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ABSTRACT A structure of energy cogeneration with distributed parameters is considered, modeled by
an initial boundary value problem for hyperbolic conservation laws with a nonlinear and nonstandard
boundary condition. Under a standard simplifying assumption leading to linear partial differential equations,
the model is studied by associating a system of functional differential and difference equations of neutral
type: considered are basic theory (existence, uniqueness, and continuous data dependence), invariant sets
(positiveness of some state variables), equilibria, and their inherent stability (without control). These
properties are illustrated by simulation results. Furthermore, a control Lyapunov functional is constructed,
and feedback stabilizing structure is designed. This paper ends with a conclusion section, where open
problems, such as stability by the first approximation/robustness and stability preservation under singular
perturbations, are pointed out.

INDEX TERMS Control system synthesis, delay systems, nonlinear control systems, power generation
control.

I. INTRODUCTION
Since the very first papers on the subject [1], [2], the systems
of conservation laws have turned out to be rather challenging
for mathematicians, physicists and engineers. After more
than half-century, the challenges in this field of research are
still present - see for instance [3]: ‘‘the important class of
hyperbolic conservation laws that includes the Euler equa-
tions for gas dynamics gathers all the difficulties’’ - poor
regularity, necessity of an ‘‘entropy’’ criterion to select the
relevant solution a.s.o. [4])
Control of systems described by or arising from

conservation laws seems a more recent problem. Direct
reference to conservation laws can be found in papers
dealing with flow control in open canals [5]–[10] or with
gas transport [11]–[13]. Other control applications are to
be found in the relatively recent monographs [9], [14]–[16].
In fact all these references can be embedded in the larger class
of controlling nonlinear systems with distributed parameters.
We have described in brief the first starting point of this
paper. The second one arises from applications: among
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numerous and various applications of the conservation laws
we may find those arising from power engineering: thermal
engineering – cogeneration (combined heat-electricity gener-
ation) control under the circumstances of long steam pipes;
hydraulic power generation control under the water hammer
phenomena; water level and flow control in water channels
which are such that propagation phenomena have to be taken
into account. To the aforementioned applications we may
add the one concerning gas distribution pipes: steam and gas
transport deals with compressible fluids while water transport
with incompressible fluids.

All these engineering applications have in common
1-dimensional space distributed parameters: they are mod-
eled by hyperbolic partial differential equations (hPDEs)
in two variables (time and space) subject to non-standard
boundary conditions (BCs). The BCs are called non-standard
because they are subject to an input signal arising from a
dynamical subsystem with lumped parameters, i.e., described
by ordinary differential equations (ODEs). In turn this afore-
mentioned subsystem is subject to a signal arising from the
boundary conditions. Moreover, the control of the distributed
parameter object is a boundary control: the control signals
generated by the controllers are fed to the subsystem with
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lumped parameters. Consequently, the stabilization problem
becomes an urgent task since the aforementioned structure
displays an internal feedback between the boundary condi-
tions and the system of ODEs; as observed in [17], existence
of internal feedbacks might generate instability.
The third aspect that is worth mentioning in this intro-

ductory part concerns nonlinearities. Conservation laws are
nonlinear (in fact, quasilinear) partial differential equations.
The BCs which describe local dependencies (flow/pressure
for incompressible (water) or compressible (steam) fluids,
i.e., local hydraulic impedances) are, generally speaking,
nonlinear. Moreover, the ODEs which control the boundaries
are usually nonlinear. The resulting non-standard boundary
value problems are, thus, nonlinear. Consequently, the rather
complicated mathematical models of the aforementioned
applications from power engineering require validation from
the mathematical point of view. We give here just a single
motivation for this necessary model validation. The hydraulic
impedances are usually modeled and measured in steady
state. Nevertheless, their description is considered valid and
applied tale quale in modeling the transients also, just assum-
ing the validity of the steady state description during tran-
sients (the so-called als ob principle in constructing models).
Such heuristic extensions can obviously lead to models

which require a sound mathematical basis. The first step in
this direction is to establish well-posedness in the sense of
J. Hadamard: existence, uniqueness and smooth data (param-
eter and initial conditions) dependence. The significance of
the well-posedness is best expressed in the reflections of
Courant [18] (see also [19], [20]). The next step is given
by displaying invariant sets with physical significance: for
instance, certain state variables account for such physical
quantities like absolute temperature, absolute pressure, sub-
stance concentrations, which have definite sign, here positive.
These properties also need to be a consequence of the model
properties. In the case of dynamics, the aforementioned prop-
erties should be valid along system’s trajectories. Another
aspect which is also resulting in invariant sets arises from
the models of the hydraulic impedances: their description
contains square roots of some expressions which need to be
nonnegative along system’s trajectories. The significance of
such conditions might be, e.g., that the fluid flows from the
higher pressure to the lower one, heat is transmitted from
higher temperature to the lower one and so on. Moreover,
failing to emphasize such invariant sets may affect numerical
integration of the trajectories.

Another step in model validation – the third one – arises
from the so-called Stability Postulate of N. G. Četaev – see,
e.g., [21]: only stable trajectories are observable and mea-
surable and this property holds for various physical objects
including artifacts.

The ‘‘aggregate’’ of the aforementioned validation steps
was called augmented validation [19].

We are in position to state now the subject, the structure
and, therefore, the contributions of this paper: augmented
validation in the sense of [19] will be applied to a model

occurring in cogeneration and arising from conservation
laws. The necessary simplifying assumptions will be pointed
out together with the necessary steps to validate these sim-
plifications. The paper will also present the next step in
the study of cogeneration. Usually, the inherent stability as
arising from the Stability Postulate is non-asymptotic while,
in practice asymptotic (even exponential) stability is required.
Therefore, feedback stabilization will be considered, based
on the construction of a suitable control Lyapunov functional.
Here, also some simplifying assumptions will be considered
and their effect discussed. Finally, the conclusion section will
enumerate all problems remaining unsolved throughout the
paper, thus, pointing out research perspectives worth to be
followed.

Summarizing, the aforementioned augmented validation is
considered to be the main methodological contribution of the
paper. A mathematically validated model is more trustable
than one manipulated formally. Within this methodology, our
approach is to associate a system of functional differential
equations (FDEs) whose solutions are in one-to-one corre-
spondence with those of the initial (basic) system - in fact
a development of the method of d’Alembert in PDEs. This
approach has certain advantages such as using the body of
achievements establishedmainly for ODEs; it is also the illus-
tration of a rather natural way of introducing the equations
with deviated argument, in particular those of neutral type.

In brief, the contributions of the paper are as follows:
i) starting from a model of cogeneration described by a sys-
tem of hyperbolic conservation lawswith nonstandard bound-
ary conditions - linearized nomore than necessary - the afore-
mentioned augmented validation is done; the ‘‘instrument’’
is namely the associated system of FDEs and the one-to-
one correspondence of the solutions of the two mathematical
objects; ii) the Lyapunov synthesis of the stabilizing feed-
back control; the feedback control structure thus obtained
ensures asymptotic stability from the very beginning, due to
the Lyapunov functional approach; iii) extension of an earlier
result concerning the same cogeneration structure but without
propagation phenomena [22].

II. MATHEMATICAL MODEL(S)
We shall start with the following model

ψcTc ∂tξρ + ∂λξw = 0

ψcTc∂tξw + ∂λ

(
ξρ +

ξ2w

ψ2
c ξρ

)
= 0, t > 0, 0 < λ < 1

ξw(0, t) = πs(t)8
(
ξρ(0, t)/πs(t)

)
ξw(1, t) =

√
2ψsξρ(1, t)

Ta
ds
dt
= απ1 + (1− α)π2 − νg, 0 < α < 1

T1
dπ1
dt
= µ1(t)− π1, 0 ≤ µ1(t) ≤ 1

Tp
dπs
dt
= π1 − µ2(t)πs − (β/ψc)ξw(0, t), 0 < β < 1

T2
dπ2
dt
= µ2(t)πs − π2, 1− β ≤ µ2(t) ≤ 1, (1)
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where the function 8(z), describing the subcritical/critical
steam flow, is defined by

8(z) =


√
2(1− z), νcr ≤ z ≤ 1
√
2(1− νcr ), 0 < z ≤ νcr

0, z ≥ 1

(2)

and it is called sometimes the ASME formula for the sub-
critical/critical steam flow [23]; it replaces the Saint Venant
formula for the same flow. The critical ratio νcr results from
the Saint Venant formula and for the isothermal processes
equals 1/

√
e ≈ 0.606. For overheated steam, the experi-

mental data give νcr ≈ 0.577. For κ = 1.3 (the polytropic
exponent of the steam), νcr ≈ 0.546. Therefore we shall take
(for simulations) νcr = 0.6.
As a remark, is to be mentioned that equation (2) was

obtained in steady state; extending its validity during tran-
sients requires, at least from the mathematical point of view,
to extend its validity for z ≥ 1 by taking 8(z) = 0; this
extension makes sense since it signifies there is no flow when
the downstream pressure is larger than the upstream one.

This model, which also appears in other papers, has been
elaborated starting from the one in [24]. It describes the
co-generation dynamics. The significance of the state vari-
ables is as follows:
• state variables: s – rated (to the synchronous speed) devi-
ation of the turbine rotation speed from the synchronous
one; π1, πs, π2 – rated (to some significant steady state
values of the) steam pressures in the HP (high pressure),
extraction chamber and LP (low pressure) turbine cylin-
der respectively; ξρ(λ, t), ξw(λ, t) – steam pressure and
steam mass flow along the steam pipe connecting the
turbine and the steam consumer;

• inputs and references: µk , k = 1, 2 – rated (to their
maximal values) control inputs (valve cross-sections); νg
– rated mechanical power required at turbine’s shaft;

• space independent variable: rated length of the pipe
0 < λ < 1;

• parameters (coefficients): Ta,T1,Tp,T2,Tc – time con-
stants of the turbine-turbogenerator turning masses,
HP cylinder, extraction, chamber, LP cylinder and steam
pipe respectively; α ∈ (0, 1), β ∈ (0, 1) – mechani-
cal power fraction contribution of the HP cylinder and
extracted steam fraction respectively;ψc – velocity ratio
for the steam flow along the pipe as rated to the sound
velocity; ψs ∈ (0, 1) – the load coefficient of the steam
terminal consumer.

