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ABSTRACT To monitor the sedimentary process and morphological evolution in the South China Sea,
free-ascending deep-sea tripod (FDT) has been developed. This FDT was equipped with a deep-sea camera
and landed on the sea floor at a depth of 2100 m. Although the FDT was equipped with an artificial light,
the battery capacity limited the duration and intensity of light. Therefore, enhancing such low-illumination
images to obtain clear visual effects is an important advancement for analyzing the geological evolution
process. In this paper, an adaptive bright-color channel-based low-light underwater image-enhancement
method and a denoising method are proposed to enhance such images and remove noise and artifacts. The
experimental results demonstrated that the proposed method outperformed state-of-the-art methods.

INDEX TERMS Image enhancement, underwater imaging, low lighting, deep-sea.

I. INTRODUCTION
Underwater imaging is becoming more and more important
due to the limitations of land resources. The underwater
optical camera, one of the most important sensors for cap-
turing information from the ocean, is the subject of ongo-
ing development by many researchers [1]. Most underwater
cameras simply cover traditional land-based cameras with a
housing base. The captured underwater images suffer from
low contrast, color distortions, and heavy noise. Because light
is attenuated through water, the energy of light is absorbed
by water, and therefore, the captured images appear as color
distortions. Forward and backward scattering results in low
contrast. Meanwhile, sediments in water also degrade the
resulting image.

There are many underwater image enhancement methods
for improving the quality of the visual effectiveness of the
captured image. Chiang and Chen [2] proposed a wavelength
compensation and dark channel prior-based dehazing method
for enhancing an underwater image. This research was the
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first use of the wavelength compensation in a dark channel
prior dehazing model, and the processed images performed
well. However, this method used a single wavelength in
computing, which readily causes color distortions. Fattal [3]
used a color-lines method to estimate the veiling light and
remove the haze-like objects in the images. However, for
heavy turbidity images, it is difficult to remove the scatters.
Lu et al. [4] proposed an improved veiling light estimation
method, to first remove the high light of the images and
then to calculate the attenuation coefficients to achieve better
results. However, this method is time-consuming and not suit-
able for applications in underwater robots. Meanwhile, most
recent works focus on using deep learning or big datamethods
to solve the issues of underwater images [5]–[8]. However,
these methods ignore many fatal problems in practice, and
all recent models have limitations. One is that when using
a generate adversarial network to produce the underwater
images, we do not even know the actual underwater imaging
model. Another is that the attenuations in water are affected
by seasonal, geographical, and climate variations. It is diffi-
cult to use a simple dataset or a simple approximate model to
produce an estimate.
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Unfortunately, existing single underwater image enhance-
ment methods only focus on the proposal of new optical
imaging models or enhancement models to recover the color
or remove the scatter from the image [15]–[22]. Additionally,
they are nearly all focused on practical problems such as low
lighting in real underwater monitoring systems.

In this paper, we propose a method to improve the image
brightness in low lighting, remove the heavy noise, and use
just one single image as input. The remainder of this paper
is organized as follows. Section 2 introduces some related
works and points out the advantages andweaknesses of recent
work. In Section 3, we propose an architecture of low light
underwater image enhancement that is based on the bright
color channel model and denoising method. Experimental
results and discussions are presented in Section 4. Finally,
we conclude this paper in Section 5.

II. RELATED WORK
To the best of our knowledge, there are no researchers focused
on the research of low-light underwater image enhancement.

A. DARK CHANNEL MODEL
Marques et al. [9] was the first person in the world to use
the image processing method to recover low-light images.
This method was based on Dark Channel Prior and used
guided filtering to smooth the transmission map. It used the
traditional air-based mathematic image acquirement model

I (x) = J (x) t (x)+ A(1−t (x)) (1)

where I is the observed intensity hazy image, J is the scene
radiance haze-free image, A is the atmospheric light, and t
is the medium transmission–the light that reaches the camera
without scattering. The minimal pixel channel of the image is
describe as

Jdark (x) = miny∈�(x)
(
minc∈�(r,g,b)J c(y)

)
(2)

In the hypothesis of dark channel prior, the minimal pixel
channel will tend to 0. Atmospheric light A is calculated
by initially choosing the 0.1% brightest pixels of the image.
In the dark channel prior, the medium transmission is calcu-
lated by

t (x)= 1− ωminy∈�(x)

(
minc

I c(y)
Ac

)
(3)

where ω is the constant between 0 and 1. After the estimation
of medium transmission, the haze-less image can be obtained
by

J (x) =
I (x)− A

max(t (x) , t0)
+ A (4)

where t0 is the constant to avoid the lower value of this
denominator. Then, the authors used the fast guided filter to
refine the medium transmission map.

