where RS = E
[
s (t) sH (t)

]
denotes the source covariance

matrix, and D = diag
{
ej(2π/λ)d sin θ1 , . . . , ej(2π/λ)d sin θP

}
.

In a similar way, the third term of (8) can be computed as
follows (see Appendix A):

M∑
i=−M

σ 2
n Ĩ(M+1),iR

H
Xi = σ

2
n Ã

M∑
k=0

DkRs
(
Dk
)H

Ã
H
. (11)

From (10) and (11), we find that only summing
all of the individual signals and noise cross-terms of
RXiσ 2

n Ĩ
H
(M+1),i or σ

2
n Ĩ(M+1),iR

H
Xi can construct the equivalent

source covariance matrix.
Considering the fourth term of (8), Ĩ(M+1),iĨ

H
(M+1),i can be

written as

Ĩ(M+1),iĨ
H
(M+1),i

=



[
I(M+1−i)×(M+1−i) 0(M+1−i)×i

0i×(M+1−i) 0i×i

]
, i ≥ 0[

0(−i)×(−i) 0(−i)×(M+1+i)

0(M+1+i)×(−i) I(M+1+i)×(M+1+i)

]
, i < 0

(12)

Substituting (12) in the fourth term of (8), we have

M∑
i=−M

σ 4
n Ĩ(M+1),iĨ

H
(M+1),i = (M + 1) σ 4

n Ĩ(M+1),0. (13)

According to the result from (13), applying only half-rows
of the AOCM to construct a set of Toeplitz matrices (equiva-
lently summing the products ofRYi andRHYi from i ∈ [−M , 0])
results in a noise contribution that is not a scalar matrix.
Thus, the estimates of the equivalent covariance matrix can
be available if the noise effect is neglected or eliminated. Our
method can acquire a scalar matrix just by summing all of the
terms corresponding to the noise contribution.
By combining (9)–(13), (8) can be simplified as

R̃ = Ã

(
M∑

i=−M

S̃iÃ
H
ÃS̃

H
i + 2σ 2

n

M∑
k=0

DkRS
(
Dk
)H)

Ã
H

+ (M + 1) σ 4
n Ĩ(M+1),0 (14)

Here, we define

R̃S =
M∑

i=−M

S̃iÃ
H
ÃS̃

H
i + 2σ 2

n

M∑
k=0

DkRS
(
Dk
)H

(15)

and R̃ can be rewritten as follows:

R̃ = ÃR̃S Ã
H
+ (M + 1) σ 4

n Ĩ(M+1),0 (16)

It is shown in (15) that since
M∑

i=−M
S̃iÃ

H
ÃS̃

H
i can be

expressed as
M∑
k=0

Dk
(

M∑
i=−M

R′
S

) (
Dk
)H

(see Appendix B),

the
M∑

i=−M
S̃iÃ

H
ÃS̃

H
i and 2σ 2

n

M∑
k=0

DkRS
(
Dk
)H

terms of R̃S

are essentially equal to the (M + 1) -order equivalent source
covariance matrix of the FOSS algorithm [11]. Hence, R̃S is
a positive definite matrix with a full rank P. Furthermore,
the rank P of our method is only related to the DOAs of
signals and is independent of the coherence of the incident
signals by the assumption made by the sources in Section II.
To improve the estimation performance, we consider facil-

itating (16) by the forward/backward smoothing technique as

RM = R̃+ JR̃
∗
J (17)

where J denotes the (M + 1) × (M + 1) exchange matrix
with ones on its antidiagonal and zeros elsewhere. According
to (17), RM is obtained with the noise term a scalar matrix
as well, which allows us to find the column space of Ã
only by eigendecomposing RM without eliminating the noise
contribution in advance.
In addition, note that R̃S in (15) has an extra equivalent

