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ABSTRACT Over the past decade, blockchain technology has attracted tremendous attention from both
academia and industry. The popularity of blockchains was originated from the concept of crypto-currencies
to serve as a decentralized and tamper-proof transaction data ledger. Nowadays, blockchains as the key
framework in the decentralized public data-ledger have been applied to a wide range of scenarios far beyond
crypto-currencies, such as the Internet of Things, healthcare, and insurance. This survey aims to fill the gap
between a large number of studies on blockchain networks, where game theory emerges as an analytical tool,
and the lack of a comprehensive survey on the game theoretical approaches applied in blockchain-related
issues. In this survey, we review the game models proposed to address common issues in the blockchain
network. The focus is placed on security issues, e.g., selfish mining, majority attack and denial of service
attack, issues regarding mining management, e.g., computational power allocation, reward allocation,
and pool selection, as well as issues regarding blockchain economic and energy trading. Additionally,
we discuss the advantages and disadvantages of these selected game theoretical models and solutions. Finally,
we highlight important challenges and future research directions of applying game theoretical approaches to
incentive mechanism design and the combination of blockchain with other technologies.

INDEX TERMS Blockchain, game theory, mining management, security.

I. INTRODUCTION
In the past decade, with the popularity of digital crypto-
currencies, e.g., Bitcoin [1], blockchain technology has
attracted tremendous attention from both academia and
industry [2]. The blockchain was first proposed in [1] to
serve as a crypto-currency transaction ledger, and is currently
widely adopted for a large number of crypto-currencies, such
as Ethereum [3], Ripple [4], and EOS [5]. The blockchain
technology guarantees the tamper-proof ledger, transpar-
ent transactions, and trustless but secure tradings in a
decentralized network. Thus, the blockchain network is
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recently applied in a wide range of scenarios far beyond
crypto-currencies, such as Internet of Things (IoT) [6],
healthcare [7] and insurance [8]. In general, blockchain is a
distributed public data-ledger maintained by achieving the
consensus among a number of nodes in a Peer-to-Peer (P2P)
network. More specifically, the verified transaction data is
stored in a chain of blocks, i.e., a basic data structure of
blockchain, and the chain grows in an append-only manner
with all new verified blocks to it. This process involves sev-
eral operations such as verifying transactions, disseminating
blocks, and attaching blocks to the blockchain.

As such, the blockchain requires a number of consen-
sus nodes to participate in the network. The rational nodes
perform actions or strategies that aim to maximize their
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own utility. Moreover, the malicious nodes may launch
attacks that damage the blockchain networks. To address
these security challenges, consensus protocols such as Byzan-
tine Fault Tolerance (BFT) protocol [9] can be adopted.
However, the consensus protocols require a centralized per-
mission controller and only achieve the consensus among
a very small group of nodes. Such a consensus protocol
is thus not applicable to the blockchain network that is a
decentralized and large-scale system. Different optimization
approaches and solutions, e.g., a Markov Decision Process
(MDP) [10], are used to analyze and optimize strategies of
the blockchain nodes to prevent their misbehaviors. However,
the optimization approaches do not take into account the
interactions among the nodes. Recently, game theory [11]
has been applied as an alternative solution in the blockchain
network. Game theory is a study of mathematical models of
strategic interaction between rational decision-makers [12].
Thus, game theory can be used to analyze the strategies of
the consensus nodes as well as the interactions among them.
Through the game theoretical analysis, the nodes can learn
and predict mining behaviors1 of each other, and then choose
optimal reaction strategies based on equilibrium analysis.
Moreover, game theory can be utilized to develop incentive
mechanisms that discourage the nodes from misbehaving
or launching attacks. Therefore, game theory is a natural
consideration for modeling the decision-making process of
all the consensus nodes in the blockchain networks.

Currently, few existing survey on blockchains perceives
the organization and applications of blockchains from the
game theoretic perspective. In particular, the survey in [13]
provides a comprehensive introduction of the Bitcoin net-
work. The surveys in [14]–[16] focus on security and privacy
issues in the Bitcoin network. The survey in [17] presents the
blockchain applications on Internet of Things (IoT), and the
survey in [18] discusses the integrations of blockchain and
edge computing. To the best of our knowledge, there is no
survey specifically discussing the use of game theory, as an
efficient analysis tool, in blockchain networks. Thismotivates
us to deliver the survey with the comprehensive literature
review on the game models in the blockchain network. For
convenience, the related works in this survey are classified
based on a series of sub-issues in the blockchain network.
These major issues consist of (i) security issues such as
selfish mining attacks and Denial-of-Service (DoS) attacks,
(ii) mining management issues such as computational power
allocation, fork chain selection, pool selection, and reward
allocation, and (iii) applications atop the blockchain such as
energy trading.

The rest of this paper is organized as follows. Section II
briefly describes the general architecture of blockchains.
Section III presents the fundamentals of game the-
ory and game models that are commonly used for

1In blockchain systems where incentive nodes participate in the consensus
process of data record with digital tokens, the consensus nodes are frequently
referred as block miners, and their operations are referred as mining.

analyzing/designing blockchains. Section IV discusses appli-
cations of game theory for security issues in blockchains.
Section V presents applications of game theory for the
mining management in blockchains. Section VI discusses
applications of game theory atop blockchain platforms.
Section VII outlines challenges and future research direc-
tions. Section VIII summarizes and concludes the paper.

II. OVERVIEW AND FUNDAMENTALS OF BLOCKCHAIN
In this section, we give an overview of the blockchain on its
concepts, data organization, working mechanism, and incen-
tive compatibility.

A. OVERVIEW OF BLOCKCHAIN
The blockchain was first proposed as a decentralized
tamper-proof ledger which records an ordered set of transac-
tions. These transactions are verified through a decentralized
consensus process among the trustless agents before attach-
ing to the chain. Here, we summarize the key advantages that
blockchain networks can offer as follows:

• Decentralized network: The decentralized blockchain
network allows every computing unit (i.e., node) to
utilize its computational power to participate in the
blockchain consensus process. Each transaction on the
blockchain must be confirmed upon the agreement
among the majority of the nodes through the consensus
protocol. Therefore, the monopoly in centralized net-
work can be removed in the blockchain network.

• Tamper-proof ledger: The cryptographic techniques
used in blockchain ensure that any change on the trans-
action data in blockchain can be observed by all the
nodes in the network. This means that the transaction
recorded in the blockchain cannot be altered and tam-
pered, unless the majority of nodes are compromised.

• Transparent transaction: All the transactions in the
blockchain can be traced back for verification, and
these transactions are transparent to all the nodes in the
blockchain network.

• Trustless but secure trading: By using the digital sig-
nature based asymmetric keys, the blockchain network
guarantees that only the sender and receiver of the trans-
actional data, which possess the pair of asymmetric key
can execute the transaction, without intervention of any
trusted third-party.

B. DATA ORGANIZATION AND WORKFLOW
OF BLOCKCHAIN
Cryptographic data organization plays an extremely impor-
tant role in the blockchain structure. We first introduce some
basic components supporting the data organization within
blockchain networks.

• Transaction: Transactions are the most basic compo-
nent of blockchains. A transaction is proposed by the
blockchain users. It is composed of the transactional data
which specifies the value in concern, e.g., the digital
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tokens in a crypto-currency, the addresses of the sender
and the receiver, as well as the corresponding transaction
fee [1].

• Block: A block is composed of a block header and a cer-
tain amount of transactions. The block header specifies
the hash pointer and Merkle tree data structure.

• Hash pointer [13]: The hash pointer of the current block
contains the hash value of the previous block, which also
contains the hash pointer to the block before that one.
Thereby, the hash pointers can be used to build a chain
of records, i.e., blockchain.

• Merkle Tree [19]: A Merkle tree or hash tree is a tree
in which each leaf node is marked by the hash value of
the transaction data of a block, and those non-leaf nodes
are marked by the hash value of the concatenation of
its child nodes. This structure makes it impossible for a
node to tamper the data in a block without being noticed.

As shown in Fig. 1, a typical blockchain is an appending-
only, ever-growing chain of blocks, which are linked sequen-
tially using the hash pointers as a linear linked list. More
specifically, the block header includes a hash pointer which
is associated with the previous block, and the transactions are
organized as Merkle trees.

FIGURE 1. An illustrative example of blockchain data structure where the
transactions are included in the block and the block is represented by a
Merkle root.

Atop the basic cryptographic data organization, maintain-
ing the blockchain network needs nodes in the blockchain
network to disseminate the transactions, store the data into
blocks, verify the transactions, and eventually reach a con-
sensus about the order of them. The blockchain maintenance
mechanism works as follows (see Fig. 2):

FIGURE 2. An overview of the blockchain workflow.

• An newly initiated transaction is broadcast to the net-
work by its sender.

• The nodes in the blockchain verify the transaction value
as well as the identity of the node which initiates the
transaction.

• More than one node may bundle different subset of
newly verified transactions into their candidate blocks
and broadcast them to the entire network.

• All or part of the nodes in the blockchain network partic-
ipate in the block validation by executing some certain
functions defined by the consensus protocol.

• The verified block is attached to the blockchain, and
every node updates its local replica, i.e., the local views
of whole ledger-data, of the blockchain.

In general, not all the nodes can be authenticated to join
the blockchain network to execute the consensus protocol.
According to the access control scheme [20] that deter-
mines which node can join the network, the blockchain plat-
forms are classified into permissionless schemes, i.e., public
blockchains, and permissioned schemes including private and
consortium blockchains. When choosing the permissioned
access control scheme, e.g., Hyperledger fabric [21], the con-
sensus needs to be reached among only a small group of
authenticated nodes, and thus the permissioned blockchain
network usually adopts conventional BFT protocols,
e.g., Byzantine Paxos [22]. On the contrary, in permissionless
blockchain, e.g., Ethereum [3], any node can participate in
the network consensus process, and some other consensus
protocols are applied, such as Proof of Work (PoW) and
Proof of Stake (PoS). We list some widely-used blockchain
platforms and their consensus protocols in Table 1.

TABLE 1. Examples of widely-used blockchain platforms.

C. INCENTIVE COMPATIBILITY WITHIN BLOCKCHAIN
In a blockchain network, the consensus protocol guarantees
achieving the consensus among the nodes. A reliable consen-
sus protocol needs to satisfy the following properties [25].
(i) Correctness: each node adopts the content and the order
of transactions in the confirmed canonical blockchain struc-
ture. (ii) Consistency: each node updates its local blockchain
structure if a new block header is confirmed. (iii) Traceability:
all transactions can be traced back to the genesis block for
confirmation. However, in some case, disagreements may
exist among the nodes. For example, the local blockchain
replica of all the nodes are unable to be synchronized simulta-
neously due to the delay in a distributed network. In this case,
the nodes might maintain different blockchain ledgers, and
thereby the fork chains appear. This means that the nodesmay
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deviate from the protocol of maintaining the longest chain.2

Therefore, the blockchain consensus protocol is expected to
be incentive compatible [25] This means that any node will
suffer from financial loss, e.g., waste of investment in com-
puting power, whenever the node deviates from the protocol.

Currently, the most popular blockchain consensus pro-
tocol is the PoW-based Nakamoto consensus protocol [1].
The Nakamoto protocol achieves the consensus by requiring
nodes to solve a mathematical puzzle, i.e., to find a hash value
which satisfies a certain pre-image condition. The first node
that solves the puzzle can broadcast the verified block to the
blockchain network, and obtains the reward and the trans-
action fee. This process of solving puzzle and obtaining the
reward is called mining. The design of the mining mechanism
relies on both cryptography [26] and game theory [12].

Although the PoW protocol is widely used among the
blockchain platforms, the incentive compatibility of the pro-
tocol has been openly questioned from game theoretical
perspectives [27]. The reason is that achieving the Nakamoto
consensus involves nodes joining the network, executing the
protocol, and maintaining the ledger. The nodes may deviate
from the protocol to increase their own utilities. For example,
the node may not broadcast its newly discovered blocks but
choose to withhold the block to increase its utility [25]. The
node trades off between the cost of withholding the block
which is associated with the other nodes’ strategies, and the
mining reward and then chooses its strategy. To analyze the
interactions among these consensus nodes, the game theoret-
ical models (see Section III) are developed and applied [28].
In addition to the security issues, nodes’ mining-strategy
management, e.g., computational power allocation [29] and
reward allocation [30], adopt game models for the analysis
as well. Apart from the Nakamoto protocol, game models
are also widely used for analyzing the incentive compatibil-
ity with other consensus protocols, e.g., PoS protocol [31].
Therefore, to better understand the applications of game the-
ory in blockchain, the next section presents an overview on
fundamentals of the game models used in this survey.

III. OVERVIEW AND FUNDAMENTALS OF GAME THEORY
Game theory provides a set of mathematical tools for ana-
lyzing the interaction among rational decision-makers. In a
game, each decision-maker as a player chooses its strategy
to maximize its utility, given the other players’ strategies.
The following briefly presents the game theoretic approaches
which have been widely applied to analyze the interac-
tions within the blockchain network. To explain the con-
cept of a game, some important terminologies are given
below.
• Player: A player is a decision-maker in the game. In the
blockchain, players can be miners, mining pools, or the
blockchain users.

2 Due to the different strategies that nodes make to maximize their own
utilities, the nodes may attach newly verified blocks to different blocks in
their local view of blockchain, and thereby fork chains appear. The consensus
protocols regulate the nodes to apply their work on the longest chain.