Some comments on this model seem necessary. The first
group of comments concerns the PDEs. The starting point
of adopting this model was the paper [25] where the mod-
eling began from the equations of the barotropic isentropic
compressible fluid [26], p. 429. Since barotropic means that
the fluid pressure depends on density (specific volume) only,
this shows that the processes are viewed as isothermal.
In thermal power engineering it is accepted as an assumption
that during short period transients the processes are indeed

isothermal (unlike in gas distribution [27] or gas expansion
in gas turbines [28]). For incompressible fluids, e.g. water,
the processes are isothermal. The equations in [26] are in
fact the Euler equations in Fluid Mechanics and, with the
isothermal assumption, they are almost the same for water
canals, penstocks and tunnels of hydropower engineering,
steam or gas pipes: even the Darcy-Weisbach losses term is
met in hydraulics and also in gas transport (in steam pipes it
is usually neglected).

A second remark concerns the variables which are scaled
(rated): as previously mentioned, they are rated to some
reference, steady state significant (e.g. maximal) values. The
advantages of this approach are threefold. Firstly, the model
becomes somehow independent of a specific application (e.g.
of the power level, pipe length, valve opening etc). Then these
variables are dimensionless being nevertheless compatible
and comparable. Also a sensible improvement of the numer-
ical conditioning is obtained. The PDEs of (1), which are
central in the model, display the form of conservation laws:

∂tU + ∂λf (U ) = 0 (3)

with U and f vectors of sufficiently smooth functions
[29], [30]. The PDEs correspond to the case of cogeneration
for a thermal consumer located sufficiently far away from the
power block. The steam turbine is considered in the simplest
case (from the point of view of the dynamics): a single regu-
lated steam extraction and no intermediate re-heating hence,
a steam turbine having a relatively small power output and
relatively small steam pressures. The application is such that
the PDEs do not contain distributed sources: the only steam
source for propagation along the pipe is the regulated steam
extraction of the turbine. In turn, this steam source arises from
the boiler of the power block - the term µ1(t): the steam is
there super-critical, being proportional to the product of the
controlled admission (cross section area) and the upstream
pressure assumed constant - as in all studies on steam turbine
control [31].

The steam turbine is located at the boundary λ = 0 and
the flow is subcritical in steady state; this explains the use
of 8 as defined by (2) – it has also been taken into account
the assumption that the flow enthalpy does not change, hence
the Saint Venant formula [32] does not apply [23]. The flow
at the steam consumer (λ = 1) is critical, which explains the
linearity of this boundary condition. Further comments on the
model are also useful here, for the convenience of the reader.

The first one concerns the controlling structure: in a block
representation as depicted in Fig. 1, the steam turbine dynam-
ics is a system with lumped parameters, while the steam pipe
connecting it to the thermal consumer is a nonlinear system
with distributed parameters. The BCs are specific for this last
block and have to be considered separately: they ‘‘receive’’
the signal πs(t) and provide the feedback signal ξw(0, t). The
feedback occurs at the level of turbine’s extraction chamber
and, consequently, the control signalsµk (t), k = 1, 2 provide
an indirect boundary control to the block with distributed
parameters (the steam pipe).
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FIGURE 1. Block diagram for the cogeneration system: (1) - the turbine
block; (2) and (4) - the boundary conditions blocks at λ = 0 and λ = 1,
respectively; (3) - the distributed parameters (propagation) block.

The second remark concerns the nonlinear character of (1):
the conservation laws are nonlinear, the boundary conditions
at λ = 0 are nonlinear (for subcritical flow) and the turbine
model is nonlinear (in fact bilinear), as well, since the control
signal modifies the cross-section for the critical steam flow
which leaves the extraction chamber of the steam turbine to
enter the LP cylinder of the steam turbine. A further remark
concerning system (1) specifies that the time constants T1 and
T2 are small with respect to Ta and Tp and, sometimes, they
are neglected, e.g. [24], [33]. Consequently, a new system of
reduced order is obtained

ψcTc ∂tξρ + ∂λξw = 0

ψcTc∂tξw + ∂λ

(
ξρ +

ξ2w

ψ2
c ξρ

)
= 0

ξw(0, t) = πs(t)8
(
ξρ(0, t)/πs(t)

)
ξw(1, t) =

√
2ψsξρ(1, t)

Ta
ds
dt
= αµ1(t)+ (1− α)µ2(t)πs − νg

Tp
dπs
dt
= µ1(t)− µ2(t)πs − (β/ψc)ξw(0, t). (4)

Taking into account the experience from the field of ODEs,
system (1) appears as having two time scales: the fast dynam-
ics (connected to T1 and T2) which defines the boundary
layer and the slow dynamics, also called outer dynamics. The
theory of singular perturbations is now standard for ODEs
and also for time-delay systems in the retarded case. Less
is known about this subject for systems described by neutral
functional differential equations (FDEs) or by such boundary
value problems like (1) – where the singular perturbation
occurs in the subsystem of ODEs. There are however some
interesting references [34], [35].

Looking ahead, we precise that the reduced system can be
tackled in the same way as the complete one. It will be con-
sidered however only in the control design part, the general
theory being done for the complete system (1).

A final remark concerns the nonlinear term in the conser-
vation laws: if we consider the three applications arising from
power engineering, two of them are almost always studied by
neglecting the aforementioned term. In (1) this is the term
ξ2w/ ψ

2
c ξρ accounting for certain distributed losses whose

space variation had been assumed from the very beginning
of the analysis as negligible [25]. In the case of hydraulic
plants, the same term of losses is assumed to have negligible
space variations. Interesting to mention, registered data from

several hundreds power plants of the former USSR, confirm
that this is indeed the case [36]. For other applications this
might not be the case.

In the following we shall adopt this simplifying but
far-going assumption of neglecting the distributed nonlinear
losses variation. Consequently, we shall focus on the follow-
ing model

ψcTc ∂tξρ + ∂λξw = 0

ψcTc∂tξw + ∂λξρ = 0

ξw(0, t) = πs(t)8
(
ξρ(0, t)/πs(t)

)
ξw(1, t) =

√
2ψsξρ(1, t)

Ta
ds
dt
= απ1 + (1− α)π2 − νg, 0 < α < 1

T1
dπ1
dt
= µ1(t)− π1, 0 ≤ µ1(t) ≤ 1

Tp
dπs
dt
= π1 − µ2(t)πs − (β/ψc)ξw(0, t), 0 < β < 1

T2
dπ2
dt
= µ2(t)πs − π2, 1− β ≤ µ2(t) ≤ 1. (5)

The PDEs are now linear but the boundary conditions
are not. Moreover, (2) is sending to a rather recent problem
of controlling systems described by hyperbolic PDEs with
switched boundary conditions [37]–[39]. To this we add the
internal feedback structure and the bilinear character of the
ODEs modeling the steam turbine. The complexity of the
model is obvious (even with the aforementioned simplifica-
tions) and this explains our option for augmented validation
before synthesizing a control structure.

III. AUGMENTED VALIDATION – THE APPROACH
In the aforementioned references concerning control of sys-
tems with conservation laws, the problem of the well posed-
ness in the sense of Hadamard is also tackled, mostly in
the class of classical solutions, based on the second order
compatibility conditions as in [40] (this approach is however
not the only one in the cited references). The present paper
will nevertheless follow another, complementary line which
goes back to the 50’s and 60’s of the past century. The papers
of A. D. Myshkis and his co-workers [41]–[44] deal with
linear and quasi-linear hyperbolic PDEs containing rather
general nonlinear Volterra type operator terms and distributed
sources (‘‘forcing’’ terms); the same type of terms occurs
in the boundary conditions. The Volterra operator signifies
a functional dependence ‘‘on the past’’ and, if the Riemann
invariants are viewed along the characteristics and substituted
in the boundary conditions, a system of functional equations
(FEs) having a rather general form is obtained.

This system of FEs appears as an independent mathemat-
ical object incorporating even non-standard, dynamic BCs.
Examination of the BCs of (1), (4) and/or (5) shows that the
dynamics and the standard BCs cannot be separated (see also
the feedback connection of Fig. 1) and it is felt that introduc-
ing the system of FEs is helpful. Moreover, a while later the
papers of K. L. Cooke were published, [45], [46], containing

VOLUME 7, 2019 48527



D. Danciu et al.: Control of a Time Delay System Arising From Linearized Conservation Laws

nevertheless a simpler case of two linear hyperbolic PDEs
with dynamic BCs containing linear ODEs. The approach
is the same as in the case of the aforementioned papers of
Myshkis and the result is a one-to-one correspondence, rig-
orously and completely proven in [19] between the solutions
of the two mathematical objects. The system of FEs is now
a system of differential equations with deviated argument;
moreover, simple arithmetic conditions were given for the
previously mentioned system with deviated argument to be
of delayed, neutral or advanced type - a rather natural way
of introducing the systems with deviated argument (in the
spirit of the very first paper on the subject - the paper of
J. Bernoulli of 1728 [47]). A result connected to the ones
mentioned above is that of [48], cited after [49].

The advantage of this approach relies on the fact that some
problems of applied dynamics such as existence of invari-
ant sets, stability, oscillations, are better studied for systems
of differential equations (possibly with deviated argument).
Under these circumstances, the fact that the aforementioned
systems of FEs are known can be only useful. For this reason
(and several other) our development from the simple linear
case (as the one of Cooke), then bilinear [24] and now with
nonlinear BCs can give the possibility of tackling new classes
of functional differential equations (FDEs) but also new types
of boundary value problems (due to the aforementioned one-
to-one correspondence of the solutions for the two mathemat-
ical objects).

Summarizing, it is the system of FDEs which allows devel-
oping validation and augmented validation for the model.

We recall here the steps of the augmented validation as
defined in [19]: basic theory that is: (1) well-posedness in
the sense of J. Hadamard (existence, uniqueness and contin-
uous data – parameters and initial conditions – dependence),
(2) existence of some significant invariant sets and (3) inher-
ent stability of some equilibria as significant trajectories (Sta-
bility Postulate of Četaev).

The approach of the present paper will rely on the method
established under rather general assumptions in [44]; we shall
be using however the simpler version of [45] – version which
was completely proven in [19]. Starting from (5), we shall
associate to it a system of FDEs, obtained by considering the
Riemann invariants along the characteristics. This consider-
ation will also allow to associate some initial conditions to
the aforementioned system of FDEs (starting from the initial
conditions of (5)). Worth mentioning is that the method was
successfully applied starting with the early papers [24], [33]
then in several papers that followed [4], [50]–[52].