source covariance matrix
M∑

i=−M
S̃iÃ

H
ÃS̃

H
i when compared

to the FOSS algorithm. Similarly, after forward/backward
averaging, the equivalent source covariance matrix of the
MTOEP-root has one more term than the FBSS algo-
rithm [12], which indicates that our algorithm exploits the
overall information of the (2M + 1) -order data covariance
matrix to reconstruct the (M + 1) -order equivalent source
covariance matrix. However, FBSS-root or FOSS-root use
the principal diagonal autocorrelation information of the
data covariance matrix to form the smoothed source covari-
ance matrix, whose order depends on the smoothing num-
ber. Finally, the root-MUSIC method [37] without a space
spectrum search can be applied to obtain the DOAs of the
sources.
Detailed steps for implementing our proposed algorithm,

which is called MTOEP-root, are listed in Table 1.

IV. SIMULATION RESULTS
In this section, we present numerical examples to evaluate
the performance of our proposed MTOEP-root method as
comparedwith the FOSS, FBSS, and ESPRIT-likemethods in
terms of the root-mean-square error (RMSE) and probability
of resolution. To be fair, the root-MUSIC algorithm is also
applied to find the DOAs for the FOSS and FBSS schemes.
The Cramér-Rao bound (CRB) given in [38] is applied for
comparison reference in the former.
We assume that all narrowband sources are of equal

power with a center frequency of 9 MHz, and the sampling
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TABLE 1. Pseudocode of MTOEP-root algorithm.

FIGURE 2. RMSE vs. SNR for one uncorrelated signal and three coherent
signals with DOAs of 53◦, −2◦, 8◦, 22◦. The number of snapshots is 200.

frequency is set to 1000 Hz. The input signal-to-noise
ratio (SNR) of the pth source is defined as SNR =

10 log10
(
σ 2
p

/
σ 2
n

)
, and the RMSE of the DOA estimates is

defined as RMSEθ =

√
1
WP

P∑
i=1

W∑
w=1

(θ̂i,w − θi)2, where W is

the number of Monte Carlo runs, and P is the number of
all sources. Consider

∣∣∣θ̂i,w − θi∣∣∣ less than 1◦ as a successful
resolution. A total of 1000 Monte Carlo trails are performed
to obtain the statistic results in our examples, and there is a
random phase delay from [0, 2π ] between these signals at
each Monte Carlo trail.

In the first example, the RMSE and probability of reso-
lution performance as a function of the SNR are examined.
We consider four sources: one uncorrelated signal from 53◦

and a group of three coherent signals from (−2◦, 8◦, 22◦)
with a nine-element half-wavelength ULA, that is, M = 4.
The number of snapshots taken is 200, and the number of
subarrays for FOSS and FBSS are 4 and 3, respectively.

From the simulation results shown in Fig. 2, when coherent
and uncorrelated sources exist, it can be clearly seen that

FIGURE 3. Probability of resolution vs. SNR for one uncorrelated signal
and three coherent signals with DOAs of 53◦, −2◦, 8◦, 22◦. The number of
snapshots is 200.

our proposed MTOEP-root achieves a much better RMSE
performance than the FOSS-root and ESPRIT-like methods
over the entire SNR region.Meanwhile, our proposedmethod
can produce better RMSEs than the FBSS-root algorithm
in the low-SNR regime and is slightly inferior at high
SNRs.

Fig. 3 shows that our proposed MTOEP-root method
has lower-resolution DOA estimation than the FBSS-root
method, and obviously outperforms the FOSS-root and
ESPRIT-like methods at any SNR. In particular, when the
SNR is 15 dB, the resolution probability in our scheme and
FBSS-root are above 90%, while those of the other two
estimators are below 50%.

In the second example, we investigate the RMSE and prob-
ability of resolution vs. the number of snapshots. The simula-
tion conditions are similar to those in example 1, except that
the number of snapshots varies from 10 to 800 and the SNR
is fixed at 20 dB.