• Utility: A utility, i.e., a payoff, an interest, or a revenue
reflects the player’s expected outcome.

• Strategy: A player’s strategy is a set of actions, choices
or decisions that the player can perform to achieve its
expected outcome. In general, the player’s utility is
determined based on not only the player’s own strategy,
but also the other players’ strategies.

• Rationality: A player is rational, i.e., self-interested,
if the player always maximizes its own payoff.

A. NON-COOPERATIVE GAME
In a non-cooperative game, the players do not cooperate by
forming coalitions or by reaching agreements. In general,
the term non-cooperative does not imply that the players do
not cooperate with each other. It means that any cooperation
which might arise must be with no communication of strate-
gies among the players. In other words, the strategy that a
player takes must be spontaneous, and each player is rational.

Consider a blockchain network in which miners as the
players invest strategically in computational power to com-
pete for a reward from mining successfully. The miners are
rational and the non-cooperative game can be used to model
the interaction among the miners. Assume that there are N
miners, i.e., players, and Pi is a set of strategies of miner i,
where P = P1 × · · · × PN is the Cartesian product of the
sets of individual strategies. Let pi ∈ Pi be the strategy of
miner i. A vector of strategies of N miner can be defined as
p = (p1, . . . , pN ), and a vector of corresponding payoffs can
be defined by π = (π1(p), . . . , πN (p)) ∈ RN , where πi(p) is
the utility of player i, e.g., mining rewards or the transaction
fees, given the miner’s chosen strategy and strategies of the
others. Eachminer chooses its best strategy p∗i tomaximize its
utility. A set of strategies p∗ = (p∗1, . . . , p

∗
N ) ∈ P is the Nash

equilibrium if no miner can gain higher utility by changing its
own strategy when the strategies of the other miners remain
unchanged, i.e.,

∀i, pi ∈ Pi : πi(p∗i ,p
∗

i ) ≥ πi(pi,p
∗

i ), (1)

where pi = (p1, . . . , pi−1, pi+1, . . . , pN ) is a vector of strat-
egy of all miners except miner i.

The inequality in (1) demonstrates the equilibrium state of
the game. At the Nash equilibrium, the players have no incen-
tive to deviate from their current strategies. However, there
may exist no Nash equilibrium in some cases, or multiple
equilibria in other cases. Thus, it is important to check the
existence and uniqueness of the Nash equilibrium to analyze
a non-cooperative game. The existence and uniqueness of
equilibrium theory [32] demonstrates that the strictly concave
game can achieve the unique equilibrium asymptotically.
Here, the concave game means that the utility functions of
players are concave, and this can be proved by computing the
second-order derivative of the utility function [12].

The non-cooperative theory can be applied to a broad
range of blockchain based scenarios. For example, it can
be used for computational power allocation [29] or fork
chain selection [33]. Also, it can be used for pool selection
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regarding the mining rewards allocation [30]. Atop the
blockchain based platform, the non-cooperative game theory
is applied to analyze the interaction between blockchain users
and miners, e.g., cheating among the buyers and sellers in
blockchain network [34]. Moreover, it is widely adopted in
analysis of security issues within the blockchain, e.g., pool
block withholding attacks [35].

B. EXTENSIVE-FORM GAME
The aforementioned non-cooperative games typically include
the static game, i.e., the game that has no notion of time and
where no player has any knowledge of other players’ actions
in advance. They also include the dynamic game, i.e., the
game in which the players’ strategies are made following a
certain predefined order. The dynamic game can be repre-
sented in an extensive form to illustrate the sequencing of
players’ possible moves, their choices at every decision point,
information that each player has about the other players’
moves, and their payoffs for all possible game outcomes.
In game theory, the extensive-form game describes the inter-
action among the players using a game tree illustrating deci-
sions made at different points with their payoffs represented
at the end of each branch. Consider the scenario of fork chain
selection, the miner chooses a certain chain to mine on at
the beginning of every round of mining competition, given
the actions taken by the other players in previous mining
rounds. At some time instance, the blockchain forks and leads
to the structure similar to a branching tree. Thus, the tree-
like extensive-form game can be efficiently applied for the
analysis as shown in Fig. 3, where the players can choose
between two chains to mine.

FIGURE 3. The game has two players, i.e., miner 1 and miner 2. The initial
node belongs to miner 1 meaning that the miner 1 makes its strategy
first. The miner 1 chooses between Chain 1, i.e., C1, and Chain 2, i.e., C2.
The miner 2 chooses between C1 and C2 after its observation of the
action of miner 1. There are four payoffs represented by the four terminal
nodes of the game tree: (C1,C1), (C1,C2), (C2,C1) and (C2,C2).

Assume that an extensive-form game is composed of
many smaller games, i.e., subgames. Each subgame can be
expressed as a static non-cooperative game. A set of strategies
p∗ = (p∗1, . . . , p

∗
N ) ∈ P is a subgame perfect equilibrium if it

represents a Nash equilibrium of every subgame. A common
method for obtaining the subgame perfect equilibrium in an
extensive-form game is backward induction. The backward

induction first considers the decision that might be made in
the last move and then reasons back from the end of the
problem to the previous one until the induction reaches the
first move of the game. In the game as presented in Fig. 3,
if miner 1 chooses C2, miner 2 will choose C1 to maximize
its utility and miner 1 receives 1. If miner 1 chooses C1,
miner 2 will choose C2 and miner 1 receives 2. There-
fore, miner 1 prefers choosing C1 and miner 2 choos-
ing C2. The strategies of miners are the Nash equilibrium
of each subgame and thus achieve the subgame perfect
equilibrium.

In blockchain-based platforms, the extensive-form game
is applied for determining whether to enter the blockchain
market or not [36], which transactions to be included in
the block [37], and the optimal allocation of mining pools’
rewards [38]. The extensive-form game has been also adopted
for analyzing the security issues within the blockchain. It was
used to analyze the selection of fork chain [39], determina-
tion of forming the collusion [40], and cheating among the
blockchain users [41].

C. STACKELBERG GAME
Similar to the extensive-form game, another game that
involves in a certain predefined ordered strategies by play-
ers is the Stackelberg game [12]. In the Stakelberg game,
the players are divided into the leaders and the followers.
The followers decide their strategies after observing the
strategies of the leaders. Both the leaders and the follow-
ers are typically rational and aim to maximize their own
utilities.

To understand how the Stackelberg game works, we con-
sider a blockchain relying on edge computing network,
which involves two players, i.e., the service provider and the
miner [42]. The service provider possesses the computational
power which can be offered to the miner as service, and the
provider can set the service price to charge the fee for profit.
The miner optimizes its demand of computational power
to the provider to maximize its utility, taking its cost into
account. As such, the service provider sets the price first,
and then the miner decides its demand. Thus, the Stackelberg
game can be used tomodel the interaction between the service
provider and the miner. Assume P1 and P2 are the sets of
strategies of the service provider and the miner, respectively.
The service provider chooses its strategy p1 from set P1 to
maximize its utility π1(p1, p2), and the miner chooses its
strategy p2 from set P2 to maximize its utility π2(p1, p2). The
optimization problems of the leader and the follower together
form the Stackelberg game. The objective of analyzing such
a game is to find a Stackelberg equilibrium.
Definition 1: Let BR2(p1) define the best response map-

ping of the follower. Then, the point (p∗1, p
∗

2) is called the
Stackelberg equilibrium of the game if the following condi-
tions hold:

• p∗2 ∈ BR2(p∗1), and
• p∗1 ∈ argmax

p1
max

p2∈BR2(p1)
π (p1, p2).
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To find the Stackelberg equilibrium, the backward induc-
tion method is typically used. Since the leader first takes
its strategy and then the follower chooses its strategy,
the Stackelberg strategy guarantees the service provider to
achieve its payoff at least as much as the corresponding
Nash equilibrium. The reason is that when choosing the
Stackelberg strategy, the service provider actually optimizes
its decision which will maximize its utility. This feature
makes the Stackelberg game suitable for many scenarios
in blockchain based applications. For example, the Stack-
elberg game is adopted for setting transaction fees and
selection of miners for verification [43], determination of
cyber-insurance price [44], and analyzing the supply-demand
relationship in the blockchain based edge computing
platform [45].

D. STOCHASTIC GAME
A stochastic game can be seen as several static non-
cooperative games that are repeated over time. Each static
non-cooperative game is called a state of the game. The
stochastic game executes stochastic transitions among the
states of the game. In the stochastic game, the players can
change their strategies based on the past actions and transi-
tions behaviors of the other players [46].

The stochastic game can be applied efficiently to ana-
lyze the miners’ selection of chains to mine (see Section II)
regarding the transitions of blockchain states. The stochastic
game is typically composed of (i) a finite set I of players,
e.g., the miners, (ii) a spaceM of states, e.g., blockchain data
structures, (iii) a strategy set S of the players, and (iv) a state
transition map P from M × S to M . Each miner has a payoff
function gn, which is often defined as the discounted sum
of the stage payoffs. The game starts at an initial state m1,
and at stage t , each miner observes the blockchain structure
mt and then chooses its strategy sit , i.e., selects a chain to
mine. Every miner receives an immediate payoff gin associ-
ated with the current state and the miners’ strategies. Then,
the game moves to a new state mt+1. The game process is
repeated until it reaches a common solution called Markov
Perfect Equilibrium (MPE) [47] that is the refinement of the
subgame perfect equilibrium (see Section III-B). TheMarkov
perfect equilibrium is a set of strategies that achieve the
Nash equilibrium of every state of the stochastic game [12].
In the case of fork chain selection, following the Nakamoto
protocol, i.e., mining on the longest chain, is the Markov
equilibrium.

Apart from the chain selection, the stochastic game can be
used for deriving other mining strategies. Examples of such
strategy derivation include the selection between investing
in computational power or stopping mining [48], and the
selection of new blocks to mine upon [49]. Furthermore,
the stochastic game has also been widely applied to security
issues. It was used to analyze the selection between honest
mining and selfish mining [50], the decision of the proper
time to release the mined block [28], and the selection of
adding a block to the main chain [51].

IV. APPLICATIONS OF GAME THEORY FOR SECURITY
A. SELFISH MINING ATTACK
Selfish mining is a type of subversive strategies in PoW based
blockchain systems [52] where attackers, i.e., malicious min-
ers or mining pools, may not broadcast the newly mined
blocks but choose to (i) withhold the block or (ii) hold and
then release the block at a proper time. In this case, honest
miners waste their computational power in finding the block
already discovered by other miners, and malicious miners
can thereby increase their probability of finding the next
block. The Pool Block WithHolding (PBWH) attack is one
recently identified selfish mining attack [53]. In the PBWH
attack, the attacking pool infiltrates the attacked pool, and the
infiltrating miners perform the Block WithHolding (BWH)
attack, i.e., to withhold all the blocks newly discovered in
the attacked pool. To prevent such an attack, it is crucial to
analyze strategies of the miners and pools as well as the inter-
action among them. A Markov Decision Process (MDP) [54]
can be used to analyze the strategy and utility of the individual
player, i.e., the miner or the pool. However, the MDP model
does not take into account the interaction among multiple
players. Alternatively, game theory can be effectively applied.

The authors in [35] adopt a non-cooperative game to ana-
lyze the interaction among the pools. This scenario is illus-
trated in Fig. 4 with two selfish pools as players. The strategy
of each player is to determine its infiltration rate, i.e., the frac-
tion of its computational power for performing the infiltra-
tion. In the case of attack, the attacking pool obtains its utility
not only from its honest miners, but also from the infiltrating
miners that perform the BWH attack within the attacked pool.
The objective of the player is to optimize its infiltration rate
and thereby maximize its utility. In particular, the player’s
utility is a function of the computational power and the
infiltration rate. By using the second-order derivative with
respect to the infiltration rate, the utility function is proved to
be concave. Thus, there exists a unique Nash equilibrium in
which neither players can improve its own utility by changing
its strategy of infiltrate rate. At the equilibrium, the infiltrate
rate is always greater than zero. This means that launching
the PBWH attack is always the best response of each player.
Simulation results illustrate that a pool can improve its utility
by launching the PBWH attack only when it controls a strict
majority of the total computational power. However, in the
case that two pools attack each other, the utility of each pool
is less than that if neither pool attacks.

FIGURE 4. A case of two pools where both pools launch the PBWH
attack, i.e., by infiltrating the other pool with its miners that perform the
BWH attack [35].
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TABLE 2. A summary of game theoretical applications for security.
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The case in [35] is similar to the famous prisoners’
dilemma in game theory [12] that results in the utility loss
of the miners. To avoid the miners’ dilemma, the miners can
choose one of the solutions as follows. The first solution is
to allow the miners to join private pools that will not involve
the PWH attack. As a result, big mining pools may be divided
into many small pools spontaneously, and eventually this may
lead to a better environment for the Bitcoin system as a whole.
The second solution is that the miners perform so-called Zero
Determinant (ZD) strategies [68]. This solution is presented
in [50], where the authors model a two-miner mining case as
a stochastic iterative game.