The novelty of the paper at this point consists in the
nonlinear BCs at λ = 0; moreover, this condition contains
uncontrolled commutations from the subcritical to critical
branch and vice-versa – see (2). For this reason, a preliminary
result is required.
Theorem 1: Consider system (4) with some initial condi-

tions s(0), πk (0) (k = 1, s, 2), ξ0ρ , ξ
0
w (0 ≤ λ ≤ 1) and

assume existence of a piecewise classical solution of (4).
Then, if πk (0) ≥ 0, k = 1, s, 2, the following alternative

holds for each πk (t): either πk (t) ≡ 0 or πk (t) > 0 for all
t > 0.
The proof is given in Appendix 1.
We are now in position to introduce the Riemann invariants

and construct the associated system of FDEs as follows.
We introduce the Riemann invariants by

ξ±(λ, t) = ξρ(λ, t)± ξw(λ, t) (6)

together with the converse relations

ξρ(λ, t) =
1
2
(ξ+(λ, t)+ ξ−(λ, t))

ξw(λ, t) =
1
2
(ξ+(λ, t)− ξ−(λ, t)). (7)

The boundary value problem for the Riemann invariants is
obtained from (5):

ψcTc ∂tξ±(λ, t)± ∂λξ±(λ, t) = 0
1
2
(ξ+(0, t)− ξ−(0, t)) = πs(t)8

(
ξ+(0, t)+ ξ−(0, t)

2πs(t)

)
ξ−(1, t) = ρ1ξ+(1, t), ρ1 :=

1−
√
2ψs

1+
√
2ψs

Ta
ds
dt
= απ1 + (1− α)π2 − νg

Tp
dπs
dt
= π1 − µ2(t)πs −

β(ξ+(0, t)− ξ−(0, t))
2ψc

T1
dπ1
dt
= µ1(t)− π1

T2
dπ2
dt
= µ2(t)πs − π2. (8)

We shall first re-write (8) based on the properties of 8 :
[0,∞) 7→ R defined by (2). Since πs(t) > 0, the boundary
condition at λ = 0 can be written as

z(t)−8(z(t)) = x(t), (9)

where we denote

z(t) :=
ξ+(0, t)+ ξ−(0, t)

2πs(t)
, x(t) :=

ξ−(0, t)
πs(t)

. (10)

Taking into account (2) we obtain that the mapping 9 :=
z − 8(z) is increasing and maps the intervals [0, νcr ],
[νcr , 1], [1,∞] onto [−

√
2(1− νcr ), νcr −

√
2(1− νcr )],

[νcr −
√
2(1− νcr ), 1] and [1,∞), respectively. The inverse

mapping hp(x) exists and is defined by x + gp(x) where

gp(x) =


√
2(1− νcr ), for −

√
2(1− νcr ) ≤ x

≤ νcr −
√
2(1− νcr )

−1+
√
3− 2x, for νcr −

√
2(1− νcr ) ≤ x ≤ 1

0, for x ≥ 1.
(11)

As a consequence, we can re-write (8) as follows

ψcTc ∂tξ±(λ, t)± ∂λξ±(λ, t) = 0

ξ+(0, t) = ξ−(0, t)+ 2gp(ξ−(0, t)/πs(t))πs(t)
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ξ−(1, t) = ρ1ξ+(1, t), ρ1 :=
1−
√
2ψs

1+
√
2ψs

Ta
ds
dt
= απ1 + (1− α)π2 − νg

Tp
dπs
dt
= π1 − (µ2(t)+ (β/ψc)gp(ξ−(0, t)/πs(t)))πs

T1
dπ1
dt
= µ1(t)− π1

T2
dπ2
dt
= µ2(t)πs − π2. (12)

Let (λ, t) be some point such that 0 < λ < 1, t > 0 and
let t±(σ ; λ, t) = t ± ψcTc(σ − λ) be the two characteristics
crossing that point (see Fig. 2 – the straight lines 1a and 2a,
respectively). We integrate ξ+(σ, t+(σ ; λ, t)) ≡ ξ+(σ ; t +
ψcTc(σ − λ)) with respect to σ from σ = λ to σ = 1; since
ξ+(·, t+(· ; λ, t)) is constant, we obtain

ξ+(λ, t) = ξ+(1; t + ψcTc(1− λ)) (13)

and, in particular, for λ = 0, ξ+(0, t) = ξ+(1, t + ψcTc)
provided the characteristic t+(σ ; λ, t) crosses the vertical
σ = 0, i.e., if t − ψcTc > 0.
In a similar way, we integrate ξ−(σ, t−(σ ; λ, t)) ≡

ξ−(σ ; t − ψcTc(σ − λ)) from σ = λ to σ = 0 to obtain

ξ−(λ, t) = ξ−(0; t + ψcTcλ) (14)

and, in particular, for λ = 1, ξ−(1, t) = ξ−(0; t + ψcTc)
provided the characteristic t−(σ ; λ, t) crosses the vertical
σ = 0, i.e., if t + ψcTc > 0.
At this point two comments are useful. The first one

concerns formulae (13), (14): they are a representation of
the solution of (8) – assumed to exist – in function of
the boundary conditions. The second comment concerns the
other set of equalities, i.e., ξ+(0, t) = ξ+(1, t + ψcTc)
and ξ−(1, t) = ξ−(0, t + ψcTc). Since (8) as well as (5)
describe a two-point boundary value problem, the aforemen-
tioned equalities describe the connections between the values
at those two boundaries. From the physical point of view,
it appears quite obviously that ξ+(λ, t) is the forward wave
which propagates from λ = 0 to λ = 1 while, ξ−(λ, t) is the
backward wave which propagates from λ = 1 to λ = 0.
We denote first

w+(t) := ξ+(1, t)⇒ ξ+(0, t) = w+(t + ψcTc)

w−(t) := ξ−(0, t)⇒ ξ−(1, t) = w−(t + ψcTc) (15)

and next

y+(t) := w+(t + ψcTc), y−(t) := w−(t + ψcTc) (16)

to obtain

ξ+(0, t) = y+(t), ξ+(1, t) = y+(t − ψcTc)

ξ−(1, t) = y−(t), ξ−(0, t) = y−(t − ψcTc). (17)

Substituting (17) in (8) we obtain the following system of
coupled delay differential and difference equations

Ta
ds
dt
= απ1 + (1− α)π2 − νg

FIGURE 2. Forward and backward characteristics.

T1
dπ1
dt
= µ1(t)− π1

Tp
dπs
dt
= π1 − (µ2(t)+ (β/ψc)gp(y−(t − ψcTc)/πs(t)))πs

T2
dπ2
dt
= µ2(t)πs − π2

y+(t) = y−(t − ψcTc)+ 2gp(y−(t − ψcTc)/πs(t))πs(t)

y−(t) = ρ1y+(t − ψcTc). (18)

This system has thus been obtained starting from a classical
solution of the boundary value problem (4), in fact of its
version (12) written in the Riemann invariants. In order to
treat it as a mathematical object which is interesting in itself,
its solution should be defined and constructed.

The form of (18) and our previous experience, e.g.
[19], [52], show that the solution can be constructed by
steps on intervals ((k − 1)ψcTc, kψcTc), k being an integer.
The construction requires however the knowledge of some
initial conditions. Obviously, s(0), π1(0), πs(0), π2(0) will
migrate from (4) or (12). Since y±(t) have been obtained
from ξ±(λ, t) by integration along the characteristics, it is but
natural to obtain the initial conditions y±0 (t) on (−ψcTc, 0)
the same way. Let ξ0ρ (λ) = ξρ(λ, 0), ξ0w(λ) = ξw(λ, 0) be
the initial conditions for (ξρ(λ, t), ξw(λ, t)) in (4). From (6)
we deduce ξ±0 (λ) = ξ±(λ, 0) – the initial conditions for the
Riemann invariants.

Let now again consider ξ+(σ, t+(σ ; λ, t)) as previously,
hence equality (13); if the characteristic t+(σ ; λ, t) is of the
type 1b (Fig. 2), then there will exist some σ̂ ∈ (0, 1) such
that t+(σ̂ ; λ, t) = t + ψcTc(σ̂ − λ) = 0; we shall then have
σ̂ = λ − t/ψcTc > 0 hence, t − ψcTcλ < 0 now, unlike
previously. From (13) we obtain quite straightforwardly

y+(t) = ξ+(−t/ψcTc, 0) = ξ
+

0 (−t/ψcTc),

−ψcTc ≤ t < 0. (19)

Starting from (14) we deduce for characteristics of 2b type
(Fig. 2):

y−(t) = ξ−(1+ t/ψcTc, 0) = ξ
−

0 (1+ t/ψcTc),

−ψcTc ≤ t < 0. (20)

VOLUME 7, 2019 48529



D. Danciu et al.: Control of a Time Delay System Arising From Linearized Conservation Laws

Now, all initial conditions for (18) are gathered. Its solution
can be constructed by steps as follows: consider the first
interval (0, ψcTc); given µ1(t) and π1(0), π1(t) follows by
integration of the second equation in (18). Next, π1(t) and
µ2(t) are input signals for the subsystem

Tp
dπs
dt
= π1 − (µ2(t)− (β/ψc)gp(y−(t − ψcTc)/πs))πs

y+(t) = y−(t − ψcTc)+ 2gp(y−(t − ψcTc)/πs)πs(t)

y−(t) = ρ1y+(t − ψcTc). (21)

The terms containing y±(t − ψcTc) are known on (0, ψcTc)
since they are given by the initial conditions. Therefore,
we can obtain πs(t), y±(t) on (0, ψcTc). Afterwards, knowing
πs(t) and µ2(t), we can compute π2(t) and further, s(t). The
process can be now be iterated on ((k − 1)ψcTc, kψcTc),
k > 1.