Some additional methods are considered below.

B. HISTOGRAM EQUALIZATION ALGORITHM
When the image pixels are evenly distributed, the image
contrast is high. Histogram equalization utilizes this image
characteristic to map the original image so that the image
pixels are evenly distributed, thereby achieving the purpose
of improving image contrast.

The function expression [11] for the histogram equaliza-
tion of the image is:

sk=T (rk )=(L−1)
∑k

j=0 Pr(rj)=
L−1
MN

∑k
j=0 nj, k=0,1,2,...,L−1 (5)

where MN is the total pixel of the image, nk is the number of
pixels with greyscale rk , and L is the number of possible grey
levels in the image.

pr (rk) =
nk
MN

(6)

Eq. (6) is the probability that the grey level rk appears in a
digital image.

The histogram transformation technique makes the his-
togram of the target imagemeet the requirements by selecting
the transformation function T (r). However, the histogram
equalization algorithm often causes grey level merging after
image enhancement, and there are problems such as local
over-enhancement and loss of detailed information.

C. RETINEX ALGORITHM
Color constancy image enhancement technology is an
enhancement method based on the visual effects of images.
The Retinex algorithm [10] proposed by Land et al. is the
most influential color constant vision calculation theory.

The Retinex algorithm considers the perceptual image to
be composed of the product of luminance information and
reflection information. The formula is as follows:

I (x, y) = L (x, y) · R(x, y) (7)

In Eq. (7), I (x, y) represents the image observed by the
human eye; L(x, y) represents the luminance component of
the image, which determines the dynamic range of an image;
andR(x, y) represents the reflection component, which carries
the details of the image.

In practical applications, we are more concerned with how
to remove the luminance component to get the reflection
image we ultimately need. The single-scale Retinex algo-
rithm uses the center/surround method [12] to estimate the
luminance component L(x, y). The mathematical expression
is as follows:

L (x, y) = I (x, y) ∗ F(x, y) (8)

In the above formula, ∗ denotes a convolution operation,
and F(x, y) is the center surround function. The mathematical
expression of F(x, y) is:

F (x, y) = κ · exp

[
−
(
x2 + y2

)
σ 2

]
(9)

In the above equation, σ is the Gaussian surround scale and
κ is between 80–100. k is a normalized molecule, satisfying
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FIGURE 1. Deep-sea ‘‘Ophiuroidea.’’ (a) Captured image. (b) Low-light enhanced image. (c) Denoised image. (d) Color corrected image.

∫∫
F(x, y)dxdy = 1; the smaller the scale σ is, the larger

the dynamic range compression is, and the local details of the
image are more obvious. The larger the scale σ , the better the
overall effect of the image and the better the color recovery,
but the details are easily lost.

It can be seen from Eq. (7) and (8) that the reflected light
component of the image is expressed as:

R (x, y) = log I (x, y)− log [I (x, y) ∗ F(x, y)] (10)

At this time, R(x, y) is a component of the logarithmic
domain. The image we need is in the real number field, so we
have to convert R(x, y) as follows:

r (x, y) = exp(R (x, y)) (11)

D. GAMMA CORRECTION
Gamma correction is also a widely used and cost-effective
contrast enhancement method [13]. Its basic form can be
formulated as:

T (`) = `max(
l

lmax
)
γ

(12)

where `max is the maximum intensity of the input and the
intensity ` of each pixel in the input image is transformed
as T (`) after performing. As expected, the gamma curves
illustrated with γ > 1 have exactly the opposite effect as
those generated with γ < 1.

However, in the experiment, the authors did not use the
underwater images or simulated underwater images. There
are 3 disadvantages of this work:

1) The atmospheric imaging model is unsuitable for under-
water imaging;

2) There were no underwater low-light images for experi-
ments;

3) Color distortions and noise exist in the processed
images.

III. PROPOSED METHOD
To improve upon the above-mentioned method, we propose
a bright channel model, and a corresponding denoising algo-
rithm and color correction method.

A. BRIGHT CHANNEL MODEL
In this paper, we define the inverted image of an underwater
image as

Rλc (x) = 255−Iλc (x) (13)

where c is the color RGB channels. Iλc (x) is the intensity
of a color channel of pixel x of the low lighting image at
wavelength λ. Rλc (x) is the same intensity of the inverted
image. The scattered image is modelled as

Rλ (x) = Jλ (x) t (x)+ Aλ(1− t (x)) (14)
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FIGURE 2. Deep-sea ‘‘fish.’’ (a) Captured image. (b) Low-light enhanced image. (c) Denoised image. (d) Color corrected image.

where Aλ is the global veiling light. The transmission map
t(x) can be estimated by

t (x)= 1− ωminc∈R,G,B(miny∈�(x)(Rλc (y)/A
λ)) (15)

