
Received March 11, 2019, accepted March 26, 2019, date of publication April 9, 2019, date of current version April 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909950

Mutual-Coupling Isolation Using Embedded
Metamaterial EM Bandgap Decoupling Slab
for Densely Packed Array Antennas
MOHAMMAD ALIBAKHSHIKENARI 1, (Student Member, IEEE),
MOHSEN KHALILY 2, (Senior Member, IEEE),
BAL SINGH VIRDEE 3, (Senior Member, IEEE),
CHAN HWANG SEE 4,5, (Senior Member, IEEE),
RAED A. ABD-ALHAMEED 6,7, (Senior Member, IEEE),
AND ERNESTO LIMITI 1, (Senior Member, IEEE)
1Electronic Engineering Department, University of Rome ‘‘Tor Vergata’’, via del politecnico 1, 00133 Rome, Italy
2Institute for Communication Systems, Home of the 5G Innovation Center, University of Surrey, Guildford GU2 7XH, U.K.
3Center for Communications Technology and Mathematics, School of Computing and Digital Media, London Metropolitan University, London N7 8DB, U.K.
4School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, U.K.
5School of Engineering, University of Bolton, Bolton BL3 5AB, U.K.
6Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, U.K.
7Department of Communication and Informatics Engineering, College of Science and Technology, Basra University, Basra 61004, Iraq

Corresponding author: Mohsen Khalily (m.khalily@surrey.ac.uk)

This work was supported in part by the Innovation Programme under Grant H2020-MSCA-ITN-2016 SECRET-722424 and in part by the
U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/E022936/1.

ABSTRACT This paper presents a unique technique to enhance isolation between transmit/receive
radiating elements in densely packed array antenna by embedding a metamaterial (MTM) electromagnetic
bandgap (EMBG) structure in the space between the radiating elements to suppress surface currents
that would otherwise contribute towards mutual coupling between the array elements. The proposed
MTM-EMBG structure is a cross-shaped microstrip transmission line on which are imprinted two outward
facing E-shaped slits. Unlike other MTM structures, there is no short-circuit grounding using via-holes.
With this approach, the maximum measured mutual coupling achieved is −60 dB @ 9.18 GHz between
the transmit patches (#1 & #2) and receive patches (#3 & #4) in a four-element array antenna. Across the
antenna’s measured operating frequency range of 9.12–9.96 GHz, the minimummeasured isolation between
each element of the array is 34.2 dB @ 9.48 GHz, and there is no degradation in radiation patterns. The
average measured isolation over this frequency range is 47 dB. The results presented confirm the proposed
technique is suitable in applications such as synthetic aperture radar and multiple-input multiple-output
systems.

INDEX TERMS Metamaterial, electromagnetic bandgap, array antennas, decoupling slab, mutual coupling,
synthetic aperture radar, multiple-input multiple-output.

I. INTRODUCTION
In recent years, it has become a necessity to reduce the
size of wireless communications systems. However, the size
of certain components such as antennas is governed by the
wavelength of the signal. Hence, reducing the size of radi-
ating elements in wireless systems has become an area of
intense investigation. Antennas are also employed in arrays
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for applications like multiple-input multiple-output systems
where they are prone to detrimental effects of surface waves
and near-field, which cause adverse mutual coupling between
adjacent E-plane coupled microstrip radiating elements. The
effect of surface waves becomes especially dominant when
the gap between the elements is greater than 0.3λ0 [1].
Mutual coupling can severely degrade the antenna’s radiation
characteristics (pattern and efficiency). In addition, mutual
coupling can cause correlation between the transmitted and
received signals when the antennas are in close-proximity
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to each other that can result is diminution of system
performance [2].

Numerous approaches have been investigated to reduce the
mutual coupling between closely located antennas. Exam-
ples include using: (i) shorting patches to prevent the exci-
tations of the surface waves [3]; (ii) cavity-backed slots [4];
(iii) partial substrate removal [5]; (iv) planar soft surfaces [6];
(v) parasitic element isolators [7]; (vi) metamaterial insu-
lators for small-size antennas [8], [9]; and (vii) reversal of
current through the metamaterial radiators [10].

EM bandgap structures have also been used in planar
antennas to improve the antenna’s performance [11], [12].
EM bandgap structures consist of periodic structures with
half-wavelength periodicity separation of dielectric or metal
elements that function to prevent propagation of surface
waves within its bandgap [13]. The accommodation of half-
wavelength periodicity separation in array antennas is physi-
cally challenging. Hence, various attempts have been carried
out to reduce the size of EM bandgap structures [14]–[16].
Properties of EM bandgap have been exploited to reduce
mutual coupling between antenna elements [17]–[24].