We do now the converse operation. Turning back to (13)
and (14) which may be viewed as representation formulae for
the Riemann invariants, we take into account (17) to define

ξ+(λ, t) = y+(t − ψcTcλ);

ξ−(λ, t) = y−(t + ψcTc(λ− 1)). (22)

By direct check it can be shown that ξ±(λ, t) thus defined are
a (possibly discontinuous) classical solution of (12), together
with (s(t), π1(t), πs(t), π2(t)) taken from the solution of (18).
We have obtained in fact the following result
Theorem 2: Consider the boundary value problem (12)

with gp the mapping defined by (11). Let (ξ±(λ, t); s(t),
π1(t), πs(t), π2(t)) be a (possibly discontinuous) classi-
cal solution of it, corresponding to certain initial con-
ditions (ξ±0 (λ), 0 ≤ λ ≤ 1; s(0), π1(0), πs(0), π2(0))
and to certain given control functions µk (t), k = 1, 2.
Then the set of functions (s(t), π1(t), πs(t), π2(t), y±(t)),
where (s(t), π1(t), πs(t), π2(t) are those from the solu-
tion of (12) and y±(t) are defined from (15)-(17),
defines a solution of (18) with the initial conditions
(s(0), π1(0), πs(0), π2(0); y

±

0 (t),−ψcTc ≤ t ≤ 0), where
(s(0), π1(0), πs(0), π2(0)) migrate from the set of initial con-
ditions attached to (12) and y±0 (t) are obtained starting from
ξ±0 (λ) via (19)-(20).
Conversely, let (s(t), π1(t), πs(t), π2(t), y±(t)) be a solution

of (18) with the initial conditions (s(0), π1(0), πs(0), π2(0);
y±0 (t),−ψcTc ≤ t ≤ 0) and with certain given control
functions µk (t), k = 1, 2. Then the set of functions (ξ±(λ, t),
s(t), π1(t), πs(t), π2(t)) is a (possibly discontinuous) classical
solution of (11), where (s(t), π1(t), πs(t), π2(t))migrate from
the aforementioned ones and ξ±(λ, t) are given by (22) with
y±(t) - the aforementioned ones; the initial conditions of this
solution are (s(0), π1(0), πs(0), π2(0)) which migrate from
those given for (18) and ξ±0 (λ) are obtained from (22) by
taking λ = 0; the control functions are the same for both
mathematical objects.

Theorem 2 establishes a one-to-one correspondence
between the solutions of two mathematical objects (12) and
(18) as mentioned at the beginning of this section. It thus

follows that any result concerning one of these objects will
automatically be projected back on the other. In the following
we shall focus on the system of coupled nonlinear time delay
differential and difference equations (18).

IV. AUGMENTED VALIDATION FOR THE SYSTEM OF
FUNCTIONAL DIFFERENTIAL EQUATIONS
A. BASIC THEORY AND INVARIANT SETS (NONNEGATIVE
STATE VARIABLES)
As already mentioned, the solution of (18) can be constructed
by steps on intervals ((k − 1)ψcTc, kψcTc) for k integer and
this solution is unique for given initial conditions. The vari-
ables s, π1, πs, π2 are continuous, at least piecewise differen-
tiable and display continuity with respect to data (parameters
and initial conditions). The variables y± are piecewise con-
tinuous but can display discontinuities at t = kψcTc. From
(18) we can obtain, after a simple manipulation

y+(kψcTc + 0)− y+(kψcTc − 0)

= y−((k − 1)ψcTc + 0)− y−((k − 1)ψcTc − 0)

+ 2[gp(y−((k − 1)ψcTc + 0)/πs(kψcTc))

− gp(y−((k − 1)ψcTc − 0)/πs(kψcTc))] · πs(kψcTc)

y−(kψcTc + 0)− y−(kψcTc − 0)

= ρ1[y+((k − 1)ψcTc + 0)− y−((k − 1)ψcTc − 0)]. (23)

These are recurrence relations showing that the disconti-
nuities are generated by the discontinuity at t = 0 which
propagates. In turn, the previously mentioned discontinuity
at t = 0 is a consequence of the mismatch between initial
and boundary conditions. Indeed, from (12) it follows

ξ+(0, 0+) = ξ−(0, 0+)+ 2gp(ξ−(0, 0+)/πs(0))πs(0)

whence from (17)

y+(0+) = y−0 (−ψcTc)+ 2gp(y
−

0 (−ψcTc)/πs(0))πs(0)

6= y+(0) = y+(0−). (24)

Worth mentioning is that matching of the initial and
boundary conditions is also known as ‘‘compatibility
condition’’ [16], [40]; if a similar condition is added, with
respect to the derivatives of the BCs, then a second order
compatibility condition is obtained.

Matched initial and boundary conditions is a quite seldom
situation and by nomeans is to be credited for stability studies
where arbitrary short period perturbations generate arbitrary
initial conditions. On the other hand, propagation of the
discontinuities can be observed within the simulation results
(see, further, Subsection IV-D, Figures 11, 12, where some
‘‘peaks’’ can be observed occurring exactly at 0, ψcTc(=
0.75), 2ψcTc etc.).

Another aspect of the augmented validation is given by the
existence of the invariant sets.We have already proven a result
of this kind for the system (4) - Theorem 1. However, now
we treat system (18) as a self-contained mathematical object,
hence we shall prove the following
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Theorem 3: Consider system (18) under the aforemen-
tioned assumption on its parameters. Then, if π1(0) ≥ 0,
πs(0) ≥ 0, π2(0) ≥ 0 the alternative of Theorem 1 is valid for
the state variables π1(t), πs(t), π2(t). Moreover, if the initial
conditions y±0 (t) ≥ 0 for −ψcTc ≤ t ≤ 0, then y±(t) ≥ 0 for
all t > 0.

The proof is given in Appendix 2. Here we shall briefly
discuss the significance of the result. Since π1, πs, π2 are
steam pressures, they have to be positive and the existence of
the aforementioned invariant sets is an additional validation
of system (18) as a mathematical model. Concerning posi-
tiveness of y±(t), the representation formulae (22) will give
positiveness of the Riemann invariants provided their initial
conditions are such

ξ+(λ, 0) = y+0 (−ψcTcλ) ≥ 0, 0 ≤ λ ≤ 1

⇒ ξ+(λ, t) = y+(t − ψcTcλ) ≥ 0, 0 ≤ λ ≤ 1, t > 0

(25)

and similarly for ξ−(λ, t). Consequently, (7) will give

ξρ(λ, 0) ≥ 0, 0 ≤ λ ≤ 1⇒ ξρ(λ, t) ≥ 0,

0 ≤ λ ≤ 1, t > 0, (26)

what is only natural since ξρ(λ, t) is also a steam pressure.
Also (7) results in

ξρ(λ, 0)− ξw(λ, 0) ≥ 0⇒ ξρ(λ, t)− ξw(λ, t) ≥ 0. (27)

which shows a certain kind of steam flowing.

B. STEADY STATES (EQUILIBRIA)
The steady states are nothing more but the mathematical rep-
resentation of the operating points of an engineering system.
We shall discuss the steady states of (5) via the steady states
of (18). Let µk (t) ≡ µ̄k , k = 1, 2 be constant control inputs
and νg - the mechanical load be given. The steady state of
(18), the set π̄1, π̄s, π̄2, ȳ+, ȳ− is subject to

απ̄1 + (1− α)π̄2 = νg; π̄1 = µ̄1, µ̄2π̄s = π̄2

π̄1 − µ̄2π̄s − (β/ψc)gp(ȳ−/π̄s)π̄s = 0

ȳ+ = ȳ− + 2gp(ȳ−/π̄s)π̄s. (28)

Taking into account the invariant sets whose existence has
been just proven, we shall be looking for steady states satis-
fying π̄1 > 0, π̄s > 0, π̄2 > 0, ȳ± > 0. Also we require
0 < µ̄1 < 1, 1 − β ≤ µ̄2 < 1. The computation can be
done in several steps. In the first step π̄1, π̄2, ȳ− are computed
directly provided the following nonlinear system is solved

αµ̄1 + (1− α)µ̄2π̄s = νg

µ̄1 − µ̄2π̄s − (β/ψc)gp(ȳ−/π̄s)π̄s = 0

(1/ρ1 − 1)ȳ− = 2gp(ȳ−/π̄s)π̄s.

The last equation can be solved separately with respect to the
ratio ȳ−/π̄s, being reduced to

1− ρ1
ρ1

x = gp(x)

where x > 0. Taking into account (11) we must take gp(x) =
−1+

√
3− 2x and solve a second degree equation taking its

positive root

x̄=
ȳ−

π̄s
=

2ρ1
(1− ρ1)2

[
−(1+ ρ1)+

√
3− 2ρ1 + ρ21

]
.

(29)

which can be shown to be subject to 0 < x̄ < 1. If we denote
g̃p(ρ1) := gp(ȳ−/π̄s) then we shall have the following two
equations

αµ̄1 + (1− α)µ̄2π̄s = νg

µ̄1 − µ̄2π̄s − (β/ψc)g̃p(ρ1)π̄s = 0. (30)

Observe that among the three unknowns one has to be
imposed and this is π̄s = π0

s - the steam pressure at the steam
extraction of the turbine. Consequently, ȳ− = π0

s x̄ (from
(29)) and ȳ+ = ȳ−/ρ1. Moreover, system (30) becomes linear
with respect to µ̄1 and µ̄2 which are obtained immediately as

µ̄1 = νg + (1− α)(β/ψc)g̃p(ρ1)π0
s

µ̄2π
0
s = νg − α(β/ψc)g̃p(ρ1)π

0
s . (31)

We ‘‘read’’ now the physical significance of (31). As already
mentioned, νg represents the mechanical load of the turbine,
accounting for electricity generation. The term g̃p(ρ1)π0

s rep-
resents the thermal load, accounting for heat generation; it has
been clearly stated that the thermal load coefficient was ψs
hence ρ1 is a measure of it. Therefore, g̃p(ρ1)π0

s is imposed
via ψs and π0

s . The two loads of the cogeneration are ‘‘cov-
ered’’ by the turbine steam consumption. In turn, the overall
steam consumption is given by the steam flow at turbine’s
input - its rated value is µ̄1 while the steam consumption for
the thermal energy generation is given by the extracted steam
flow - its rated value being µ̄2π

0
s .

If the restrictions 0 < µ̄1 < 1, 1− β < µ̄2 < 1 are taken
into account, then it follows from (31) that

0 < νg + (1− α)(β/ψc)g̃p(ρ1)π0
s < 1

(1− β)π0
s < νg − α(β/ψc)g̃p(ρ1)π0

s < π0
s . (32)

Inequalities (32) contain necessary restrictions on both
mechanical and thermal loads. Since they reflect restrictions
on steam flows through the steam turbine they are called by
the design power engineers consumption diagrams (Fig. 3
- we denoted by νθ := (β/ψc)g̃p(ρ1)π0

s ) the rated thermal
load, to have compatibility with νg - the rated mechanical
load). In the sequel we shall consider only equilibria that are
admissible with respect to the consumption diagrams.