Different from a typical strategy that aims to improve
players’ own profits, the ZD strategy is used to control an
outcome of the opponents in a certain range so as to avoid a
low social welfare, i.e., the whole pool’s profit [69]. In this
game, the two players are an altruistic miner, i.e., a miner
which attempts to maximize the social welfare, and a selfish
miner, i.e., a miner which only aims to improve its own profit.
Their strategies include cooperation, i.e., mining honestly,
and launching the BWH attack to the other miner. Note that
the altruistic miner and selfish miner choose their strategies
probabilistically based on each other’s strategy selected in the
last iteration. The analysis shows that so long as the altruistic
miner applies strategies according to the determinant func-
tion, i.e., a linear function which is associated with players’
profit factor, the profit of the selfish miner is in a range from
mutual cooperation to mutual attack regardless of strategies
adopted by the selfish miner. Thus, the altruistic miner can
indeed motivate the selfish miner to mine cooperatively by
performing ZD strategies so as to restrict the selfish miner’s
profit to achieve the highest social welfare. The simulation
results show that the proposed game can achieve a higher
social welfare than that of the pool game proposed in [35].
However, the proposed game does not consider the profit of
the altruistic miner. This means that the altruistic miner may
not have an incentive to perform the ZD strategy.

The two-pool-attacker scenario in [50] can also be found
in [56]. In addition to the PBWH attack, the authors in [56]
consider theminers’ migration among the pools. In particular,
the miners of a pool can be migrated to another pool and
launch the PBWH attack to increase the profit. To analyze the
average payoff of the miner in the miners’ stochastic migra-
tion process, the Concurrent Mean-payoff Game (CMPG) is
adopted in [56]. CMPG (see Section III) is a two-player game
with a finite state space where at each state, both players
choose their strategies simultaneously [46]. Here, the players
are pool 1 and pool 2, and the state of the game includes
the number of migrated miners of pool 1 and that of pool 2.
The strategy of a pool is to determine (i) the number of its
miners to be migrated to the other pool and (ii) the miners
which perform the PBWH attack. The number of migrated
miners is determined according to the attractiveness levels
of the other pool, i.e., the ratio of the pool’s total mining
reward to the total computational power of itsminers. If a pool
is infiltrated by miners of the other pool, the attractiveness

level of the pool decreases. This decrease can be observed
by the whole blockchain network, and thus the other pool
can adjust its migration strategy based on the observations.
In general, the pool’s profit depends not only on the state,
i.e., the allocation of miners for migration, but also on its
chosen strategy. The experimental results show that if the
miners in pool 1 stochastically migrate to pool 2 according
to the pool 2’s attractiveness level, then the mean-payoff
objective, i.e., the average profit, of pool 2 can be guaranteed
against any strategy of pool 1. However, the mean-payoff
objective may not be guaranteed in multi-player scenarios.
Such a scenario can be investigated in the future work.

The aforementioned approaches, i.e., [35], [50], [56], are
constrained to the interaction among only two pools. Con-
sidering a multi-pool scenario, the authors in [55] adopt the
Computational Power Splitting (CPS) game [70] to model the
PBWHattack. To improve their expected payoffs, the players,
i.e., theminers or the pools which own positive computational
power, can choose to (i) attack other pools, i.e., to distribute
their computational power to other pools and launch the BWH
attack, and (ii) honestly follow or arbitrarily deviate from the
pool’s protocol. In the case that the player chooses to attack,
the strategy of the player is to determine (i) the distribution
of its computational power, and (ii) the portion of its mining
power holding attack as presented in Fig. 5. The objective
is to maximize the player’s profit, which is defined as the
sum of mining rewards received from all the pools. For any
given strategies of the other miners, there always exists a
computational power allocation for a miner to increase its
profit and cause the other pool a loss. In other words, honestly
mining is not the best response of the players and the game
thus has no pure Nash Equilibrium strategy. Nonetheless,
the game has a unique mixed strategy equilibrium at which
each player has an incentive to launch the PBWH attack prob-
abilistically rather than mining honestly. Simulation results
show that the best strategy of the players is to comply with the
following rules. First, the players launch the PBWH attack
which improves their profits. Second, the attackers spend
the computational power less than a specific fraction on
the PBWH attack to gain more profit than mining honestly.
Finally, the attackers should attack big pools rather than small
pools. Both studies in [35], [55] arrive at some consistent
findings from different perspective.

FIGURE 5. The player α distributes its computational power to several
pools and launchs the BWH attack, where α is the computational power
owned by the player, and βi represents the fraction of mining power that
the player allocates to the pool i [55].
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The approaches discussed above, i.e., [35], [55], consider
only the mining reward. In practice, the Bitcoin systems
also provide the transaction fee [1]. When the block creation
reward dominates the mining reward, the miners may not
broadcast transactions to the others immediately so as to
increase their expected profits [71]. This is called selfish
propagation attack. To address the attack, the authors in [57]
propose an incentive mechanism for the miners to propa-
gate the transactions. The proposed mechanism is designed
such that each miner receives a propagation reward from the
blockchain system according to its behaviors in the propaga-
tion process (see Section II-B). To maximize the gained prop-
agation reward, each miner strategically chooses to duplicate
itself, i.e., to add fake identities before relaying the trans-
action, or to relay the transaction immediately, given the
strategy profile of the other miners. The interaction among
the miners can be modeled as a non-cooperative game as
presented in [57]. In the game, the players are miners which
are aware of the transaction. Each player not only strate-
gically relays the transaction but also works on PoW. The
authorizing player, i.e., the player which solves the PoW,
and the players which are in the same relay chain with the
authorizing player gain a certain reward. Other players gain
nothing. This scenario is illustrated in Fig. 6. By using the
iterative removal of dominated strategies [12], the game is
proved to admit a unique Nash equilibrium. At the Nash
equilibrium, only the transaction propagating strategy and the
non-duplication strategy, i.e., the Nash equilibrium strategy,
survive after dominated strategy removal. However, if there
are not sufficient number of players which are connected
with each other, the selfish propagation attack cannot be
guaranteed to be prevented.

FIGURE 6. An example of the transaction relay process that the
transaction flows from T1 to T5. T1 to T4 relay the transaction thus gain
reward α. T5 solves the PoW thus gains reward β. T3 adds two fake
identities, i.e., T ′

3 and T ′′

3 , before relaying the transaction thereby
gains 3α in total [57].

Other works on understanding the vulnerability of propa-
gation mechanism without mining rewards can also be found
in [28], [72], [73]. The authors in [33] demonstrate that with
only block creation rewards, it is attractive enough for miners
to extend the blocks that have the most available transaction
fees rather than to follow the longest chain. Each miner
intends to fork the head of the chain actively and leaves
transactions unclaimed selectively to maximize its profit.
Such an attack is called undercutting attack, and the miner

FIGURE 7. An example of undercutting attacks. Option one corresponds
to honest mining that the miner mines on the longest chain. The miner in
Option Two performs the undercutting attack that forks the longest chain
and claims more reward compared with that of option one [33].

that performs the undercutting attack is called undercutter.
The scenario is illustrated as in Fig. 7 where ‘‘Option Two’’
corresponds to the undercutting attack. If the miner per-
forms the undercutting strategy, it may gain nothing if its
block is not in the longest chain eventually. The undercutter
strategically performs undercutting strategy so as to attract
the other miners to mine on the forked chain. Meanwhile,
the other miners consider whether to mine on the forked
chain or not to maximize their profits. Thus, the interaction
among the miners can be modeled as a repeated game that
in every stage of mining, each miner chooses to perform
honest mining or undercutting. The game theoretical anal-
ysis shows that if a miner’s undercutting strategy follows
a certain function to maximize the size of the block, then
the strategy is also the best response for all miners. This
is under the constraint that if the miners fork, they must
perform undercutting. Thus, the Nash equilibrium exists as
all miners adopt the same undercutting strategy. The simu-
lation results show that when each miner applies a no-regret
learning algorithm, evenwith 66%ofminersmining honestly,
undercutting is profitable than mining honestly. As a result,
there could be many unclaimed transactions left, and it will
be detrimental to the whole blockchain network. The same
conclusion is reached in [74] through a non-game theoretical
method. However, if the simulation takes network latency into
account, the undercutters may have sufficient time to include
all the transactions into the block, and thus the undercutters
have no incentive to leave any transaction to the next miner.

Different from attacks among the pools, another variation
of selfishmining attack inside themining pool which operates
on the protocol of Pay Per Last N Shares (PPLNS) [75] is
introduced in [58]. PPLNS is a popular pool mining reward
mechanism. Instead of distributing a block reward among
miners in the pool in the current round, PPLNS distributes the
reward among miners that have submitted shares3 already in
the latest PPLNS window. The PPLNS window includes the
number of shares submitted continuously, and the latest share
is the full solution of PoW. Specifically, shares in the PPLNS
window are regarded as the effective shares. The miner that

3 A share is a hash value which is easier to be found, compared with the
valid hash puzzle solution of the block. Shares can be used to statistically
measure the computational power that miner possesses.
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submits effective shares obtains the reward according to its
proportion of all effective shares. Under this mechanism,
the miner may launch the delay attack. In the delay attack,
the miner first delays submitting the shares, i.e., by hold-
ing the discovered shares, if the miner finds the solution of
PoW, the miner releases all delayed shares and then submits
the solution immediately. Thus, more reward can be obtained
because of the higher fraction of shares in the latest PPLNS
window. This scenario is illustrated in Fig. 8.

FIGURE 8. An example of delay attack in a pool with PPLNS. The pool
includes two miners, i.e., miner 1 and miner 2. The size of PPLNS window
in this case is 7. Miner 2 launches a delay attack [58].

For each miner in the same pool, there are two phases dur-
ing mining. In the first phase, the miner only collects shares
for delaying. In the second phase, the miner submits every
share immediately, i.e., through honest mining. To maximize
the expected profit of launching the delay attack, each miner
needs to choose proper time to transit its phase according to
the strategies of the other miner. Otherwise, the miner may
lose the reward of all its delayed shares. Thus, the authors
in [58] model the interaction betweenminers in the same pool
as a non-cooperative game. It is proved that the Nash equilib-
rium exists if the computational power of the most powerful
miner meets a certain condition. This condition is associated
with the PPLNS window size, and complexity of finding the
solution of PoW. At the Nash equilibrium, each miner of the
pool is at the turning point between two phases. This means
that the miner has no incentive to deviate from honest mining,
and thus the miner would not delay its shares. Such a pool
is called the incentive compatible pool. Simulation results
show that if the pool is not incentive compatible, although
the fraction of delaying miners decreases with a parameter
related to the window size and the complexity of solving
PoW, the game cannot reach the Nash equilibrium regardless
of computational power distribution.

B. MAJORITY ATTACK
The security of blockchain is achieved through the dis-
tributed consensus of miners. This consensus is only reliable
with the assumption that no single miner can hold more
than 50% of the network’s computational power [1]. The-
oretically, to gain its profit, the miner invests more in the
computational power, and it may possess more than 50%
of the network’s computational power [30]. In this case,
the miner would be able to halt payments, reverse trans-
actions, prevent new transactions from confirmation, and

double-spend coins [2], [27], [76]–[81]. The attack is called
51% attack. As such, the assumption of the distributed con-
sensus may not be valid any longer, and the security of
blockchain is not guaranteed. More specifically, theoretical
analyses [54], [59], [82] show that the miner which possesses
only a relatively large part computational power can also
achieve the similar goal. In general, we label this type of
attack associated with a large group of miners as the majority
attack.

When the majority attack is performed, mining on the fork
chain may happen. The condition under which a miner has an
incentive to mine on the fork is investigated in [28]. Although
the miners follow the longest chain rule under the Nakamoto
protocol, the chain can fork in some instance. It leads to a
structure similar to a branching tree [83]. To maximize the
profit, i.e., the reward of creation of a new block, each miner
aims to extend selectively any of the existing branches or to
create a new branch, given the strategy of the other miners.
A non-cooperative game can thus be applied. If more than
50% of the network’s total computational power are extend-
ing the longest chain, deviating from honest mining only
leads to the waste of the miner’s computational power of min-
ing. The reason is that the mined block would not achieve the
Nakamoto consensus with the majority of miners and thereby
be orphaned. This lowers the miner’s profit, and thus mining
on the longest chain would be the best response of the other
miners. Therefore, the game has a Nash equilibrium in which
all miners extend the longest chain. If a cartel of miners which
possesses more than 50% of the network’s computational
power forks a chain, following the rule of longest chain would
not be the best response for the other non-cartel miners, and
thus the Nash equilibrium will be shifted to another one that
every miner mines on the fork. Similar conclusion is reached
in [82]. If the fraction of computational power deviating from
extending the longest chain is more than a value around 1/4,
each miner has an incentive to mine on the fork.

Compared with [28], a more general majority attack is
investigated in [84], where the miner not only choose which
branches to mine upon but also determine whether or not to
release the mined block. The miner can probabilistically hide
newlymined blocks andmine on the fork. Since this is similar
to that the miners play a game with incomplete information
of blockchain state among each other [85], a stochastic game
can be applied as presented in [84]. The miner’s expected
utility is a function of the miner’s action, i.e., the allocation of
the miner’s computational power, and the current state of the
game, i.e., the structure of the block tree at present. In the
case where the miner’s computational power is equal to a
profit threshold, the expected utility of mining on a fork is
equal to that of mining on the longest chain regardless of the
current state. Thereby, when theminer’s computational power
is less than the profit threshold, the miner has no incentive
to deviate from mining on the longest chain which is the
best response of the miner and the Nash equilibrium can
be obtained. As shown in the simulation results, when the
obtained profit threshold is approximately 0.42, the miner
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with at most 36% of the total computational power can-
not gain more than 36% of the total rewards. Meanwhile,
the miner with computational power more than 46% always
has an incentive to deviate from the longest chain rule.
These results are more accurate than that obtained using the
MDP-based scheme [54].