B. TRANSMISSION MAP REFINEMENT
In above, we propose the method for estimating the coarse
transmission map. For remove the scatter, it is needed to
refine the transmissionmap Therefore, we propose to develop
a guided filter to reduce such mosaic effects. The normalized
image is obtained as follows:

Rfc (x) =


Rλ (x)− Rλmin(x)

Rλmax (x)− R
λ
min(x)

, 0 < Rλ (x) < 1

0, Rλ (x) < 0
1, 1 < Rλ (x)

(16)

The refinement of the filtered joint is first performed under
the guidance image Rfc(x). Here, let dp(x), dq(x), R

f
c,p(x)

and Rfc,q (x) be the intensity value at the pixel p, q of the
transmissionmap and the guidance image, respectively, while
wk is the kernel window centred at pixel k . The refined
transmission map is then formulated as:

R (x) =
1∑

q∈wk Wpq(R
f
c(x))

∑
q∈wk

Wpq(Rfc(x)dq(x) (17)

where the kernel weight functionWpq(R
f
c(x)) is expressed as:

Wpq

(
Rfc (x)

)
=

1

|w|2
∑

k:(p,q)∈wk

×

(
1+

(Rfc,p (x)−µk )(R
f
c,q (x)−µk )

σ 2
k +ε

)
(18)

where µk and σ 2
k are the mean and variance of the guidance

image in the local window wk , respectively, and |w| is the
number of pixels in this window. After the refined depth
map is obtained, we can recover the real scene using the
underwater dark channel prior descattering model.

C. DENOISING
In this paper, we adapt vector deep convolutional neural net-
works for underwater denoising. In [14], the target image is
divided into a batch of samples indexed by j and theminibatch
training with a convolution layer is defined by

[f l+1i ]i = σ
(
[ϕc(f l,j)]j

[
wli
]
i
+ [bli]i

)
(19)

where []j is to assemble the matrix of different samples. This
method can speed up the computing time.

D. COLOR CORRECTION
After denoising, the colors are seriously distorted. In order
to recover the real color of underwater scene, we adapt the
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FIGURE 3. Deep-sea ‘‘Lobster.’’ (a) Captured image. (b) Low-light enhanced image. (c) Denoised image. (d) Color corrected image.

spectral characteristics-based color correction method to
address the color distortion issue [22]. We take the chromatic
transfer function τ to weight the light from the surface to a
given depth of objects as follows:

τλ =
Esurfaceλ

Eobjectλ

(20)

where the transfer function τ at wavelength λ is derived from
the irradiance of the surface Esurfaceλ by the irradiance of the
object Eobjectλ . According to the spectral response of the RGB
camera, we convert the transfer function to the RGB domain
as follows:

τRGB =

725nm∫
400nm

τλ · Cc(λ) (21)

where the weighted RGB transfer function is τRGB, and Cc(λ)
is the underwater spectral characteristic function of the color
band c, c ∈{r , g, b}. Finally, the corrected image is gathered
from the weighted RGB transfer function as follows:

J cλ(x) = νRGB · Ĵ
c
λ(x) · τRGB (22)

where J cλ(x) and Ĵ
c
λ(x) are the color-corrected and uncorrected

images respectively. νRGB is the spectral power distribution
transfer function.

TABLE 1. Quantitative analysis of the proposed method.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
We tested the proposed method with images of real-world,
deep-sea observation systems. The images used were cap-
tured by the free-ascending tripod (fat), which was built at
tongji university in china and is used to monitor in situ
sediment movement. Fat was recovered in late september
2014 after spending about six months collecting data on
the floor of the northeastern south china sea (scs). The
enhanced images are characterized by a reduced noise level
with better exposure in dark regions and improved global con-
trast, by which the finest details and edges are significantly
enhanced, demonstrating the effectiveness of the proposed
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method. Figure 1 to figure 3 show the recovered results of
the images.

From the above experimental results, we find the proposed
method removed the electrical noise and corrected the color
distortions of the radiometric compensation in water. Except
the visual measurement by human, we also compared the
recovered image with the captured image by quantitative
analysis [21]. Table 1 shows the good performance of the
proposed method.

V. CONCLUSION
As described in this paper, we built a dedicated camera system
and corresponding image processing technologies for in situ
deep-sea observation in the South China Sea. The proposed
method can improve the quality of deep-sea images. It can
remove unwanted particles, correct non-uniform illumina-
tion, recover real-scene color, and provide super-resolving
of the images. Real-world experiments demonstrated that the
proposed system performs better than existingmethods. It can
be concluded that the proposedmethods are suitable for ocean
observation.
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