C. THE SYSTEM IN DEVIATIONS AND INHERENT
STABILITY
The purpose of this subsection is to verify for system (18) the
Stability Postulate of Četaev, mentioned through Section I.
Our first remark is that the steady state of (18) does not
contain s̄ since the state variable s does not appear in the
RHS of (18). In fact, the first equation of (18) reduces to
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FIGURE 3. Consumption diagrams.

ṡ = ϕ(t) and this suggests a zero eigenvalue of the linearized
system. Therefore, the inherent stability of an equilibrium of
(18) is at most non-asymptotic. Next, in order to illustrate the
Postulate, it appears sufficient to obtain stability by the first
approximation of the equilibrium. For this reason we shall
introduce the system in deviations with respect to a certain
steady state (π̄1, π̄0

s , π̄2, ȳ
+, ȳ−) and the associated constant

control signals (µ̄1, µ̄2). Introducing the deviations

ζ1 = π1 − π̄1; ζs = πs − π̄
0
s , ζ2 = π2 − π̄2

ζ± = y± − ȳ±; ui = µi − µ̄i, i = 1, 2 (33)

we obtain the following system in deviations

Ta
ds
dt
= αζ1 + (1− α)ζ2, T1

dζ1
dt
= u1(t)− ζ1

Tp
dζs
dt
= ζ1 − (µ̄2 + (β/ψc)gp(ȳ−/π0

s ))ζs − (π0
s + ζs)u2(t)

− (β/ψc)(π0
s + ζs)

[
gp

(
ȳ− + ζ−(t − ψcTc)

π0
s + ζs(t)

)
− gp(ȳ−/π0

s )
]

T2
dζ2
dt
= µ̄2ζs + (π0

s + ζs(t))u2(t)− ζ2

ζ+(t) = ζ−(t − ψcTc)+ 2gp(ȳ−/π0
s ))ζs(t)+ 2(π0

s + ζs)

×

[
gp

(
ȳ− + ζ−(t − ψcTc)

π0
s + ζs(t)

)
− gp(ȳ−/π0

s )
]

ζ−(t) = ρ1ζ+(t − ψcTc). (34)

Inherent stability by the first approximation means letting
u1(t) = u2(t) ≡ 0 and linearizing (34) around the resulting
zero solution. The resulting system reads as follows

Ta
ds
dt
= αζ1 + (1− α)ζ2, T1

dζ1
dt
+ ζ1 = 0

Tp
dζs
dt
= ζ1 − (µ̄2 + (β/ψc)gp(ȳ−/π0

s ))ζs

T2
dζ2
dt
= µ̄2ζs − ζ2

ζ+(t) = ζ−(t − ψcTc)+ 2gp(ȳ−/π0
s )ζs(t)

ζ−(t) = ρ1ζ+(t − ψcTc). (35)

The ‘‘secular’’ (higher order, nonlinear) terms have been
neglected since their contribution might perhaps strengthen
the asymptotic stability of the corresponding subsystem.
However they would not affect the critical subsystem hence
the overall system remains stable but not asymptotically sta-
ble. The characteristic equation of (35) will be

Taλ(T1λ+ 1)(Tpλ+ µ̄2 + (β/ψc)gp(ȳ−/π0
s ))

× (T2λ+ 1)(1− ρ1e−2λψcTc ) = 0. (36)

One can see a simple zero root, three simple roots in C− and
an infinite chain of simple roots in C− given by:

λk = −
1

2ψcTc
ln ρ−11 + ı

kπ
ψcTc

, k = 0,±1,±2, . . .

(37)

The system is thus in the critical case of a simple zero root, has
non-asymptotic stability and, as all engineering applications,
requires asymptotic if not exponential stability. We can now
explain once more why, at this stage of model (augmented)
validation, we restricted ourselves to inherent stability by the
first approximation. Firstly, inherent stability as required by
the Stability Postulate, can be quite weak hence its linear
version can be accepted as sufficient at this stage of model
discussion. Being in the first critical case (a simple zero root
of the characteristic equation), the stability of the linearized
system is non-asymptotic. For ODEs and FDEs of delayed
type there exist theorems by the first approximation of the
nonlinear systems in the first critical case - the Theorem of
Malkin [53] for ODEs and of Halanay [54] for FDEs of
delayed type. For neutral equations as (34) such a result is
not known.

The aforementioned strengthened property of asymp-
totic/exponential stability is achievable by designing a sta-
bilizing feedback. Worth mentioning that the aforementioned
properties of system (18) are projected back onto the system
(12) via Theorem 2.

D. SIMULATION RESULTS AND DISCUSSIONS
Several simulations have been performed aiming to illustrate
the results on augmented validation obtained by rigorous
proofs. The start models are represented by the equations
(12), written with respect to the Riemann invariants, and the
associated system (18) of functional differential equations.
Since a one-to-one correspondence between the solutions of
the two mathematical objects has been emphasized and rigor-
ously proven (Theorem 2), the simulations will concern both
systems, in parallel. Other properties, obtained by rigorous
proofs, such as existence of invariant sets (positiveness of
certain state variables) and inherent stability of equilibria will
also be illustrated through simulations. We present next the
simulation framework.
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Examination of (12) shows that the subsystem which is
essential for system’s dynamics is given by

ψcTc ∂tξ±(λ, t)± ∂λξ±(λ, t) = 0

ξ+(0, t) = ξ−(0, t)+ 2gp(ξ−(0, t)/πs(t))πs(t)

ξ−(1, t) = ρ1ξ+(1, t); T1
dπ1
dt
= µ1(t)− π1

Tp
dπs
dt
= π1 − (µ2(t)+ (β/ψc)gp(ξ−(0, t)/πs(t)))πs

(38)

with the associated subsystem of differential difference
equations

T1
dπ1
dt
= µ1(t)− π1

Tp
dπs
dt
= π1 − (µ2(t)+ (β/ψc)gp(y−(t − ψcTc)/πs(t)))πs

y+(t) = y−(t − ψcTc)+ 2gp(y−(t − ψcTc)/πs(t))πs(t)

y−(t) = ρ1y+(t − ψcTc). (39)

These subsystems contain an internal feedback hence the
stability problem is here important [17]. On the contrary,
the equation for π2 is simply a dynamical block controlled
by the aforementioned one and the equation for s defines a
dynamical output of the two previously mentioned systems.

We recall here the complexity of the mathematical model
described by a system of hyperbolic conservation laws (even
linearized) with nonlinear boundary conditions controlled
by a system of ODEs containing bilinear terms. For such
complex systems, the numerical methods as well as the
computational procedures used for deriving the approximate
numerical model are of high importance. More precisely,
these tools have to provide the convergence of the approx-
imate solution to the ‘‘real’’ solution and to preserve the
basic properties of this solution and also its inherent Lya-
punov stability, as already discussed in this paper. Taking into
consideration these issues, the computational model of (38)
was derived by using a recent computational procedure intro-
duced in [55] and adapted in [56] for the class of systems of
hyperbolic conservation laws with bilinear control terms on
boundaries. This well-structured procedure is mainly based
on a rigorously proven convergent Method of Lines com-
bined with the advantages of certain devices belonging to
the Artificial Intelligence field – the so-called cell-based
neural networks. These AI devices consist of a network of
elementary nonlinear dynamical subsystems having several
types of inputs, local interconnections and one output [57].
Thus, the procedure not only provides convergence to the
approximate solution, but also ensures the preservation of
the basic properties of the ‘‘real’’ solution. In addition, it
guarantees its inherent Lyapunov stability while at the same
time ensures a reduced computational effort and time as well
as a certain parallelization of the computation.

The system parameters considered in these simulations are
as follows: 9c = 0.5, 9s = 0.3487, Tc = 1.5s, Tp = 0.3s,
α = 0.5, β = 0.9; also, νg = 0.6, π0

s = 0.9. For verifying

FIGURE 4. HP pressure π1(t).

FIGURE 5. Extraction pressure πs(t).

the inherent stability, the controls were considered constant
and equal to their steady state values, i.e., µ1(t) = µ̄1 =

0.9601 ∈ [0, 1] and µ2(t) = µ̄2 = 0.2666 ∈ [0.1, 1], thus,
confined within the proper intervals as required in (1).

The first set of tests concerning system (38) are illustrated
by Figs. 4–7; the lumped variables π1 and πs are represented,
as well as the boundary values of the Riemann invariants
ξ−(0, t) and ξ−(1, t). The basic qualitative results are con-
finement to the invariant sets (positiveness) and convergence
of the transients to the constant steady states (equilibria)
imposed by the constant inputs.

We also note the oscillatory transients induced by the
distributed parameters and the aforementioned internal
feedback.

Next, Figs. 8–9 illustrate the transients in two dimensions
of the Riemann invariants ξ±(λ, t). The process is oscillatory
with respect to t and non-oscillatory with respect to λ: in fact
ξ±(λ, t) approach quite quickly some quasi-constant - with
respect to λ - values ξ̃±(t) and then they approach the steady
states ξ̄±.
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FIGURE 6. Time evolution of the backward wave at the end λ = 0.

FIGURE 7. Time evolution of the backward wave at the end λ = 1.

The following set of tests concerning system (39) are illus-
trated by Figs. 10–12, where we chose to figure πs(t) and
y±(t), −ψcTc ≤ t ≤ t1 with t1=15 sec. The state variable
π1(t) was left aside since it does not interact with other state
variables but just smoothes the constant input µ̄1 which acts
like a step signal for t > 0. The initial conditions for y±(t) on
(−ψcTc, 0) were taken oscillatory, more precisely sinusoidal.
This way, an oscillatory behavior has been induced in

the system aiming to test the inherent stability of the sub-
system describing the state variables (πs(t), y±(t)). This
inherent stability is confirmed, see oscillation quenching in
figures 10–12.

From the mathematical point of view, this inherent sta-
bility is a consequence of (36) - the negative root of the
factor accounting for the equation of πs and the strongly
stable difference operator resulting from the inequalities
0 < ρ1 < 1.
An interesting comment to be given concerns the peaks

of figures 11 and 12. Due to the one-to-one correspondence

FIGURE 8. Space-time representation of the forward wave ξ+(λ, t).