Furthermore, by using the smart contract [86], the authors
in [59] illustrate that theminer or the pool which controls only
38.2% of the network’s total computational power can gain
more reward by deviating from the protocol. The attacking
miner uses its full computational power to mine on its private
chainwhile posting a smart contract transaction. This contract
transaction includes a hashing puzzle, i.e., the solution of
PoW, of its private chain. Any miner that solves the puzzle
can receive the reward from the puzzle’s creator, i.e., the
attacker, in exchange for the solution. Thereby, the attacker
may gain more profit when its private chain is longer than the
public one. Every time the attacker posts a hashing puzzle
through the smart contract, the other miners have two strate-
gies: (i) work on the puzzle in the contract, and (ii) mine on
the public chain. Each miner tries to maximize its expected
utility, given the set of strategies of the other miners. The
interaction among the miners except the attacker can thus
be modeled as a non-cooperative game. When the attacker
controls more than 38.2% of the network’s total computa-
tional power, the miner’s utility of working on the puzzle
with probability α is greater than that of mining on the
longest chain, and the attack is thus launched successfully.
This means that each miner will work on the puzzle with
probability α and mine on the public chain with probability
1 − α. Thus, the game is proved to admit a mixed strategy
Nash equilibrium. The game in [59] is formulated under the
assumption that miners always mine on the longest chain.
However, if some miners perform the selfish mining strategy,
the reward of solving the hashing puzzle on a private chain
provided by the attacker may not be attractive enough to the
other miners. Thus, the attack may fail.

In addition to posting the smart contract as presented
in [59], majority attack can also be launched by the attack-
ers offering monetary bribes [87]. To extend the fork chain
and thereby increase its probability of successful attack,
the attacker can attract other rational miners to mine on the
fork by issuing a whale transaction, i.e., a transaction with
a high transaction fee. Since issuing the whale transaction
is similar to bribing the other miners, such an attack is also
called bribery attack [88]. The attacker’s problem is to deter-
mine the cost of the attack, i.e., the transaction fee, to maxi-
mize its profit. Also, the other miners’ problem is to trade off
the profit of mining on the fork against the reward of mining
on the public chain. A non-cooperative game can be thus used
to model the interaction between the attacker and the other
miners as presented in [60]. Both theoretical analysis and
simulation results show that if the attacker’s mining power is
greater than a profit threshold, the cost of the attack decreases,
i.e., the attacker’s profit increases, as the attacker’s mining
power increases. Here, the profit threshold is a function of

the computational power used to mine on the fork, and the
number of blocks by which the fork chain is ahead of the
public chain. Meanwhile, any miner that possesses as much
mining power as the attacker’s has an incentive to mine on
the fork chain. However, the Nash equilibrium of the game is
not discussed.

To avoid such majority attack, the existing miners can act
as a defender actively adding honest nodes to the blockchain
network. This case is investigated in [51]. The system model
consists of one attacker, i.e., the miner which intends to fork a
private chain, and one defender, i.e., theminer which honestly
mines on the public chain. To obtain the mining rewards,
the attacker and the defender compete to build the blocks
for the private and public chains in a sequence of stages,
respectively. The historical strategies and the probabilistic
stage transitions can be observed by both the attacker and the
defender. Thus, the interaction between the attacker and the
defender can be modeled as a stochastic game. In the game,
the strategies of the defender are (i) defending, i.e., actively
adding the honest nodes to avoid the majority attack, and
(ii) doing nothing, i.e., letting the blockchain network run
as usual. If the winning probability of the attacker to fork
successfully is greater than a certain value, the defender’s
utility of defending is greater than that of doing nothing. This
means that the defending strategy is the best response of the
defender and the game reaches the Nash equilibrium. Here,
the value is determined based on the cost of adding honest
nodes, the number of nodes added actively to the blockchain
network, and the total mining power that the attacker has.
Otherwise, the defender has no incentive to neutralize the
attack. However, it is worth noting that the evaluation of
the model is purely based on simulation results in [51].
No actual data gathered from real blockchain networks,
e.g., Blockr.io [89] and Blockchain.info [90], is used to verify
the practicability of the game model.

The aforementioned approaches, i.e., [51], [59], [60], [84],
consider the motivation of the attack within the blockchain
eco-system. However, the attacker’s motivation can also be
based on the incentive outside the system and this type
of attack is called Goldfinger attack [91]. In this case,
the attacker, i.e., miners, receive some payoff from devaluing
the cryptocurrency (i.e., currency measured in digital tokens
in the blockchain network), by forming a cartel to impair
the consensus among miners and launching the majority
attack. The defenders, i.e., the otherminers, intend to preserve
the value of the currency. To prevent the currency from
being devalued, the defender makes a bid, i.e., similar to
a tax to keep the currency alive, to the attacker. Mean-
while, the defender trades off the cost of making the bid
and the profit of preserving the currency. Therefore, a non-
cooperative game is used to model the interaction between
the attacker and the defender in [28]. The utility of the miner
is a function of the value of the currency, the bid, and the
probability of the currency being attacked. The analysis
shows that the defender can maximize its utility by using the
first-order optimality condition in which the bid satisfies a
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certain constraint associated with the computational power
distribution. If such a bid exists, the game is at the Nash equi-
librium point where the attacker has no incentive to attack.
Otherwise, the currency will have a zero value. However,
in a real case, the defender does not know the attacker’s
expected utility. If the attacker makes a strong claim about
the imminent attack, the defender has no incentive to preserve
the currency because of the possible high cost, and thus no
equilibrium exists.

Apart from the PoW-based blockchains, themajority attack
also happens in PoS-based systems [31]. In a PoS system,
each agent, i.e., a stake-holder, can earn interest by holding
crypto-currency (CC) units (see Section III). To improve the
interest, the agent can make a price offer to buy CC units
from other agents [92]. As an agent possesses more than 50%
of CC units of the system, this agent can halt and reverse
any payments or transactions. Thus, the consensus of the
system is broken and CC loses its value. Only the agent
that intends to devaluate the CC obtains the profit outside
the system, e.g., payoff in terms of harsh social regulations
on blockchains. The attack is typically launched in multiple
stages [61]. Each agent, i.e., the attacker or an honest agent,
can observe the historical strategies of each other and then
optimize its own strategy. Therefore, a sequential game is
proposed in [61] tomodel the interaction between the attacker
and other agents. In the game, the players include one attacker
and some other agents. The attacker trades off the profit of
devaluating the CC against the cost of making offers and the
loss of interest. In the case that the profit of devaluating the
CC is greater than the interest of holding the CC, by using
the backward induction method, the game is proved to admit
a unique Nash equilibrium. At the equilibrium, the attacker
has an incentive to buy more than 50% of CC units, and other
agents are willing to sell the CC to the attacker since they
know that the CC has no value. However, the attacker can
succeed in its attack at no cost by announcing to other agents
about launching the majority attack before making the price
offer. The reason is that if the agents believe that the attack
succeeds, they will sell the CC to the attacker regardless of
the price that attacker offers. The Nash equilibrium may not
exist in this case.

The majority attack also exists in the PoS-based consor-
tium blockchain [93]. In the system, the blockchain user
produces transactions for verification and pays the transac-
tion fee. Due to the limited number of miners, some miners
can launch the majority attack, i.e., halt or reverse transac-
tions by forming a cartel. Thus, in addition to competing
to solve the crypto-puzzle, the pre-selected miners recruit
some other miners, i.e., verifiers, to verify the transaction.
This results in recruitment cost and propagation delay that
reduce the utility of the pre-selected miners [94]. In this case,
the blockchain user acts as the leader to set the transaction
fee for relative secure verification. The pre-selected min-
ers act as the followers. Given the other miners’ strategies,
a miner tries to balance between the transaction propaga-
tion delay and recruitment cost against the transaction fee

offered by the blockchain user. This scenario is illustrated
in Fig. 9. The interaction between the blockchain user and the
pre-selected miners can be modeled as a Stackelberg game
as presented in [43]. By using the second-order derivation,
the blockchain user and pre-selected miners’ utility functions
are proved to be concave. Thereby, they can jointly maxi-
mize their utility through backward induction. The simula-
tion results show that the bigger variation range of propaga-
tion delay brings lower utility of the blockchain user. How-
ever, the game model is under the assumption of complete
information of the all miners’ strategy. The Bayesian game
model [95] can be used to analyze the incomplete information
case.

FIGURE 9. An example that demonstrates the relationship among
blockchain user, miners and verifiers in the consortium blockchain.
The miners recruit some other miners, i.e., verifiers, to verify the
transaction [43].

C. DENIAL OF SERVICE (DOS) ATTACK
Due to the distributed structure of peer-to-peer (P2P) network
in blockchain with the Nakamoto consensus protocol, each
miner can observe the PoW done by their peer miners [1].
However, if the P2P network is interfered or disrupted by
some attackers, the resources of the attacked miners for trans-
action propagation and verification may be exhausted. Thus,
the attacked miners would not complete the mining process
to gain the mining rewards and their expected profit. Such an
attack is called Denial-of-Service (DoS) [96].

The mining pools can perform the DoS attack as presented
in [62]. More specifically, to maximize the mining reward,
the mining pools can choose (i) to trigger the Distributed
DoS (DDoS) attack that lowers the other mining pools’
expected payoffs, or (ii) to invest in additional computational
power, e.g., by buying more mining machines, to increase its
possibility of solving the next PoW. Each mining pool needs
to consider the cost of the investment and attack associated
with the other pools’ strategies, as well as the uncertainty
of launching the attack successfully. Therefore, a non-
cooperative game can be adopted to analyze the interaction
among the pools with different sizes. In the game, there are
two players, i.e., a big pool and a small pool. The other pools
own the rest of computational power. The payoff of different
strategies of the two players can be expressed in a matrix in
terms of the computational power distribution, the increas-
ing rate of network’s computational power over time, and
the probability of launching the DDoS attack successfully.
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This matrix is presented in Table 3 where Ps and Pb are the
payoffs of the small pool and the big pool, respectively.

TABLE 3. Payoff matrix with launching DDoS attack.

Investing in computational power is the only best response
of both big and small pools when computational power dis-
tribution satisfies a certain inequality. The condition with
a similar structure can also be derived for launching the
DDoS attack. The unique Nash equilibrium can be obtained
under different computational power distribution. Simulation
results show that mining pools have different incentive to
perform DDoS attack under different computational power
distribution. Due to the higher expected payoff, each pool
has a greater incentive to attack larger pools than smaller
ones and the larger mining pools have a greater incentive to
perform the DDoS attack than smaller ones. These results
are consistent with the empirical evidence on the prevalence
of DDoS attacks in the Bitcoin system as presented in [96].
The authors in [62] also consider the incentive of mining
pools as a whole. However, in a real case, the individual
miners have an incentive to hop among the pools and then
the computational power distribution changes. Thus, theNash
equilibrium may be shifted.

Apart from only focusing on the short-term impact
of DDoS attacks on mining pools as presented in [62],
the authors in [63] study the long-term impact. An ongoing
DDoS attack causes some long-term impacts that individual
miners may migrate, i.e., leave the attacked pool and join
other pools. The studiedmodel consists of two pools. At every
stage of mining competition, each pool chooses an attack
level, i.e., the fraction of its computational power to launch
the attack to the other pool. Choosing the attack level affects
both the short-term utility consequences (as studied in [62])
and the long-term consequences. In particular, the long-term
consequences affect the computational power distribution of
mining pools in the next stage. Therefore, the interaction
between the two pools can be modeled as a sequential game.
By using the second-order derivative, the utility function of
the mining pool is proved to be concave under the condition
that the attack cost is greater than a certain value. This value is
associated with the level of attracting miners to participate in
the pool, and the migration rate of miners that are not affected
by the attack. Thus, the game can reach a unique Nash
equilibrium at which both the mining pools have no incentive
to launch the DDoS attack. However, if the condition is
not satisfied, the game reaches another Nash equilibrium at
which one of the players attacks while the other remains not
attacking. For the future work, a general case of multiple
mining pools can be investigated.

To avoid DDoS attacks, the authors in [64] propose a
reputation-based scheme in which each miner is assigned a

reputation value that evaluates the miner’s performance of
mining honestly against launching DDoS attack. The pool
managers send invitation probabilistically only to a subset
of miners according to the miners’ reputation values. Only
miners that receive invitations from pool managers can mine
for the pool. Otherwise, the miner has to mine for itself, and
this is not preferable for the miner with small computational
power. To maximize the profit, each miner chooses to attack
or mine honestly while optimizing the profit of launching
attack and minimizing the probability to be excluded from
pool managers’ invitation because of the decrease of its rep-
utation value from the attack. Since the reputation value is
updated periodically, and each miner determines its strategy
based on the future utility associated with the other min-
ers’ reputation value and strategy, a repeated game is used
to model the interaction among miners. By removing the
strictly dominated strategies of the game according to the
miner’s utility function, the unique Nash equilibrium can be
obtained such that the best response of each miner is not to
launch the attack. Similar to the analysis presented in [63],
the reason is that even the miner can gain some utilities in the
current stage of mining competition by launching the attack,
the miner will lose many future mining opportunities due to
its low probability of being invited to join the pool. However,
details of implementing this reputation-based scheme beyond
numerical simulation is not discussed in the paper.