It can be seen in Fig. 4 that our MTOEP-root achieves
better performance than the FBSS-root scheme for a
considerably low number of snapshots such as 10, and a little
less when increasing the number of snapshots. In the entire
snapshot regime, our MTOEP-root method produces much
better RMSEs than the FOSS-root and ESPRIT-like methods.
Fig. 5 also illustrates that the resolution probability of our
MTOEP-root and FBSS-root methods is much higher than
those of the other two estimators, especially for a low number
of snapshots.

In the third example, we test the estimation performance in
terms of the angular separation between two coherent signals.
One signal comes from 5◦, and the other signal is 5◦ +1θ
with the angular separation 1θ varied from 2◦ to 22◦. The
SNR is 5 dB, while the number of snapshots is fixed at 32.
The number of subarrays for FOSS and FBSS are 2 and 1,
respectively.
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FIGURE 4. RMSE vs. number of snapshots for one uncorrelated signal and
three coherent signals with DOAs of 53◦, −2◦, 8◦, 22◦. SNR is 20 dB.

FIGURE 5. Probability of resolution vs. number of snapshots for one
uncorrelated signal and three coherent signals with DOAs of 53◦,
−2◦, 8◦, 22◦. SNR is 20 dB.

We can see in Fig. 6 that with an increase in the angular
separation, ourMTOEP-root method hasmuch better RMSEs
than the other three algorithms in the case of low SNR and
few samples, especially when theDOAs between the coherent
sources are relatively close. When the angular separation
between the two coherent sources is enlarged, the RMSE
curves of the FBSS-root method gradually approach those
of our method. Fig. 7 shows that the probability of resolu-
tion of our MTOEP-root method is slightly higher than that
of FBSS-root, and is clearly higher than the ESPRIT-like
and FOSS-root methods across the entire angular separation
regime.

The simulation results from Fig. 2 to Fig. 5 show that
ESPRIT-like used only one row of the data covariance matrix
and FBSS-root and FOSS-root use the principal diagonal
autocorrelation information of the data covariance matrix.
However, our MTOEP-root adequately uses all correlation
information of the data covariance matrix, and therefore has

FIGURE 6. RMSE vs. angular separation for two coherent signals with
DOAs of 5◦, 5◦ + 1θ . SNR is 5 dB and the number of snapshots is 32.

FIGURE 7. Probability of resolution vs. angular separation for two
coherent signals with DOAs of 5◦, 5◦ + 1θ . SNR is 5 dB and the number
of snapshots is 32.

the best estimation accuracy and resolution probability in the
low/middle SNRs and few number of snapshots.

Because of the limitation of the aperture of the array,
our method can estimate M sources with at least 2M + 1
sensors, which means that half the array aperture is lost
as in the ESPRIT-like method. The array aperture of FBSS
is larger than that of our algorithm. When the number
of mixed coherent and uncorrelated signals is high with
an increase in snapshot numbers and high SNRs, FBSS
has better resolution and estimation performance than our
method.

From Fig. 6 and Fig. 7, we show that when the number
of coherent sources to be resolved is small and the coherent
source angles are close, our algorithm has better estimation
accuracy and resolution probability. The information utiliza-
tion in our method is the best among the three methods,
especially under a low SNR and small snapshot.
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V. CONCLUSIONS
A new direction-finding algorithm called MTOEP-root was
proposed for coherent signals. First, we constructed a
data-based Toeplitz matrix directly from all arrays of received
data. Based on this Toeplitz matrix, a set of the correlation
matrices between it and the received data from each array was
computed. Then, the new data matrix was calculated by sum-
ming the products of these correlationmatrices and their asso-
ciated matrices. Finally, after exploiting forward/backward
averaging, we obtained the equivalent full rank covariance
matrix for decorrelating the source signals with the noise term
as a scalar matrix.

As compared with existing subspace-based decorrelation
estimators, themost significant advantage of the our proposed
estimator is that it can apply all correlation information of
the received data from the overall array sensors. In addi-
tion, the coherent signals are resolved with a reconstructed
Toeplitz matrix without requiring elimination of the noise
contribution in advance. The numerical results demonstrated
the effectiveness of the proposed algorithm.