FIGURE 9. Space-time representation of the backward wave ξ−(λ, t).

FIGURE 10. Extraction pressure πs(t) in the associated system of
functional equations (39).

between the solutions of the boundary value problem
described by (38) and the system of FDEs described by (39)
(Theorem 1), the discontinuities of the difference subsystem
in (39) are projected back onto the solutions of (38). It has
been stated from the beginning that the solutions of both
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FIGURE 11. Representation function of the forward wave y+(t) in the
associated system of functional equations (39).

FIGURE 12. Representation function of the backward wave y−(t) in the
associated system of functional equations (39).

mathematical objects can be discontinuous; the discontinu-
ities of the difference subsystem occur at t = kψcTc for
k - an integer - see (23) - and they are generated by the
discontinuity at 0. In turn, this discontinuity is a consequence
of the mismatch between the boundary and the initial con-
ditions - see (24). We have ψcTc = 0.75 s and one can see
fromfigures 11 and 12 the ‘‘peaks’’ occurring at 0.75, 1.5, . . .
Obviously their amplitude is damped since 0 < ρ1 < 1
(ρ1 ≈ (1− 0.387

√
2)(1+ 0.387

√
2)−1 = 0.2926).

On the other hand, if one is seeking for a physical explana-
tion, the boundary value problem described by (38) has to be
considered. A careful inspection of its equations shows that,
while the PDEs describe lossless propagation, the bound-
ary conditions are ‘‘of the dissipative type’’ [58]. Therefore,
oscillation quenching appears as a consequence of the afore-
mentioned dissipation at the boundaries (which are also non-
linear - at least one of them); the nonlinear character of the
boundaries is reflected in the shape of the damped oscillations
- see figures 6-7 and 10-12.

As an overall, summarizing conclusion, the considered
simulation results account for inherent stability but also for
the connection between the solutions of the two mathemat-
ical objects (38) and (39); they even show the discontinuity
propagation due to mismatching.

V. A STABILIZING FEEDBACK STRUCTURE
We have just shown that system (35) and, therefore, sys-
tem (12) has an equilibrium which is but only stable, not
asymptotically stable. Moreover, the equations (28) of the
equilibrium give no information about the value of s at
equilibrium. Normally, s̄ i.e. the rotating speed of the steam
turbine must equal the synchronous frequency of the Grid.
Moreover, power engineers know that control of the rotating
speed means also control of the active power exchanges
within the Grid. For this reason the control structure must
contain a rotating speed feedback component. Another aspect
is given by the two time scales structure of (12) and, therefore,
of (35). It has already been mentioned in Section II that the
time constants T1, T2 are considered small with respect to Ta,
Tp (and, here, even with respect to Tc) and neglected; con-
sulting various references on steam turbine control e.g. [23],
[28], [31] one can see that for small turbines the dynamics of
the steam volumes enclosed in the turbine cylinders are not
even mentioned.
It is but obvious that the reduction of the small T1 and T2

- done for (1) and leading to (4) - can be done for all its
‘‘avatars’’ (5), (8) and (12) as well as for the associated system
of functional equations (18). The reduced form of (18) has the
form

Ta
ds
dt
= αµ1(t)+ (1− α)µ2(t)πs − νg,

Tp
dπs
dt
= µ1(t)− µ2(t)πs

+ (β/ψc)gp(y−(t − ψcTc)/πs(t))πs,

y+(t) = y−(t − ψcTc)+ 2gp(y−(t − ψcTc)/πs(t))πs(t),

y−(t) = ρ1y+(t − ψcTc). (40)

We also mention that Theorems 1 and 2 can be adapted and
proven for the reduced systems as well. It is thus possible
to focus from now on system (40) whose equilibria coincide
with those of (18); this last statement follows at once from the
fact that the steady state equations for (40) can be obtained
from those for (18) i.e. from (28) by taking into account
that π̄1 = µ̄1, µ̄2π̄s = π̄2, now a consequence of taking
T1 = T2 = 0.
The system in deviations deduced from (40) will be

Ta
ds
dt
= αu1(t)+ (1− α)µ̄2ζs + (1− α)(π0

s + ζs)u2(t),

Tp
dζs
dt
= u1(t)− (µ̄2 + (β/ψc)gp(ȳ−/π0

s ))ζs

− (π0
s + ζs)u2(t)− (β/ψc)× (π0

s + ζs)

×

[
gp

(
ȳ− + ζ−(t − ψcTc)

π0
s + ζs(t)

)
− gp(ȳ−/π0

s )
]
,

ζ+(t) = ζ−(t − ψcTc)+ 2gp(ȳ−/π0
s )ζs(t)+ 2(π0

s + ζs)

×

[
gp

(
ȳ− + ζ−(t − ψcTc)

π0
s + ζs(t)

)
− gp(ȳ−/π0

s )
]
,

ζ−(t) = ρ1ζ+(t − ψcTc). (41)
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The characteristic equation of the linear subsystem will now
be

Taλ(Tpλ+ µ̄2 + (β/ψc)gp(ȳ−/π0
s ))(1− ρ1e

−2λψcTc ) = 0

(42)

and can be obtained either directly or by taking T1 = T2 = 0
in (36). Consequently, (42) will have a simple zero root,
a simple root inC− and the same infinite chain of simple roots
inC− given by (37). In fact two roots inC− were ‘‘reduced’’,
located relatively far away from the imaginary axis ıR; these
roots show that the boundary layer dynamics (i.e. the fast
dynamics) is asymptotically (even exponentially) stable as
required by the standard theory of the singular perturbations
- see e.g. [59].

In the following we shall focus on feedback stabilization
for (41). Observe however that for t > ψcTc the second
difference equation can be taken into account in the other ones
to obtain the following system which is valid for t > ψcTc.

Ta
ds
dt
= αu1(t)+ (1− α)µ̄2ζs + (1− α)(π0

s + ζs)u2(t),

Tp
dζs
dt
= u1(t)− (µ̄2 + (β/ψc)gp(ρ1ȳ+/π0

s ))ζs

− (π0
s + ζs)u2(t)− (β/ψc)× (π0

s + ζs)

×

[
gp

(
ρ1
ȳ++ζ+(t − 2ψcTc)

π0
s + ζs(t)

)
−gp(ρ1ȳ+/π0

s )
]
,

ζ+(t) = ρ1ζ+(t−2ψcTc)+2gp(ρ1ȳ+/π0
s ))ζs(t)+2(π

0
s +ζs)

×

[
gp

(
ρ1
ȳ++ζ+(t − 2ψcTc)

π0
s + ζs(t)

)
−gp(ρ1ȳ+/π0

s )
]
.

(43)

Following our experience in controlling cogenera-
tion [4], [33], [50], [52], we associate to (43) the following
Lyapunov functional V : R×R× L2(−2ψcTc, 0;R) 7→ R+
defined by

V(s, ζs, φ(·)) =
1
2
TaL(s, ζs, φ(·))2 +

1
2
δ3Tpζ 2s

+ δ4

∫ 0

−2ψcTc
φ2(θ )dθ, (44)

where the linear form L : R×R×L2(−2ψcTc, 0;R 7→ R is
defined by

L(s, ζs, φ(·)) = s+
Tp
Ta

(
δ1ζs +

δ2

Tp

∫ 0

−2ψcTc
φ(θ )dθ

)
(45)

with the real δ1, δ2 and the positive δ3 > 0, δ4 > 0 being free
parameters.

The aforementioned experience showed that this quadratic
functional is well suited to stabilize bilinear systems. There-
fore we shall ‘‘bi-linearize’’ system (43) around the equilib-
rium. This means taking the linear terms in the expansion of

fp(ζs, ζ+) = (π0
s + ζs)

[
gp

(
ρ1
ȳ+ + ζ+

π0
s + ζs

)
− gp(ρ1ȳ+/π0

s )
]

= ρ1g′p(ρ1ȳ
+/π0

s )
[
−
ȳ+

π0
s
ζs+ζ

+

]
+o(|ζs| + |ζ+|)

to obtain the following system

Ta
ds
dt
= αu1(t)+ (1− α)µ̄2ζs + (1− α)(π0

s + ζs)u2(t),

Tp
dζs
dt
= u1(t)− (µ̄2 + (β/ψc)(gp(x̄)− x̄g′p(x̄))ζs

− (π0
s + ζs)u2(t)− (β/ψc)ρ1g′p(x̄)ζ

+(t − 2ψcTc),

ζ+(t) = 2(gp(x̄)− x̄g′p(x̄))ζs(t)

+ ρ1(1+ 2g′p(x̄))ζ
+(t − 2ψcTc), (46)

where we denoted x̄ = ρ1ȳ+/π0
s . Since the linearization was

done around the equilibrium x̄ that is on the middle segment
of (9), we shall have gp(x̄) > 0, g′p(x̄) < 0. We can first
check that the inherent stability of (46) is non-asymptotic: by
letting u1(t) = u2(t) ≡ 0 the bilinear part is set to 0 and the
characteristic equation of the remaining linear part is

Taλ[(Tpλ+ (µ̄2 + (β/ψc)(gp(x̄)− x̄g′p(x̄)))

× (1− ρ1(1+ 2g′p(x̄))e
−2λψcTc )

+ 2(β/ψc)ρ1g′p(x̄)(gp(x̄)− x̄g
′
p(x̄))e

−2λψcTc ] = 0. (47)

Equation (47) has a simple zero root. The quasi-polynomial
of (47) takes the form

p(λ) = (1− ρ1(1+ 2g′p(x̄)))e
−2λψcTc )(Tpλ+ µ̄2)

+ (β/ψc)(gp(x̄)− x̄g′p(x̄))(1− ρ1e
−2λψcTc )

and, with the new variable z := λψcTc, it can be written as

ezp
(

z
ψcTc

)
= (a1z+ a0) cosh z+ (b1z+ b0) sinh z (48)

In (48) we denoted

a1 =
Tp
ψcTc

(1− ρ1(1+ 2g′p(x̄)));

b1 =
Tp
ψcTc

(1+ ρ1(1+ 2g′p(x̄)))

a0 = µ̄2(1− ρ1(1+ 2g′p(x̄)))

+β/ψc)(gp(x̄)− x̄g′p(x̄))(1− ρ1)

b0 = µ̄2(1+ ρ1(1+ 2g′p(x̄))

+ (β/ψc)(gp(x̄)− x̄g′p(x̄))(1+ ρ1). (49)

Taking into account (9), we find that a0 > 0, b0 > 0, also
a1 > 0, b1 > 0. Therefore the necessary and sufficient
conditions given in [60], page 99 are fulfilled hence the roots
of p(λ) are in C−. It is worth mentioning that the inequalities
above are also based on the fact that 0 < ρ1 < 1, account-
ing for the strong stability of the difference operator of all
systems of functional differential equations throughout the
paper, these systems being of neutral type.