Similar to [64], a punishment scheme based on the action
record in blockchain to suppress the attack motivation is
proposed in [65]. Nevertheless, the scheme is applied to an
edge network instead of the blockchain system. The network
model consists of mobile devices and one server located in
the edge network. The mobile devices can (i) send service
requests to the server, or (ii) launch the DoS attacks to gain
their illegal profits. The server can choose (i) to execute the
service requests, or (ii) to launch the attack on the devices.
Each device or the server can determine its strategy according
to the other’s historical strategy recorded in the blockchain.
Therefore, the interaction between the mobile device and the
server can be modeled as a non-cooperative game. The utility
of both the players, i.e., the mobile device and the server,
is a function of the cost and profit of launching the attack
and executing the request, and a punishment factor related
to their historical strategies. Since the players can maximize
their utility by not attacking under a certain constraint asso-
ciated with the punishment factor, not attacking is the best
response of the players, and thus the game can reach the Nash
equilibrium. Simulation results also show that both mobile
device and edge server tend to not attack if the punishment
factor is large and the attack rate of the server decreases
compared with that of the non-punishment scheme. However,
the existence of the Nash equilibrium may not be guaranteed
in a multi-player scenario.

D. OTHER SECURITY ISSUES
The underlying blockchain technology of Bitcoin is now
being applied to many new scenarios such as edge

VOLUME 7, 2019 47627



Z. Liu et al.: Survey on Blockchain: Game Theoretical Perspective

networks, cloud computing, e-business and information
sharing [13], [97], [98]. In particular, a series of security
problems regarding false data sharing [40], [66], [67], dis-
trustful goods trading [34], [41] and cyber-insurance [44],
can be resolved by using a blockchain-based scheme.

1) FALSE DATA SHARING
The blockchain-based scheme is applied to the false data shar-
ing scenarios. In most of the traditional data sharing applica-
tion scenarios, the users transfer data either to other users or
to a centralized authority for verification. However, the users
are reluctant to share the cyber-security information due to
the concern about the distrust, the possible false information,
the privacy vulnerabilities, and the lack of incentive [99].
To address these problems, the authors in [66] propose a
blockchain-based information sharing (iShare) framework.
In the iShare framework, organizations, i.e., users partici-
pating in sharing cyber-attack information, receive a reward
after the information transaction is proved authentic in the
blockchain. The organizations can form a group to share
information and gain the reward together similarly to forming
the mining pool in Bitcoin systems [75]. However, some
group members can form a sub-group and infiltrating in
another group to gain more profit by not releasing the infor-
mation in the infiltrated group. This is similar to launching
the PBWH attack (see Section IV-A) as presented in [35].
In the two-group case, each group determines the number of
organizations to infiltrate to the other group to maximize its
profit. Thus, the non-cooperative game can be used to analyze
the interaction between the two groups. Each group’s utility
is determined based on the size and number of infiltrating
organizations of the two groups. Since the utility function
of the group is concave, each group can maximize its profit
when the number of infiltrating organizations satisfies the
first-order optimality condition. The uniqueNash equilibrium
can be obtained when not launching the attack can be the
best response for each group. The Nash equilibrium may
shift when the number of infiltrating organizations satisfies
different constraints. Then, it is possible that launching attack
becomes the best response for the group. A general case of
multi-groups can be investigated for the future work.

Risks of false information among the users and the lack of
incentive can also be found in the traditional cloud computing
scenario. The cloud users may not completely trust the com-
puting results returned from the cloud provider. Thus, the ver-
ifiability becomes a critical requirement by the cloud users.
The existing techniques, e.g., [100], for verifying correctness
of the result cannot be done at a reasonable cost. In contrast,
a blockchain-based scheme with smart contracts can be used
to address the issue, as proposed in [40]. In the scheme,
the cloud user pays two clouds, using smart contract, for
computing the same task and then collects and crosschecks
the results from the two clouds to verify the correctness.
However, the two clouds can collude with each other, i.e., by
outputting the same wrong result, to gain an extra profit.
To maximize the utility, each cloud chooses to compute

honestly or to collude to trade off the profit obtained from
the cloud user’s payment and the loss of the deposit, i.e., a
sum of money that guarantees the security for the delivery
of the correct result. The cloud’s expected utility function is
determined based on not only its present strategy but also the
imperfect information of the other clouds’ historical strate-
gies over time. Thus, the extensive-form game can be used
to analyze the interaction between the two clouds. By using
the backward induction, each cloud is proved to obtain the
strictly dominant strategy that maximizes its utility function
at every information set in every sub-game, and thus the game
can reach the unique sequential equilibrium. At the sequential
equilibrium, both clouds have no incentive to deviate from
computing honestly, i.e., not to collude. Simulation results
show that the proposed scheme can achieve a low cost com-
pared with the techniques from [100]. The reason is that the
cloud users only need to pay the cost of employing two clouds
for computing the same task.

Nevertheless, although the smart contract has the advan-
tages as presented in [40], a major limitation exists regard-
ing the data processed on the blockchain. More specifically,
trusted entities are required to verify the correctness of the
external data that will be brought into the blockchain. The
trusted entities can launch an attack by manipulating the data
to gain an extra profit [101]. The authors in [67] propose a
decentralized entity scheme to prevent the attack. The model
consists of the voters and the verifiers. A voter can vote by
labeling the data as either true or false, once it submits a small
deposit to the system. The verifier can vote about the chosen
data after submitting a large deposit. Each participant, i.e., the
voter or the verifier, can receive a reward if its statement
about the data correctness is the same as that of the other
participants. Thereby, a coordination game can be used to
analyze the interaction between the voter and the verifier.
According to the definition of the coordination game [12],
it can be easily proved that the game has two Nash equilibria
in which the participants state the same correctness. At the
Nash equilibrium, rational participants have no incentive
to deviate from voting honestly if the majority participants
give the honest statement. The simulation results show that
the proposed game can achieve a zero probability of data
manipulation.

2) DISTRUSTFUL GOODS TRADING
The distrust of goods trading can also be mitigated by apply-
ing blockchain based smart contract as presented in [41]. The
proposed smart contract involves two participants, i.e., one
seller and one buyer. The participants are required to place a
sufficiently large deposit for the reliable transaction which
will be returned only after the transaction is completed.
The participants can choose to cooperate, i.e., execute the
transaction honestly, or to attack, i.e., cheat another par-
ticipant, e.g., by double spending. To maximize the util-
ity, each participant has to take into account the tradeoff
between the cost, i.e., the loss of the deposit, and the profit
of launching the attack given the other participant’s strategy.
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The seller takes its strategy before the buyer does, and thus
an extensive-form game can be formulated. The utility of the
player, i.e., the seller or the buyer, is determined based on
the deposit, the value of the goods and the price set in the
smart contract agreement. By using the backward induction,
the game is proved to admit a unique subgame perfect Nash
equilibrium at which both players perform the transaction
honestly. However, how to implement the proposed smart
contract is not discussed.

Using a deposit for buying and selling goods can also be
found in [34]. The transaction is insured by the deposit of
both participants, i.e., the buyer and the seller. The buyer’s
strategy profile includes (i) PC: pay and confirm the trans-
action, (ii) PD: pay and leave the system with denying the
transaction, and (iii) Lb: leave the system without paying.
The seller’s strategy profile includes (i) SC: ship the goods
and confirm the transaction, (ii) SD: ship the goods and leave
the system with denying the transaction, and (iii) Ls: leave
the system without shipping. Each participant’s payoff is
determined based on the value of the goods and its deposit
given the other participant’s strategy. The interaction between
the two participants can be modeled as a normal-form game.
By using the iterative removal of dominated strategies [12],
the game is proved to have a unique Nash equilibrium if both
the participants’ deposits are greater than the goods’ value.
At the Nash equilibrium, the PC and SC strategies are the
best response of the buyer and the seller, respectively. Sim-
ulation results show that if the deposits of both participants
are greater than the value of the goods, the sum of buyer’s
money and the value of the seller’s goods remain unchanged
for the whole system. This means that the buyer’s money
is exchanged into the goods successfully, and the seller’s
goods is exchanged into the money with no loss. However,
in practice, the participant may not be perfectly knowledge-
able of the other participant’s strategy. More sophisticated
game models and tools can be considered.

3) CYBER-INSURANCE
Different from suppressing the attack motivation as presented
in [34], [40], [41], [66], [67], the authors in [44] propose a
cyber-insurance scheme [102] to compensate for the losses
of the attacked blockchain participants. The model includes
multiple blockchain users, one blockchain provider, and one
cyber insurer. Each user needs to choose a service offered by
the provider and maximize its utility given the other users’
service demands. Given the users’ demand, the provider’s
problem is to invest in the computing resource to increase its
profit. To alleviate losses of being attacked, the blockchain
provider also purchases insurance from the cyber-insurer. The
cyber-insurer sets the price of the insurance based on the per-
ceived risk level of the provider. Typically, the provider and
the insurer offer the service first, and the user then chooses the
service. Thus, the interaction among the users, the provider,
and the insurer can be modeled as a Stackelberg game.
By exploiting the characteristics of the Jacobian matrix [32]
to analyze the utility functions of the players, the game is

proved to admit a unique Stackelberg equilibrium. The simu-
lation results show that the provider can maximize its utility
at a unique point which is in accordance with the uniqueness
analysis. In practice, the insurer cannot completely know the
risk level of the provider, and thus the Bayesian game can be
adopted for further problem investigation.

V. APPLICATIONS OF GAME THEORY
FOR MINING MANAGEMENT
Under the Nakamoto protocol, anyone within the blockchain
network is allowed to play the role of the mining competi-
tion, transaction dissemination and verification in order to
obtain the profit [1]. Each miner or mining pool involved
has full control of its strategy and attempts to maximize its
payoff given the others’ strategies. Thus, game theory can
be effectively applied to model the interaction between these
participants. In this section, we will survey the applications
of game theory in the mining strategy management including
computational power allocation, fork chain selection, block
size setting, pool selection and reward allocation.

A. INDIVIDUAL MINING
1) COMPUTATIONAL POWER ALLOCATION
Bitcoin mining is a competition that miners contend with
each other by investing in computational power to winmining
rewards. To maximize the utility, each miner determines the
allocation of its computational power, i.e., whether or not to
invest in the computational power, given the other miners’
strategies. Therefore, a non-cooperative game is applied to
analyze the interaction among the miners in [29]. Theminer’s
utility is a function of its computational power, the mining
rewards and the marginal cost, i.e., the average cost for the
miner to invest in a unit of computational power. By using the
second-order derivative, the miner’s utility function is proved
to be concave. Thus, a unique Nash equilibrium exists at
which investing is the best response of each miner as long as
the miner’s computational power satisfies a condition. Here,
the condition is determined based on the computational power
and the marginal cost of the miner and the entire Bitcoin
network. At the equilibrium, it is found that the decision on
the investment is not affected by the value of the mining
rewards. Moreover, every miner can have a positive utility
for any level of other miners’ strategies which consequently
can prevent a monopoly.

Different from [29] in which the miners choose whether
or not to participate and then keep their chosen strategies,
the authors in [48] consider a case in which the miners can
choose ‘‘arrival’’, i.e., investing in the computational power,
and ‘‘departure’’, i.e., leaving the mining, at any time. In gen-
eral, the strategy of each miner depends on the state of the
blockchain network, i.e., the number of miners participating
in the mining, given other miners’ strategies. A stochastic
game can be applied to analyze the miners’ strategies as
presented in [48]. The miner’s utility is a function of the
number of the miners in the system, the arrival and departure
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TABLE 4. A summary of game theoretical applications for mining management.
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rates of the miners, the rate of PoW getting solved, the cost
and the reward of the mining. By transforming the utility
function to the Bellman equation [121] and then calculating
the first-order derivative, the utility function is proved to
be monotonic increasing if the cost of mining is greater
than a threshold. Thus, investing the maximum power is the
dominant strategy of each miner regardless of the state of
the blockchain network, and the game has a subgame perfect
equilibrium. The simulation results show that the utilities of
the miner under different arrival rates gradually converge to
the same curve. Namely, the game reaches the equilibrium.

In addition to the case in [29], [48] that the miner can
only choose to invest in the computational power or not,
the authors in [103] investigate the amount of computational
power that the miner determines to invest to win the mining
rewards, given the other miners’ strategies. The probability
that the miner solves the PoW puzzle in a given time can be
assumed to follow an exponential distribution [1]. As such,
the Nakamoto protocol essentially formalizes an exponential
race. A Cournot game [122] can be thus used to analyze
the interaction among the miners as presented in [103]. The
miner’s utility is a function of the mining rewards, the compu-
tational power, and the marginal cost of the investment. The
game is then proved to admit a symmetric Nash equilibrium
by simply showing that the marginal revenue, i.e., the average
revenue for the miner to invest in a unit of computational
power, is equal to the marginal cost. At the equilibrium, each
miner can optimize its investment and has no incentive to
deviate from honest mining.