APPENDIX A
In this appendix, we prove that (10) and (11) hold.

Substituting (5) into the second term of (8), we have

M∑
i=−M

RXiσ 2
n Ĩ

H
(M+1),i = σ

2
n

M∑
i=−M

E
[
RX (t) x∗i (t) I

H
(M+1),i

]

= σ 2
nE

[
RX (t)

M∑
i=−M

x∗i (t) I
H
(M+1),i

]
= σ 2

nE
[
RX (t)RHX (t)

]
. (18)

Inserting (4) into (18), we obtain

σ 2
nE
[
RX (t)RHX (t)

]
=σ 2

n ÃE
[
S (t) Ã

H
ÃSH (t)

]
Ã
H
. (19)

We define

Ã
H
= [b0, . . . , bk , . . . , bM ] . (20)

with bk =
[
ej2πkdsin θ1/λ, ej2πkdsin θ2/λ, . . . , ej2πkdsin θP/λ

]
,

(k = 0, 1, . . . ,M) . Then, we have

E
[
S (t) Ã

H
ÃSH (t)

]
= E

[
S (t)

M∑
k=0

bkbHk S
H (t)

]

=

M∑
k=0

E
{
[S (t) bk ] [S (t) bk ]H

}
.

(21)

Let D = diag (b1). Then, Dk = diag (bk). Since S (t) bk =
diag {s1 (t) , . . . , sP (t)} bk = diag (bk) s (t), (21) can be
expressed as

E
[
S (t) Ã

H
ÃSH (t)

]
=

M∑
k=0

DkRS
(
Dk
)H
. (22)

where RS = E
[
s (t) sH (t)

]
is the P × P signal covariance

matrix.
Consequently, from (19)–(22), we determine (18) as

follows:

M∑
i=−M

RXiσ 2
n I

H
(M+1),i = σ

2
n Ã

M∑
k=0

DkRS
(
Dk
)H

Ã
H
.

holds.
Similarly, substituting (5) into the third term of (8) and

combining the results of (19)–(22), we obtain

M∑
i=−M

σ 2
n I(M+1),iR

H
Xi = σ

2
n Ã

M∑
k=0

DkRs
(
Dk
)H

Ã
H
.

holds.
Consequently, (10) and (11) hold.

APPENDIX B

In this appendix, we prove that
M∑

i=−M
S̃iÃ

H ˜AS̃Hi in (15) can be

expressed as
M∑
k=0

Dk
(

M∑
i=−M

R′
S

) (
Dk
)H

.

Substituting (20) into S̃iÃ
H
ÃS̃

H
i , we have

S̃iÃ
H
ÃS̃

H
i = S̃i

M∑
k=0

bkbHk S̃
H
i =

M∑
k=0

(
S̃ibk

) (
S̃ibk

)H
. (23)

According to the definition S̃i = E
[
S (t) x∗i (t)

]
, we derive

S̃i = E
{
diag [s1 (t) , . . . , sP (t)] x∗i (t)

}
= diag

(
S̃i,1, . . . , S̃i,P

)
. (24)

where S̃i,p = E
[
sp (t) x∗i (t)

]
. Let R′

S = s̃is̃Hi with s̃i =[
S̃i,1, . . . , S̃i,P

]T
. Inserting (24) into (23), we obtain

M∑
k=0

(
S̃ibk

) (
S̃ibk

)H
=

M∑
k=0

diag (bk)R′
Sdiag (bk)H

=

M∑
k=0

DkR′
S

(
Dk
)H
. (25)

Finally,
M∑

i=−M
S̃iÃ

H ˜AS̃Hi in (15) can be written as

M∑
i=−M

S̃iÃ
H
ÃS̃

H
i =

M∑
i=−M

X i =

M∑
k=0

Dk
(

M∑
i=−M

R′
S

)(
Dk
)H
.

(26)
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