The aforementioned stabilizing feedback structure will be
synthesized as follows. The quadratic Lyapunov functional
(44) is differentiated along the solutions of (46); after some
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simple manipulations the derivative function can be written
as follows

W(s, ζs, φ(·))

= L(s, ζs, φ(·))[(1− α)µ̄2ζs

− δ1(µ̄2 + (β/ψc)(gp(x̄)− x̄g′p(x̄)))ζs
− δ1(β/ψc)ρ1g′p(x̄)φ(−2ψcTc)+ 2δ2(gp(x̄)− x̄g′p(x̄))ζs
+ δ2(ρ1 − 1+ 2ρ1g′p(x̄))]

+ [(α + δ1)L(s, ζs, φ(·))+ δ3ζs]u1(t)
+ [(1− α − δ1)L(s, ζs, φ(·))− δ3ζs](π0

s + ζs)u2(t)

−Q(ζs, φ(−2ψcTc)) (50)

where the quadratic form Q(ζs, φ(−2ψcTc)) is given by

Q(ζs, φ(−2ψcTc))

= (gp(x̄)− x̄g′p(x̄))[δ3(µ̄2 + β/ψc)

− 4δ4(gp(x̄)− x̄g′p(x̄))]ζ
2
s

+ [δ3(β/ψc)ρ1g′p(x̄)− 4δ4ρ1(1+ 2g′p(x̄))

× (gp(x̄)− x̄g′p(x̄))]ζsφ(−2ψcTc)

+ δ4(1− ρ21 (1+ 2g′p(x̄))
2)φ(−2ψcTc)2. (51)

All necessary information that can be obtained from (50)
and (51) is a consequence of the choice of the free parameters
δk , k = 1, 2, 3, 4. Observe first that L(s, ζs, φ(·)) depends on
s while the linear form multiplying it does not. To ensure W
a definite sign, the linear form mentioned above must vanish.
The choice

δ̄2 = −
(β/ψc)ρ1g′p(x̄)

1− ρ1(1+ 2g′p(x̄))
δ̄1

δ̄1 =
(1− α)µ̄2

µ̄2 − (β/ψc)(gp(x̄)− x̄g′p(x̄))
(52)

ensures this vanishing. Next, the choice of the control signals
as follows

u1 = −Sat{k1[(α + δ̄1)L(s, ζs, φ(·))+ δ3ζs]},
−µ̄1 ≤ u1(t) ≤ 1− µ̄1

u2 = −Sat{k2[(1− α − δ̄1)L(s, ζs, φ(·))− δ3ζs]},
β − µ̄2 ≤ u2(t) ≤ 1− µ̄2 (53)

will make the corresponding terms in (50) at least non-
positive.

The third step is to consider the quadratic form
Q(ζs, φ(−2ψcTc)). A rather straightforward (while tedious)
manipulation shows that if the positive ratio δ4/δ3 is chosen
smaller than the positive root of the equation

(2− ρ21 (1+ 2g′p(x̄))
2)X2
− (β/ψc)(1− ρ21 (1+ 2g′p(x̄))

2

+ 2ρ1g′p(x̄))X + ((β/ψc)ρ1g′p(x̄))
2
= 0 (54)

then

Q(ζs, φ(−2ψcTc)) ≥ ε0(|ζs|2 + |φ(−2ψcTc)|2) (55)

for some ε0 > 0 sufficiently small. The overall result will be

dV
dt
= W(s(t), ζs(t), ζ+(t − 2ψcTc))

≤ −ε0(|ζs(t)|2 + |ζ+(t − 2ψcTc)|2). (56)

From here the Lyapunov stability follows. Since system (46)
has an infinite dimensional state space, the norm is important:
stability is obtained in the sense of the norm induced by
the Lyapunov functional (44) - (45). This stability is even
asymptotic taking into account that the closed loop system
(46) with the control functions chosen from (53) satisfies the
structural conditions allowing application of the Barbashin-
Krasovskii-LaSalle invariance principle for neutral functional
differential-difference equations (Theorem 9.8.2 of [49]).
It follows that the bilinear closed loop system

Ta
ds
dt
= (1− α)µ̄2ζs + αu1(s, ζs, ζ+t (·))

+ (1− α)(π0
s + ζs)u2(s, ζs, ζ

+
t (·))

Tp
dζs
dt
= −(µ̄2 + (β/ψc)(gp(x̄)− x̄g′p(x̄)))ζs

− (β/ψc)ρ1g′p(x̄)ζ
+(t − 2ψcTc)+ u1(s, ζs, ζ+t (·))

− (π0
s + ζs)u2(s, ζs, ζ

+
t (·))

ζ+(t) = 2(gp(x̄)− x̄g′p(x̄))ζs(t)

+ ρ1(1+ 2g′p(x̄))ζ
+(t − 2ψcTc) (57)

is globally asymptotically stable. This asymptotic stabil-
ity might be even exponential provided a Persidskii type
result [54] were true for neutral functional equations (lin-
ear or non-linear) as it is the case for delay differential
equations [61].

In the following we shall discuss the specific features,
the advantages and the drawbacks of the proposed control
structure (53) where δ̄1, δ̄2 are taken from (52) and the linear
formL(s, ζs, φ(·)) is defined in (45), with δ2 = δ̄2. If we refer
to the standard control for steam turbines with one regulated
extraction but without a long steam conduit (pipe) leading to
the thermal consumer, the controller structure contains two
linear controllers driven by the control errors of the rotating
speed and the steam extraction pressure, in our notations - the
state variables s and ζs. Due to position limiters of the con-
trolled valves, the controllers are saturated. These controllers
can be independent or coupled to achieve e.g. noninteracting
control. The book [28] is a good classical reference in this
field. The aforementioned controller structure is, generally
speaking, stabilizing - at the level of the linearized models.
Bilinear models were considered afterwards in order to obtain
a better fitting to the consumption diagrams data. It was thus
encouraging to re-discover the same structure (with linear
saturated connected controllers) in the bilinear case, rigor-
ously designed starting from a suitably found (‘‘guessed’’)
Lyapunov function [22]. Consequently, this structure offered
the property of global asymptotic stability - even exponential
stability, due to a nonlinear extension of K. P. Persidskii
theorem [54].
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The same approach was taken in this paper for the conduit
(steam pipe) with distributed parameters. We started from a
suitably ‘‘guessed’’ Lyapunov functional and obtained a once
again linear feedback structure with saturation but with an
additional term of distributed feedback. It is worth clarify-
ing this feedback term, starting from (45). The generic φ(·)
accounts for the state variable ζ+(·) in the last (difference)
equation of (43), defined on (−2ψcTc, 0). We have, from the
second difference equation of (41)∫ 0

−2ψcTc
ζ+(θ )dθ =

∫ 0

−ψcTc
[ζ+(θ )+ (1/ρ1)ζ−(θ )]dθ.

Using the representation formulae (17) and the definition
(6) of the Riemann invariants we obtain that the distributed
feedback is a feedback with respect to the average of a linear
combination steam pressure/steam flow along the pipe∫ 0

−ψcTc
[ζ+(t + θ )+ (1/ρ1)ζ−(t + θ )]dθ

=
ψcTc

1− ψs
√
2

∫ 1

0
(ζρ(λ, t)− ψs

√
2ζw(λ, t))dλ.

We did not see any such controller proposal in cogeneration.
Its basic advantage is global asymptotic stability for the
closed loop, deduced from the properties of the Lyapunov
functional (44) and of its derivative - see (50) and (51).
Implementation of the distributed term is a practical problem
- to implement a finite memory integral - but preservation of
stability under discretization is a theoretical one. One might
conjecture necessity of a sufficiently small discretizing step
but a sound scientific basis of this conjecture is obviously
required.

To end this discussion let us mention that the feedback
control functions contain some free parameters as δ3 > 0
(only the ratio δ4/δ3 > 0 is restricted by some inequality
hence there is enough freedom for choice) or the newly
introduced gains ki > 0, i = 1, 2. These free parameters can
still be chosen to fulfill other control requirements besides
stability (e.g. overshoot, settling time, steady state error, non-
interacting control at least at the static level). In the case
of the lumped parameters, the practical experience can offer
enough information (procedures, data) for free parameter
choice. With the additional integral term in our case, it is
difficult to offer suitable know-how for the aforementioned
parameter choice.Moreover, the care to avoid de-stabilization
is also necessary. Other theoretical and applied aspects will be
discussed in the following section.

VI. PERSPECTIVE: CONCLUSIONS AND OPEN PROBLEMS
We start by summarizing the previous sections of the paper.
A dynamical system describing the transients and the steady
states of a cogeneration system model was considered. This
dynamical system relies on a system of conservation laws
with nonlinear boundary conditions. The boundary condi-
tions are non-standard due to their connection in an inter-
nal feedback with a bilinear system of ODEs describing

the dynamics of the steam turbine. The model is assem-
bled from various sources and under various assumptions.
Such circumstances implied a necessary model validation.
We undertook the so-called augmented validation [19] which
includes the basic theory as summarized in [18] - existence,
uniqueness and continuous data dependence (together known
as well-posedness in the sense of Hadamard) - but also exis-
tence of certain invariant sets (here - positiveness of some
state variables accounting for pressures) and fulfillment of
the Stability Postulate of Četaev - inherent stability of steady
states, in our case - equilibria.

We used the approach summarized in [19]: to associate a
system of functional differential equations to the initial one,
where the conservation laws were linearized to become linear
hyperbolic PDEs and establish a one-to-one correspondence
between the solutions of the two mathematical objects.

Further, taking into account that the inherent stability of the
equilibria is at most non-asymptotic, feedback stabilization
has been considered. The engineering idea of stabilization
was the standard one in power engineering and recommended
since the very first references for steam turbine control [62]
and for the control of steam turbines with regulated steam
extractions [63]: to control the steam turbine - rotating speed
and the steam pressure at the steam extraction. The approach
was to neglect the fast dynamics due to small time constants
and synthesize the feedback control using a suitably con-
structed control Lyapunov functional. The closed loop system
of first approximation - a bilinear (not linear!) system - was
shown to possess an asymptotically stable equilibrium.