The aforementioned approaches, i.e., [29], [48] and [103],
consider the case that the mining reward dominates the trans-
action fee. Nevertheless, when the transaction fee dominates
the mining reward4, the miner will adjust its allocation of
computational power by choosing strategically the proper
time to start using its mining machines, i.e., the machines
used for mining process which require electricity for their
operation, to mine given the other miners’ strategies. The
reason is that miners have no incentive to mine unless
the accumulated transaction fees sufficiently exceed a cer-
tain threshold. Thus, the non-cooperative game can be used
to analyze the interaction among the miners as presented
in [104]. Eachminer’s utility is a function of the starting time,
the operation time, the proportion of the miner’s machines,
and the probability distribution function of the block finding
time. The numerical analysis is thus used to find the Nash
equilibrium of the game. The simulation results show that the
miners that own the same number of mining machines even-
tually converge to the same starting time, meaning that the
game reaches the Nash equilibrium. However, how to prove
the uniqueness of the Nash equilibrium is not discussed.

Although deploying blockchains have been widely consid-
ered inmany scenarios as presented in [29], [48], [103], [104],

4Take Bitcoin as an example, the Bitcoin code includes a statement which
declares that the mining reward will drop by half after about four years
(210,000 blocks). Thereby, the mining reward will eventually be dominated
by the transaction fee.

deploying PoW blockchain-based applications in mobile
environments is still challenging because the mining process
consumes high computational power from mobile devices.
An edge computing paradigm has been recently introduced
in the mobile blockchain networks for offloading the mining
tasks of mobile devices, i.e., the miners [42]. The system
model is illustrated in Fig. 10. An important issue is how to
allocate efficiently the limited edge computing resources of
service providers to the miners. The authors in [45] model
the interaction among the service provider and the miner
as a two-stage Stackelberg game. The service provider acts
as the leader setting the price of the service, and then the
miner acts as the follower choosing its computational ser-
vice demand, given the service price and the other miners’
strategies. The utility of service provider is a function of
the profit obtained from charging the miners, the miners’
service demand, the time that the miner takes to mine a
block, and the cost of electricity. The utility of the miner is
a function of the computational service demand, the service
price, the cost and the rewards of the mining. By using the
backward induction, the game is proved to admit a unique
Stackelberg equilibriumwhich is supported by the simulation
results. However, in practice, the players cannot know the
perfect information of each other, and the Bayesian game can
be adopted.

FIGURE 10. An example of the system model of edge computing in
mobile blockchain network. The mobile devices compete for the
computational power by submitting the bid, and the service provider
determines the allocation rule of its service.

Traditional sealed-bid auctions, e.g., the Vickrey auc-
tion [123], can also be used to guarantee that the edge com-
puting resources are allocated to the miners which value
the resources most. However, designing the optimal auction
is challenging. The authors in [105] propose to apply deep
learning techniques to achieve the optimal auction for the
computing resource allocation in the blockchain network.
The model consists of one service provider, i.e., the seller or
auctioneer, and multiple mobile users as miners, i.e., bidders.
The miners compete for a computing resource unit of the
service provider by submitting bids, i.e., the prices that the
miners are willing to pay. Upon receiving the bids, the ser-
vice provider determines the allocation rule, i.e., winning
probabilities of the miners, and the conditional payment rule
to the miners. The allocation and payment rules are imple-
mented by using neural networks. The neural networks are
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constructed based on an analytical solution of the optimal
auction, i.e., the Myerson theory [124]. As such, the auction
mechanism learned by the neural networks is optimal in terms
of maximizing the revenue of the service provider while
ensuring the economic properties, i.e., incentive compatibil-
ity and individual rationality. The simulation results show that
the proposed scheme outperforms the traditional sealed-bid
auction [123] in terms of revenue. However, the proposed
scheme is constrained to a single computing resource unit that
may not meet the needs of the miners.

Different from the auction in [105] that the service
provider, i.e., the auctioneer, maximizes its individual utility,
the authors in [106] investigate the case of maximizing the
social welfare of the entire blockchain network. Under the
same model as that in [105], the utility of the mobile user and
service provider is a function of the mining rewards, the com-
putational power, the service price, the demand of the miner,
and the robustness of the network associated with the dis-
tribution of the computational power. By transforming the
social welfare maximization auction problem to a problem
of non-monotone submodular maximization with knapsack
constraints [125], the algorithm of achieving the social opti-
mum can be developed. The simulation results show that
the algorithm not only achieves the good performance in
maximizing the social welfare, but also guarantees the truth-
fulness, individual rationality and computational efficiency.
However, the algorithm is designed for the offline auction
which is not applicable for real-time trading scenarios.

2) FORK CHAIN SELECTION
Under the Nakamoto protocol, there are sequential PoW puz-
zles that the next puzzle depends on the solution of the pre-
vious one. Each miner needs to choose to (i) report its puzzle
solution found based on the longest chain, or (ii) not to report
the most recent puzzle solution and tomine on the next puzzle
secretly, given the publicity of previous puzzles. As a result,
fork chain may appear. To maximize the utility, the miner
trades off between reporting the puzzle solution to gain the
mining rewards and not reporting the solution and mine on
fork.Meanwhile, theminer is uncertain about whether it is the
first one to find the solution of the puzzle. Thus, a sequential
game with imperfect information can be applied to model
the interaction among the miners as presented in [107]. The
miner’s utility is a function of the distribution of the compu-
tational power, the probability of winning to solve the PoW,
and the other miners’ belief of the upcoming publicity of the
puzzles. By using the backward induction, the game is proved
to admit a multiplicity of sequential equilibrium. This means
that both reporting and not reporting can be the best response
of each miner depending on the computational power that the
miner uses to solve the puzzle. However, the authors only
consider a three-miner case, and a general case with any
number of miners can be further investigated.

After finding the solution of the PoW as discussed in [107],
the miner probabilistically chooses which branch to mine,
i.e., to choose a certain chain to attach its block to, among

the tree-like branches of the blockchain network structure.
If the miner chooses the branch which will not be the longest
chain, the miner’s effort to solve PoW is wasted. A stochas-
tic game can be used to analyze the strategies of the min-
ers as presented in [49]. The miner’s utility is determined
based on the miner’s computational power, the number of
blocks solved by the miner, the mining rewards, and the
difficulty of solving the PoW. By using the backward induc-
tion, it is proved that mining on the longest chain is a sub-
game perfect equilibrium. However, the current longest chain
may not be the longest one after several rounds of mining
competition. Portions of the historical transactions may be
abandoned.

Similar to [49], the authors in [39] demonstrate that fol-
lowing the Nakamoto protocol, i.e., mining on the longest
chain, is the Nash equilibrium. However, the model in [39]
is based on the PoS system in which the fork chain randomly
selects the coin from the set of coins owned by miners at each
time step (see Section III). Thus, an extensive-form game can
be applied. The miner chooses whether or not to mine on the
fork, given the otherminers’ strategies. Theminer’s utility is a
function of the stake, the mining rewards, the coins of miners
selected by the fork, and a discounted factor. Since the cost
of mining on the fork increases with the miner’s stake, for a
sufficiently large stake of the miner, the cost overweighs the
profit gained from the mining rewards. By restricting access
to the miners with the large stake, the rest of miners have no
incentive to deviate from mining on the longest chain, and
the game thus reaches the Nash equilibrium. Empirical data
obtained from Blockchain.info [90] supports the theoretical
analysis.

Extended from [39], the authors in [108] investigate the
case of miners choosing the fork chain in an upgraded PoS
system. In the upgraded system, the latest block is called the
parent block, and concurrent blocks attached to the parent
block are called the leaf blocks. Instead of following the
longest chain protocol, miners can choose the leaf blocks
to be attached to the parent block. To model the interac-
tion among the miners in the tree-like structure of the sys-
tem, an extensive-form game can be applied. The miners’
strategies include deviating from the protocol stubbornly,
following the protocol, and strategically choosing whether
or not to deviate from the protocol to maximize their util-
ity. Since there is only one leaf block that can reach the
consensus to win the reward, the utility of the miner is a
function of the reward, the cost of losing the block, and
the punishment of deviating from the protocol, given the
other miners’ strategies. The punishment is implemented by
taking away the deposit of the miner that is deposited in
advance. When the fraction of the stubborn miners is less
than 1/3, each miner cannot increase its utility more than ε or
decrease its utility more than 1/ε by deviating from the proto-
col. Thus, the game has a unique ε-robust equilibrium [116].
The simulation results show that only when the fraction of
the deviated miners is greater than a quarter, the utilities of
the miners that follow the protocol decrease, as the number
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of the deviated miners increases. This is consistent with the
theoretical analysis.

Furthermore, when the fork chain appears, the miners
need to decide whether to update the blockchain version,
i.e., to acknowledge the fork as a hard fork or not. The hard
fork is a permanent divergence from the previous version
of the blockchain which requires the miners to upgrade the
blockchain software. Since having more miners participating
in a particular chain version increases the value of the ver-
sion, the miner’s strategy depends on not only its individual
profit, but also the other miners’ profits. Thus, a coordina-
tion game can be used as presented in [109]. In the game,
the miner gains a zero-profit if the miner’s strategy is not
consistent with those of the majority of miners, and thus
the game admits a unique Nash equilibrium. At the equi-
librium, every miner chooses to stay on the current version
or to upgrade the version. However, voting organization for
upgrading the blockchain version remains a topic for further
research.

Similar to [109], the authors in [110] propose to use the
coordination game approach for choosing the fork chain.
The players in the game in [110] are the blockchain users
and miners. To maximize the utility, both types of players
need to choose between two fork chains to participate. Here,
the utility of a blockchain user is a function of the users’
distribution of choosing certain chain, the transaction fees,
and the strategies of the miners. The miner’s utility is a
function of the distribution of the users between two fork
chains, the computational power, the mining rewards, and
the other miners’ choice of the chain. If the number of the
blockchain users choosing a certain chain is greater than
a threshold, the utility of the players can be proved to be
monotonous. Thus, the game has a unique Nash equilibrium
that all of the players choose the same chain. Otherwise,
a mixed strategy Nash equilibrium exists such that players
choose the chain randomly. The simulation results show that
the user will choose to remain on a certain chain when the
number of the users on this chain is greater than a certain
value which is in accordance with the theoretical analysis.
However, the case which involves multiple fork chains can
also be investigated.

The aforementioned approaches, i.e., [109], [110], show
that the miners can coordinate, i.e., through forming a coali-
tion, to increase their utilities by deviating from the honest
mining. To address this issue, the authors in [111] propose an
upgrade scheme for the blockchain protocol. In the upgrade
scheme, the mining reward is delayed to be allocated to
the miner that finds the solution of the PoW puzzle. Also,
the miner can receive variable discounted rewards during
several rounds of mining after the miner finds the solution.
Extended from the coordination game model in [110] to its
infinite form, a repeated game is then adopted in [111] where
each miner chooses whether to form the coalition or not in
every round of mining. The utility of each miner is a function
of its computational power, the mining rewards, the difficulty
of solving the PoW, the cost of mining, the number of rounds

for allocating the discounted rewards, and the discounted
factor of the rewards. It is proved in [111] that if the dis-
counted factor meets a certain inequality, the miner’s utility
of honest mining is greater than that of forming the coalition.
This means that the game has a unique subgame perfect
equilibrium at which the inequality is satisfied, and all the
miners perform honest mining.

Similar to [111], the authors in [112] propose a scheme to
prevent the miners from forming the coalition. In the scheme,
the transactions are first included in a buffer block, and the
miner mines on the buffer block by solving the PoW. Only
after the buffer block is broadcast and verified, this buffer
block becomes the real block and will be attached to the
blockchain. The miner can choose whether or not to form
the coalition, i.e., deviating from the honest mining, given the
other miners’ strategies. Thus, the interaction among the min-
ers can be modeled as a non-cooperative game. The miner’s
utility is a function of the computational power, the num-
ber of the blocks in a round of mining, the difficulty of
solving the PoW, the distance between the buffer block and
the blockchain, the cost and the rewards of mining, and the
transaction fees. By calculating the ratio of the upper bound
to the lower bound of the coalition’s profit, the multiplicative
increase in utility is proved to be less than (1 + 3δ). Here,
the coalition controls ρ < 1/2 fraction of the computational
power, and the constant satisfies δ < 0.3. This means that
no coalition that controls less than a fraction ρ of the com-
putational power can gain more than a factor (1 + 3δ) of the
mining rewards and transaction fees by deviating from the
protocol. Therefore, the game has a ρ-coalition-safe 3δ Nash
equilibrium.

Different from the PoW based coalition as discussed
in [109]–[111], the coalition in the PoS based system is inves-
tigated in [31]. In PoS, the miner’s stake, i.e., a parameter
associated with the amount of the miner’s cryptocurrency
and the time that miner has been holding the cryptocurrency,
is updated at the end of each round of mining and the stake
will be reset to zero after the miner discovers the block
(see Section III). The higher stake means less difficulty in
mining the block. Thereby, the miner chooses whether or
not to form the coalition for holding more stakes to lower
the mining difficulty, given the other miners’ strategy. Thus,
a non-cooperative game can be applied. The miner’s utility
is a function of the stake, the mining rewards, the num-
ber of times that the miner discovers the block and the
number of transactions to be included in the block. Even
when deviating from the protocol, the coalition miners can-
not obtain a higher utility than that of non-coalition. Thus,
the game is proved to have a unique Nash equilibrium at
which every miner follows the protocol. However, forming
the coalition is not the only way to increase the miner’s
stake. To increase the holding time and thereby increase the
stake, the miner has an incentive to hold its tokens without
mining. It may leads to a situation where no miner consumes
its stake-time to mine, and the entire blockchain network
crashes.
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3) BLOCK SIZE SETTING
When mining in the Bitcoin network, the miner can earn
more transaction fees by including more transactions in its
block. However, it also decreases the miner’s probability of
gaining the mining reward [73] for a number of reasons,
e.g., resulting in a longer propagation time for reaching a
consensus. Each miner needs to determine strategically the
block size, i.e., the number of transactions to be included
in a block, to maximize its utility, given the other miners’
strategies. Thus, the authors in [113] model a two-miner case
as a non-cooperative game. The miner’s utility is a function
of its computational power, block size, and the time to reach
the consensus. Since the first-order derivative of the miner’s
utility function with respect to the block size is always less
than zero when the unit transaction fee and the mining reward
meet a certain condition, the strategy that all of the min-
ers include no transaction in their block is a unique Nash
equilibrium. However, if the transaction fee or the mining
reward change, the Nash equilibrium shifts to the strategy that
all of the miners include more than one transaction in their
block.

To avoid the case in [113] that all miners include no
transaction in their block, the authors in [72] demon-
strate the necessity of setting the maximum block size.
As with the game approach presented in [113], the miner
chooses the transactions to be included in a block at every
round of the mining competition. The miner’s utility is a
function of its computational power and the transaction fees
associated with the block size and the Bitcoin mining reward.
The transactions that one miner does not include in its block
will be included by another miner before the next round of the
mining competition. Thus, when the block size is unlimited,
the strategy of including all transactions by all the miners
regardless of the fee is the unique Nash equilibrium. It is also
found that unbounded transaction fee leads to the same Nash
equilibrium. However, inflations of the computational power
distribution may have an impact on the existence of the Nash
equilibrium of the game.

The analysis of setting a proper block size can also be
found in [114]. The authors propose a Bitcoin-unlimited
scheme to increase the throughput of the Bitcoin system.
In the scheme, each miner chooses its own upper bound of
the block size, and invalidates and discards the excessive
block, i.e., the block with the size larger than its upper bound.
To maximize the utility, the miner trades off the transaction
fees and the probability of its block being orphaned based
on its mining power, given the other miners’ strategies. Thus,
a non-cooperative game can be used to model the interaction
among the miners. Since any miner that chooses different
upper bound gains zero utility, the game is proved to admit
a unique Nash equilibrium at which all miners choose the
same upper bound. Since only the blocks with appropriate
sizes would be added to the blockchain, the block size under
the proposed scheme gradually increases to the maximum
limit associated with the network capacity. This means that
the divergence on the block size is always bounded and the

throughput of the system increases. The simulation results
show that if all miners have different bounds, the miners that
possess large computational power intend to form a coalition
to gain extra profit. However, this is harmful to maintaining
the decentralized structure of Bitcoin.

However, the unlimited block size [114] may not lead to
a higher throughput of the Bitcoin system. The reason is
that any two blocks may have collisions, i.e., the miners
simultaneously choose the same subset of transactions to be
included in the blocks. This situation wastes the computa-
tional power for verification and lowers the throughput of
the system. To address this issue, the authors in [37] propose
an improved Bitcoin protocol. In the protocol, the system
selectively incorporates transactions of off-chain blocks into
the main chain and awards creators, i.e., miners, of the
accepted transactions even if the creators’ blocks are not part
of the main chain. Each miner chooses the transactions to be
included in its block and trades off the transaction fees and
probability of the collision. The miners are partially aware of
other miners’ strategies and take their strategies sequentially.
Thus, an extensive-form game can be used to model the
interaction among the miners. The utility of the miner is
a function of the position of its block in the main chain,
the discount factor, and the fees of the chosen transactions.
By using the backward induction, the game is proved to admit
a sequential equilibrium at which the miners probabilistically
choose the transaction to minimize the collision. As a result,
the proposed protocol achieves a higher throughput which is
consistent with the simulation analysis. However, the game
has several other Nash equilibria at which the miners’ utilities
are much less than that of the sequential equilibrium.

Moreover, even with the unlimited block size as presented
in [114], there is still a limitation on transactions to be
included in the block. The limitation is imposed by the wait-
ing time, i.e., the time that a transaction of the blockchain user
waits in a queue to be included in the block. The blockchain
user can choose (i) to pay a transaction fee to the miner to
reduce the waiting time, or (ii) not to pay any fee and may
experience a longer waiting time. The miner can decide to
stay in or to leave the mining competition according to the
expected profit of the transaction fees and the cost. Thus,
the interaction between the miners and the users can be
modeled as a non-cooperative game as presented in [115].
The miner’s utility is a function of the number of miners in
the network, the rate of solving the PoW, the exchange rate
between the Bitcoin value and the dollar, the transaction fees,
the rewards and the cost of the mining. The user’s utility is a
function of the exchange rate, the transaction fee, the waiting
time, the profit of the included transaction, and the fraction of
users that pay the fee. The constraint on the number of miners
and the rate of solving the PoW can be obtained, when the
miner’s and the user’s utilities are both greater than zero. This
means that if the constraint is satisfied, the game has a unique
Nash equilibrium. At the equilibrium, the miner chooses to
keep mining and the user chooses to pay the transaction
fee. Empirical evidence from blockchain.info [90] is used
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to validate the theoretical analysis. However, multiple Nash
equilibria can exist if the constraint is not satisfied.

As presented in [115] that the waiting time limits the
throughput of the blockchain network, the authors in [116]
propose a novel protocol that greatly reduces the waiting
time for the transaction to reach the Nakamoto consensus.
In the protocol, there is a committee comprised by a certain
number of members, i.e., miners. The block found by any
miner is verified only when the majority of members reach
the consensus. This miner is then selected as a member in
the committee and ranked based on its computational power.
The utility of the member is a function of the computational
power, the mining rewards and the other members’ strat-
egy. Thus, a non-cooperative game can be applied. Since
the member gains the positive profit only when the member
follows the protocol, i.e., chooses the block with higher rank,
the game is proved to admit a unique Nash equilibrium. At the
equilibrium, the chain is never forked and the confirmation
time for preventing from the double spending is unnecessary.
As a result, the throughput of entire the blockchain network
increases.

B. POOL MINING
1) POOL SELECTION
To reduce the volatility of the mining rewards and to max-
imize the utility, miners can form a coalition, i.e., mining
pool [75], and cooperate with the members, i.e., miners in the
pool, by following the reward allocation of the pool. Thus,
a coalitional game [11] can be used to analyze the interaction
among the miners and the pools as presented in [117]. Since
the communication delay of the Bitcoin network leads to
the non-linearity of the pool’s mining rewards, the rewards
cannot be distributed stably among the members. This means
that there always exist some miners that have an incentive
to leave their pools and join other pools to increase their
utility. As a result, no cooperative equilibrium exists in the
game. Additionally, as more transactions are processed in the
Bitcoin system, the non-linearity effect on themining rewards
increases, and thus miners are more likely to switch to other
pools. In other words, they prefer to join the pool which
benefits them most.

During pool selection, each miner first randomly selects a
mining pool to start mining with and then switches to another
pool after a time period according to its expected utility.
The distribution of the miners in mining pools of the whole
blockchain network evolves over time based on the miners’
strategies. Thus, the framework of evolutionary game [126]
can be used to analyze the dynamic process of the miners’
pool selection as proposed in [118]. According to the rules of
the replicator dynamics [127], if the growth rate of the pool
size becomes zero and small perturbation to the pool size does
not cause deviation, the distribution of the miners reaches
evolutionary stability [128]. Here, the utility of the miner
is a function of its computational power, propagation delay,
the mining reward and the mining cost. By exploiting the

characteristics of the Jacobianmatrix of the replicator dynam-
ics in a two-mining-pool network, the game is proved to admit
conditionally a unique evolutionary stable equilibrium.

The miners in a PoS system can also form coalitions,
i.e., pools, to increase their utilities. The miners need to trade
off the cost and the expected profit of forming the pool. For
this, eachminer chooses (i) to form a pool as a leader, or (ii) to
allocate its stake to pools that are already created by the other
miners given the reward scheme of the system. In particular,
the miner first determines the amount of stake to be allocated
to become the leader and then calculates the best possible
allocation of mining rewards. Thus, a coalitional game can
be applied to analyze the respective aspect of interactions
among the miners and the pools as presented in [119]. The
results of backward induction illustrate that both the games
have a unique non-myopic Nash equilibrium [129]. At the
equilibrium, the certain number of pools are formed with
the same size. The rewards are distributed evenly among all
miners, except for pool leaders that get an additional gain. The
simulation results show that starting from no pool, the game
quickly converges to multiple pools of an equal size which is
consistent with the theoretical analysis.

2) REWARD ALLOCATION
Admittedly, the mining pool’s reward allocation, i.e., the
algorithm used to share mining rewards among miners, has
a significant impact on the utilities of the miners [75]. The
miner can choose to immediately report shares, i.e., preim-
age solutions for a block that meets the requirement set
by the pool manager [25], or to delay the reporting given
the reward allocation of the pool. The pool manager needs
to select the reward allocation algorithm according to the
miners’ expected utility. Thus, a non-cooperative game can
be used to analyze the interactions between the miners and
the pool manager as presented in [30]. If a certain condition
is satisfied, the strategy that each miner reports the shares
immediately is the Nash equilibrium. Here, the condition is
associated with the miner’s computational power, the proba-
bility of finding the full solution of the PoW, the number of
reported shares, and the number of the completed rounds of
the mining competition.

However, the approach proposed in [30] considers only
the single share. Namely, each miner reports the share only
one time during mining. In practice, the miners can report
the shares repeatedly, and the pool manager can optimize its
reward allocation to maximize its utility. Thus, a repeated
game can be applied as presented in [120]. It is proved that
in the game the pool manager can use the geometric-pay,
i.e., a certain reward function, to achieve the social opti-
mum. The simulation results show that the expected utility
of the geometric-pay pool, i.e., the pool that allocates its
mining rewards following geometric distribution, is greater
than those of both the proportional pay pool, i.e., the pool
that shares mining rewards evenly among the shares, and
the PPLNS pool which is in accordance with the theoretical
analysis.
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As the miners participate in mining pools to reduce the
volatility of the mining rewards, a large pool may become
even larger. It may lead to a centralized topology, which is
against the fundamental concept of decentralization in the
blockchain. However, the authors in [38] demonstrate that
this situation will not happen. During each round of mining,
theminer chooses to allocate its computational power to a cer-
tain pool according to the state of the blockchain, i.e., the dis-
tribution of computational power among the pools. The pool
manager adjusts the fees charged to the participated miners to
maximize its profit, given the state of the blockchain. Thus,
an extensive-form game can be applied to analyze the interac-
tion between the miners and the pool managers as presented
in [38]. The miner’s utility is a function of the computational
power, fee charged by the pool, the distribution of miners
among the pools, the cost and the rewards of mining. If the fee
charged by the pool manager satisfies a condition, the game
reaches a subgame perfect equilibrium. Here, the condition
is associated with the number of the remaining miners in
the same pool. At the equilibrium, the large pools charge a
higher fee than the small pools. The miners thus choose the
small pools to participate tomaximize their utility. As a result,
the centralization will not happen. Empirical evidence from
Bitcoinity and Bitcoin Wiki supports the theoretical analysis.

VI. APPLICATIONS OF GAME THEORY ATOP
BLOCKCHAIN PLATFORM
A. CRYPTO-CURRENCY ECONOMIC
1) TRANSACTION TRANSPARENCY
Under the Nakamoto protocol, the entire history records of
transactions are transparent to all the blockchain miners and
users. This may cause a series of problems. For example,
blockchain miners intend to include the transaction of high
quality (i.e., the transactions that are legalized and reliable)
into the block rather than the transaction of low quality. The
reason is that the transactions that can be traced back to the
darknet markets or ransomware payment may be added to
the blacklist of the government. The large transaction of low
qualitymay thus be orphaned by theminers regarding the pos-
sible huge loss. To mitigate the risk of orphaning transactions
of low quality, the usermixes strategically its payment, i.e., by
splitting its payment of transaction into several small ones in
different qualities. This scenario is illustrated as in Fig. 11.
Since the miner’s possible loss decreases due to the smaller
size of the transaction, the transaction that is not of high
quality has a better chance of getting included into the block.
The user checks the quality of the other user’s transaction
sequentially, and a sequential game can thus be used to ana-
lyze the interaction among the users [130]. The user’s utility
is a function of the quality of the transaction, the value of the
post-transaction and the cost of mixing the payment. With
backward induction, the game is proved to admit multiple
subgame perfect Nash equilibria. At an equilibrium, each
user mixes their payment in a single transaction instead of
sending multiple individual transactions. For future study,

FIGURE 11. An example of the mixing payment: transaction A is
identified to be a ransom payment and all of its outputs are added to the
blacklist. Transaction B is of high quality. To avoid getting transaction C
orphaned by the miners, the user mixes the payment of the transaction C
with the payment of transaction A and transaction B.

the transaction size, the cost and the rewards of mining can
be taken into account in a more general case.