From now on, several theoretical as well as practical prob-
lems appear as yet unsolved. Consider first the theoretical
problems. The closed loop system (57) is a bilinear system
of first approximation describing the slow transients. But the
control signals (53) act upon e.g. the nonlinear system (43).
Therefore a theorem of stability by the first approximation is
necessary to prove the asymptotic stability of the equilibrium
of the aforementioned nonlinear system (43). Theorems on
stability by the first approximation (with both the system of
first approximation and the basic one - nonlinear) for systems
of ODEs are to be found in [54]. For systems of equations
with deviated arguments both of delayed or neutral type very
little is known: a quite recent reference might be [64], [65].
We suggest use of comparison theorems.

The aforementioned problems arising from the first
approximation by a bilinear system have been pointed out
by a rather mathematical approach and/or point of view.
There exists however another point of view - that of the
control engineer. Its basics is robustness as preservation of
system’s properties with respect to uncertainties. It is worth
mentioning that the feedback structure itself is an approach
to robustness as pointed out in [66], 4th chapter ‘‘Feedback
and oscillation’’. Robustness became an important issue in
control later, in the 70’s of the past century: an interesting
survey, full of philosophical complements, is [67]. Dealing
with robustness starts with the definition of the uncertainties.
Linear control theory deals with structured and unstructured
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uncertainties. The bounded unstructured uncertainties in time
domain can be considered in the case of nonlinear systems
as well; another such class of uncertainties is the class of
uncertainties subject to quadratic inequalities.

The essential difference (according to our point of view)
between stability by the first approximation and robustness
approaches is that, unlike the first approach, the second
one can give results valid globally (not in finite state space
domains only). A far going case is the one of the abso-
lute stability (a.k.a. systems of Lurie type or systems with
sector restricted nonlinearity). Since the very first paper on
the subject [68] it became clear that in many control engi-
neering problems the information on the nonlinear actua-
tor is rather poor. The idea was to ‘‘embed’’ the nonlinear
function in a class of such functions and to obtain stability
criteria valid for the entire class of nonlinear functions; this
was called absolute stability. Two competing approaches
of the problem followed: the use of a special Lyapunov
function of the type ‘‘quadratic form of the state variables
plus the integral of the nonlinear function’’, which started
with [69] and the frequency domain inequalities approach
which started with the early paper of Popov [70]. The perfect
equivalence of the two approaches was established later via
the Positiveness (Yakubovich-Kalman-Popov) Lemma. On
the other hand, it was discovered by Yakubovich, Brockett,
J. L. Willems, G. Zames and P. L. Falb that more informa-
tion concerning the nonlinear function (e.g. monotonicity,
slope restrictions, parity etc) is known, less restrictive the
frequency domain inequality becomes. This relaxation of
the frequency domain inequality is achieved via the mul-
tipliers of the transfer function of the linear subsystem:
no multiplier for the circle criterion, the non-causal mul-
tiplier (α + βs) for the Popov criterion, Yakubovich mul-
tiplier for the slope restriction criterion, Brockett-Willems
and Zames-Falb multipliers for the case of the monotone
nonlinearities etc.

At the same time, it was pointed out that the Lurie type
sector restrictions can be expressed as quadratic constraints
on the input and output variables of the nonlinearity and also
that a lot of known information about the nonlinear functions
can be ‘‘encoded’’ in some (static or dynamic) quadratic
constraints [71]–[73]. Later, the time/frequency duality in the
Fourier theory led to an augmentation of the quadratic restric-
tions list by including quadratic restrictions in the frequency
domain [74]. All following development strongly relies on
the complementarity of quadratic restrictions and multipliers.
A recent reference is [75].

Another aspect concerns the neglected fast dynamics.
As already mentioned, small time constants generate a singu-
larly perturbed system e.g. (34). It is generally admitted (and,
in certain cases rigorously proven) that if both the fast and the
slow systems have stable equilibria then the equilibrium of
the overall system is also stable. The proofs exist for systems
ofODEs and systemswith deviated argument of delayed type.
For systems of neutral type such as (34) we do not know
results of this type.

To end the open problems with mathematical character we
shall mention exponential stability. Exponential stability is
normally the type of stability mostly required in applications
since it provides some estimation of the speed of perturbation
quenching. For linear time invariant systems this property
follows from the location of the roots of a characteristic equa-
tion. In the case of linear time varying systems it was proven
by K. P. Persidskii - see e.g. [54] - that uniform asymptotic
stability is always exponential. The result has been extended
to a certain class of nonlinear systems of ODE (op. cit.) and to
systems of equations with deviated argument of delayed type
in [61]. For neutral equations the result is not known.

The practical (applied) problems are mainly concerned
with implementation of the control signals (53): if s and ζs -
the rotating speed deviation and the steam pressure deviation
respectively - are known as measurable for feedback imple-
mentation, the linear form L(s, ζs, ζ+t (·)) contains, besides
the aforementioned variables, an integral which is the average
of a distributed state variable ζ+t (σ ) := ζ+(t + σ ) for
−2ψcTc ≤ t ≤ 0. Reintroducing ζ−(t + σ ) under the
integral of L(s, ζs, ζ+t (·)) via the second difference equation
of (8), then using the representation formulae (22) and (6) the
aforementioned integral takes the form∫ 0

−2ψcTc
ζ+(t + σ )dσ =

2ψcTc
1− ψs

√
2

∫ 1

0
(ζρ(λ, t)

−ψs
√
2ζw(λ, t))dλ, (58)

being now expressed in terms of the deviations of the steam
pressure and flow along the distributed parameter pipe. The
suitably discretized integral will lead to a controller with
finite memory. The closed loop system will get a rather non-
standard form. For this system the entire validation procedure
has to be re-started. To it one has to add stability preservation.
The inferred property would be the requirement of a suffi-
ciently small discretizing step.

Summarizing, we have sketched an entire research pro-
gram which is felt to be somehow complementary to the
research on conservation laws control.

APPENDIX 1
Proof of Theorem 1:We have firstly

π1(t) = e−t/T1π1(0)+
1
T 1

∫ t

0
e−(t−τ )/T1µ1(τ )dτ (59)

with 0 ≤ µ1(t) ≤ 1. Let π1(0) = 0 and µ1(t) ≡ 0 on (0, t);
thereforeπ1(t) ≡ 0. Ifπ1(0) > 0 andµ1(t) ≡ 0 on (0, t), then
π1(t) > 0. If µ1(t) 6≡ 0 on (0, t), then π1(t) > 0 regardless
the value of π1(0).
Consider now the equation for πs and assume first that

πs(0) > 0; since π1(t) and ξw(0, t) are continuous, there will
exist a sufficiently small interval (0, t̂) such that πs(t) > 0 on
this interval. It follows that on it we can define

8?(t) := 8(ξρ(0, t)/πs(t)) ≥ 0 (60)
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hence

Tp
dπs
dt
= π1(t)− (µ2(t)+8?(t))πs, µ2(t)+8?(t) > 0.

(61)

Since in any case π1(t) ≥ 0 the representation formula for
the solution of the first order differential equation will give

πs(t) = exp
{
−

∫ t

0
α(τ )dτ

}(
πs(0)+ (1/Tp)

×

∫ t

0
exp

{∫ τ

0
α(λ)dλ

}
π1(τ )dτ

)
, (62)

where α(t) := (1/Tp)(µ2(t)+8?(t)). Define the set

M = {t|πs(t) > 0, 0 ≤ σ < t}. (63)

From continuity it follows that this set is non-void and, if it
does not coincide with R+, there will exist a finite θ =
supM. Writing down (62) for t = θ we find πs(θ ) > 0 and,
from continuity, we shall find some1 > 0 sufficiently small
such that πs(θ +1) > 0 - a contradiction to the definition of
θ which, therefore, cannot be finite. Therefore πs(t) > 0 in
this case.

Let now πs(0) ≥ 0 and let πεs (t) be the solution of (61) for
πεs (0) = πs(0)+ ε. From the aforementioned development it
follows πεs (t) > 0 for all t > 0. Letting ε → 0, πεs (t) →
πs(t) (from the theorem of continuous data dependence of
the solution of ODEs); here πs(t) ≥ 0 for all t > 0 is the
solution of (61) corresponding to πs(0). Let now πs(0) = 0:
for θ > 0 as above we obtain the following alternative: either
πs(t) > 0 if π1(τ ) ≥ 0 for 0 ≤ τ < θ or πs(t) ≡ 0;
indeed if πs(θ ) = 0 then π1(τ ) ≡ 0 for 0 ≤ τ < θ

hence πs(t) ≡ 0 on that interval; finally, the solutions being
analytical, the aforementioned property holds for all t > 0.

Consider now the equation

T2
dπ2
dt
= µ2(t)πs(t)− π2 = ϕ2(t)− π2 (64)

which is similar to (59) hence the proof follows the same line.
This concludes the proof to Theorem 1.

APPENDIX 2
Proof of Theorem 3: For π1(t) representation (59) holds and
the proof of Appendix 1 is valid here also. Since (64) also
holds for π2(t), the property of π2(t) holds provided it holds
for πs(t). For what is left of the proof (its main part) we
consider subsystem (21). Let 0 ≤ ψcTc. On this interval the
differential equation for πs takes the form

Tp
dπs
dt
= π1(t)− (µ2(t)+ (β/ψc)g?p(t))πs, (65)

where g?p(t) = gp(y
−

0 (t − ψcTc)/πs(t)). Clearly (65) is like
(61) hence we shall have πs(t) > 0 on (0, ψcTc) - see
Appendix 1. We can then write the difference equations of
(21) as

y+(t)
πs(t)

=
y−0 (t − ψcTc)

πs(t)
+ 2gp

(
y−0 (t − ψcTc)

πs(t)

)

y−(t)
πs(t)

= ρ1
y+0 (t − ψcTc)

πs(t)
, 0 ≤ t ≤ ψcTc. (66)

From (11) we obtain quite straightforwardly that the
RHSs (Right Hand Sides) of (66) are nonnegative hence
y±(t)/πs(t) ≥ 0 and y±(t) ≥ 0 on (0, ψcTc). The proof can
be iterated on (kψcTc, (k + 1)ψcTc and this concludes it.
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