Under the scenario in [130], the user that mixes the pay-
ment of transaction makes money flows more difficult to
trace. This is harmful for the entire blockchain system.
To address this issue, the authors in [131] investigate the
optimal level of transaction transparency and propose a reli-
able trading system. Since each blockchain user has a unique
public key, the user can use the crypto-currency to trade goods
with another user directly. To avoid the transaction informa-
tion, e.g., the ownership of a certain sum of money, being
exploited for crime, the proposed system restricts the user’s
ability to view the complete transaction information attached
to the public keys. Thereby, before delivering the goods for
trading to other users, the user trades off the expected profit
and possible loss in terms of the incomplete transaction infor-
mation to choose whether or not to perform the trading. The
trading can thus be organized as an infinitely repeated game
in discrete time as presented in [131]. The user’s utility is a
function of the trading quantity, trading price, the probability
of the trade being performed, the allocation of the goods for
trading, and the cost of trading. By defining the inequality
that the user’s utility of offering a positive trading price is
greater than that of the offering a zero trading price, i.e., the
transaction failure, the constraint between the trading price
and the allocation can be obtained. This means that if the
constraint is satisfied, the game has multiple Nash equilibria.
In any equilibrium of the game, the user has an incentive to
split large transaction into small ones and trades with several
other users.

Although the transparency of transaction information
causes a series of problems, e.g., malicious uses of infor-
mation, as presented in [130], [131], it enables the entrant,
i.e., the new blockchain user, to possess an endogenous high
reputation, i.e., the ability of performing the reliable trading.
Thereby, potential users have more incentive to enter the trad-
ing system compared with the traditional real-world trading
systemwhere only the user that has high reputation can attract
customers to trade with. Although the blockchain-based trad-
ing system facilitates the entry for potential entrant, the trad-
ing competition in the system increases, and the collusion
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among the users arises due to the information transparency.
Thus, each potential entrant chooses whether or not to enter
the system regarding the trade-off between the expected util-
ity after the entry and the severed competition and collusion.
Since the potential entrant makes its choice repeatedly in dis-
crete time period, a repeated game can be applied as presented
in [132]. The entrant’s utility is a function of the probability
that one customer joins the trading in a time period, the prob-
abilistic distribution of the reputation, the profit that can be
obtained by the trading and the cost of entry. Since both the
utility of the entrant and the social welfare of the system
are higher than those of the traditional trading system, each
potential entrant entering the system is proved to be the Nash
equilibrium. However, the balance between transparency and
privacy of the blockchain trading system still remains a topic
for further research.

2) CRYPTO-CURRENCY VALUE
In the last decade, hundreds of crypto-currencies are adopted
in the worldwide financial market. Each crypto-currency has
its value which depends on its transaction rate, transaction
fees, mining rewards and its fiat exchange rate. The miners
need to choose a certain currency to mine according to the
value of the crypto-currency and the competition from the
other miners. Given the other miners’ strategies, the miner
can choose to keep mining on the same crypto-currency
or change its strategy to mine on another one. Since the
incentive of all miners, i.e., players, to change their strategy
can be expressed using a single global function, i.e., the
potential function [135], the potential game can be applied
as presented in [133]. The potential function is determined
by the distribution of the miners on mining different crypto-
currencies, the computational power, the value and the reward
allocation of the crypto-currencies. By using the induction
of the better-response learning algorithm [135], the game is
proved to admit more than one Nash equilibrium. However,
how to achieve a desired equilibrium is not discussed. Similar
conclusion is reached in [136]. By leveraging a congestion
game model [137], the authors prove the existence of pure
Nash equilibria at which users decide whether to mine or not
join the blockchain system.

The authors in [36] further investigate the relationship
between the value of the crypto-currencies and the population
size of the users. Given a certain blockchain-based crypto-
currency, the user can choose whether or not to participate
in the blockchain platform with a cost and to hold a cer-
tain amount of the crypto-currency, given the other users’
strategies. Since the user selects its strategy based on the
productivity of the blockchain platform, i.e., the state which
represents the quality or the usefulness of the blockchain
platform, an extensive-form game can be adopted to ana-
lyze the interaction among the users as presented in [36].
The user’s utility is a function of the transaction supply and
demand, the size of the blockchain users, the participation
cost and the profit of holding the crypto-currency. By exploit-
ing the characteristics of the Hamilton-Jacobi-Bellman (HJB)

equation [138] transformed from the user’s utility, the game is
proved to admit a unique Markov equilibrium. At the equilib-
rium, the high crypto-currency value attracts more potential
users to participate. This reflects the future growth of the user
population size, and the expectation of future growth leads
reciprocally to a higher crypto-currency value.

Similar to [36], the authors in [134] demonstrate that the
value of the crypto-currency is derived by the computational
power of the blockchain network and the population size of
the users. The user determines the amount of real money
to be allocated in the transaction in the blockchain, and the
miner determines the investment in the computational power
in exchange for the mining profit according to the strate-
gies of both the other users and miners. A non-cooperative
game can thus be applied as presented in [134]. The larger
number of users attract more investment in computational
power, and more computational power means the stronger
consensus within the blockchain network and the higher
crypto-currency value. Thereby, it leads to more users par-
ticipating in the blockchain network. Thus, the reciprocal
interaction between the computational power and the user
population size captures the equilibrium value of the crypto-
currency. This equilibrium value of crypto-currency depends
on the users’ preferences, e.g., the risk aversion and the
censorship aversion, and the usefulness of the network. The
empirical data from Blockchain.info [90] supports the theo-
retical analysis in [134].

B. ENERGY TRADING
Increasing distributed renewable energy users, e.g., solar
rooftops and energy storage units, gradually changes the
centralized structure of conventional power system. The rea-
son is that the distributed energy users produce the energy
and thereby users can trade their energy with each other
directly. Therefore, by utilizing the decentralized structure
of the blockchain network for trading information exchange,
the blockchain-based energy trading systems are proposed.
Each energy user in the system can decide the amount
of energy to (i) buy from the conventional power system,
(ii) buy renewable energy from other users, (iii) store its
harvest energy, and (iv) sell its energy to the other users.

When the energy exchange price is set by the users,
the interactions among the users can be modeled as games.
For example, in [139], a potential game [135] is applied to
achieve the social optimum. Considering the energy demand
variation, a non-cooperative game is adopted in [140]. The
authors in [94] propose a credit-based energy trading system
and model the interaction between the users and the credit
bank as a Stackelberg game. Otherwise, when the energy
exchange price is set by the systemwhere the users bid for the
exchange price, the auction models can be applied to achieve
the social optimum as presented in [141], [142].

VII. CHALLENGES AND FUTURE DIRECTIONS
In Sections IV, V, and VI, we provide an in-depth survey
on applications of game theory to address a wide range
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TABLE 5. A summary of game theoretical applications for crypto-currency economic.

of issues in the blockchain networks and related systems.
However, with the fast evolution of the blockchain technolo-
gies and their applications, a plethora of emerging problems
remain open for further studies, many of which can be solved
using game theory. In this section, we expand our discus-
sion to some challenges as well as research directions with
blockchain, where the mathematical tools of game theory
may exert further potential for system analysis and mecha-
nism design.

A. CHALLENGES FROM GAME THEORY PERSPECTIVE
1) EXISTENCE OF NASH EQUILIBRIA
Most references reviewed in this survey discuss the existence
of the unique Nash equilibrium. At the Nash equilibrium,
the players, e.g., the miners or the pools, have no incentive
to deviate from their current strategies. However, in practice,
multiple Nash equilibra can exist, and thus it is challenging
for the players to choose the optimal strategy or solution.
For example, for the mining management [115], with the
existence of Nash equilibra, the miners can choose between
staying and leaving, and the blockchain users choose between
paying or not paying the transaction fee. In this case, finding
the solution among the Nash equilibria to achieve a social
optimum for the whole network is a challenge. Similarly, for
the crypto-currency economic [133], how to achieve a social
optimal equilibrium in the crypto-currency market is very
challenging.

2) IMPLEMENTATION OF GAME MODELS
The applied game models proposed in aforementioned
reviews have its limitation. For example, due to the
first-mover advantage, the Stackelberg game is widely used
to solve many issues in blockchain network. However,
the blockchain network is a type of decentralized system
with a number of distributed nodes, i.e., players. There-
fore, how leader nodes observe the strategy of each follower
node, make optimal decisions, and find the equilibrium is

one big challenge. To address the challenge, the meanfield
games [143] can be applied for analyzing the performance of
the whole blockchain network with large number of miners
where individual miners have relatively negligible impact
upon the network. In addition, evolutionary games can be
adopted for analyzingmining pools’ formation and evolution.
Stochastic games can be used for analyzing more complex
scenarios, such as miners’ probabilistic selection of transac-
tions to be included, blocks to be verified and broadcast, and
chains to be attached and mine.

B. OPEN ISSUES AND RESEARCH DIRECTIONS FOR
APPLICATIONS OF GAME THEORY IN BLOCKCHAIN
1) THROUGHPUT IMPROVEMENT
Blockchain technologies have been adopted in a huge number
of scenarios. However, the throughput, i.e., capacity of pro-
cessing requested transactions, of blockchain networks limits
the scope of blockchain applications. The major reasons for
this issue are the long block creation time and limited block
size [113]. However, block creation time and the block size
cannot be easily changed for improving the throughput. The
analyses in [114] show that miners intend to form a coalition
if the block size is unlimited. This is harmful to maintaining
the decentralized structure of the blockchain network. Also,
the authors in [115] demonstrate that even with the unlimited
block size, there is still a limitation on throughput imposed
by the waiting time for transactions to be included in blocks.
Thus, to improve the throughput, blockchain protocols in
terms of the efficient block creation and the proper block size
need to be further developed, and game theory can be a useful
tool for improving the consensus protocols.

2) ALTERNATIVE CONSENSUS MECHANISMS
In blockchain networks, e.g., PoW networks, every node
performs several certain tasks to maintain the consensus
across the blockchain. However, reaching the consensus
needs nodes to repeat tasks and may consume a large amount
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of electricity [29]. Thus, an alternative consensus mecha-
nism to PoW such as Proof of Useful Work or Resources
(PoUWR) [144] may be used. For example, computing hash
value in PoW network can be replaced with performing
stochastic gradient descent for neural network training [144].
Due to the difference between the tasks in terms of data vol-
ume, expected accuracy and variable dimension, the strate-
gies of nodes to obtain a puzzle solution are different from
those in the PoW network. Therefore, it is necessary to apply
game approaches to analyze the interaction among nodes in
the process of PoUWR competition, e.g., the computational
power allocation between PoUWR and PoW, the tradeoff
between the payoff and the cost, and security issues regarding
the deviation from the PoUWR protocol.

3) PERMISSIONED LEDGERS
Public blockchain has been adopted in many applications.
Public blockchain allows anyone to participate as a consen-
sus node, and it is not controlled by regulatory agencies,
industries or governments. As an alternative to the public
blockchain, permissioned blockchain ledgers such as con-
sortium blockchains, become another interesting approach
to implement the applications based on Nakamoto-based
blockchains. Consortium blockchains can be considered to
be semi-decentralization. The reason is that not everyone
can participate in the network. The consortium blockchain is
maintained by a group of pre-selected nodes, thus allowing
for a greater degree of control over the network by regulators.
As such, the consortium blockchains involve multiple entities
and stake-holders, i.e., the pre-selected nodes, the verification
nodes, and the blockchain users. To model and analyze com-
plex interactions among the entities and stake-holders, game
theory can be adopted as a useful tool. For example, the non-
cooperative games can be used to analyze the node selection,
Stakeleberg games can be applied to analyze the interaction
between the pre-selected nodes, i.e., the leaders, and the ver-
ification nodes, i.e., the followers. Also, evolutionary games
can be used to analyze the formation of BFT committees in
permissioned blockchain networks.

4) INCORPORATING BLOCKCHAIN TECHNOLOGIES
INTO OTHER SCENARIOS
As a versatile technology, it is also possible to incorpo-
rate blockchain into other emerging networking and appli-
cation scenarios. For example, the authors in [45] intro-
duce a blockchain-based edge computing paradigm in which
mobile users offload their computing tasks to computing
service providers and pay the corresponding fees. This
paradigm addresses the implementation issue of blockchain
applications on resource-limited mobile services. How-
ever, the blockchain-based edge computing paradigm raises
resource management issues. For example, how to motivate
the service providers to contribute their computing resources.
Game theory can be efficiently used to design incentive
mechanisms. For example, auction schemes can be adopted
to improve the utility or revenue of the service providers.

Also, the Stackelberg game can be applied to improve both
the utility of the computing service providers and the mobile
users. Predictably, by taking advantage of game theory to
analyze and design incentive mechanisms, blockchain tech-
nologies can be widely incorporated into multi-agent sce-
narios beyond the crypto-currencies, e.g., mobile blockchain
networks, information sharing scenarios, and energy trading
markets.

VIII. CONCLUSIONS
This paper has presented a comprehensive survey of the appli-
cations of game theory in blockchain. Firstly, we have given
an overview of blockchain with its structure, workflow, and
incentive compatibility. Then, we have introduced the basic
knowledge of game theory and several game models with
the objective to understand the motivations of using game
theory to analyze interactions among different components
in blockchain. Afterwards, we have provided reviews and
analyses using game theory in detail to deal with a vari-
ety of problems regarding security, mining management and
blockchain applications. Finally, we have outlined existing
challenges as well as several directions for future research.
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