Wireless transceivers employing full-duplex (i.e. simulta-
neous transmit/receive) currently employ distinct frequen-
cies for transmit and receive channels. Studies show that
by using a single frequency for the full-duplex operation
can substantially increase throughput as well as simplify the
front-end architecture of a transceiver [25]. Various other
approaches for full-duplex communication have also been
investigated previously including optimising the antenna
geometry [26]–[28], using various polarization diversity
techniques [29]–[31], exploiting digital beamforming [32],
near-field filtering [33], [34], RF-canceller [35], com-
bined mechanical/EBG structures [36] and sharing single
antenna [37]. However, there is still a need for small-size
antenna configurations with high-isolation between adjacent
radiating elements.

In this paper, a technique is described to realise high iso-
lation between antenna elements suitable for array antennas
or full-duplex high-speed target radars. The array antenna
used to demonstrate this technique consists of four-element
patch radiators implemented on the same substrate. The array
antenna is designed to operate over 9.12 to 9.96 GHz with
bandwidth of 840 MHz, which is extensive band for MIMO
and SAR applications. Mutual coupling reduction is achieved
by employing a unique metamaterial EM bandgap decou-
pling slab. Unlike conventional mutual coupling reduction
approaches, the proposed technique provides high isolation
between radiating elements and the size of the array antenna
remains unchanged. The antenna performance and mutual
coupling were analysed using standard full-wave EM sim-
ulation tools and then were validated by the measurements.
In addition, to more validity of the proposed method the
results extracted from the full wave EM simulator have com-
pared with the circuit model, which show an excellent agree-
ment with each other proving the precisely of the proposed
approach.

II. MUTUAL COUPLING REDUCTION
BETWEEN ARRAY ELEMENTS
This section first discusses the basic array antenna used
in this study as a reference that is constituted from four
square patches with no decoupling slab. Reflection and
transmission coefficient response of the array is presented
without and with loading of a cross-shaped simple decou-
pling slab (SDS), which is located between the four radi-
ators, to show the degree of mutual coupling suppression
between array’s elements. Enhanced suppression is demon-
strated in section III by employing MTM electromagnetic
bandgap (EMBG) decoupling structure.

A. ARRAY ANTENNA STRUCTURE
The reference array antenna, depicted in Fig. 1, is constructed
with four identical square microstrip patches, where each
patch is excited individually. Dielectric substrate used is a
lossy FR-4 with dielectric constant εr = 4.3, thickness h =
1.6 mm and loss-tangent tanδ = 0.025. The configuration of
the array antenna is symmetrical.

TABLE 1. Isolation between array antenna’s elements.

Measured S-parameter responses (reflection coeffi-
cient (S11 < −10dB) and transmission coefficients
(S12, S13,&S14) of each radiating element (#1 to #4) of
the reference array antenna are shown in Fig. 2. The patch
antennas operate from 9.12 GHz to 9.60 GHz with frequency
bandwidth, maximum impedance matching and fractional
bandwidth of 480 MHz,−40 dB at 9.36 GHz (resonance fre-
quency), and 5.13%, respectively. The isolation (minimum,
average, and maximum) between elements: #1 & #2; #1 &
#3; and #1 & #4, are given in Table 1. Due to symmetrical
configuration of the proposed array antenna, the isolation
between other adjacent elements are identical.

B. ARRAY ANTENNA WITH SIMPLE DECOUPLING SLAB
The main challenge is to achieve high isolation between the
antenna elements while keeping them as close possible to
each other to realize a compact array. A simple cross-shaped
decoupling slab, shown in Fig. 3, was used to improve the
isolation between the radiating elements of the array antenna
in Fig. 1. The decoupling slab was inserted between the
array’s elements, as shown in Fig. 4. In the array antenna,
patch #1 & #2 is used for transmission, and #3 & #4 for
reception. Ground-plane of the array antenna is truncated as
shown in Figs. 4 (b) and 4(d).
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FIGURE 1. Reference array antenna configuration using four identical
square patches, (a) top view of array antenna comprising four microstrip
patches, (b) ground plane of array antenna, (c) fabricated prototype of the
antenna, and (d) ground plane view of the fabricated antenna prototype.

The S-parameter performance of the array antenna with the
decoupling slab in Fig. 5 shows the array has an impedance
bandwidth of 720 MHz from 9.12 to 9.84 GHz, which is
corresponds to fractional bandwidth of 7.6%. Comparing
Figs. 2 and 5, it is evident by inserting SDS the antenna’s

FIGURE 2. Measured reflection coefficient (S11 < −10dB) and
transmission coefficients (S12, S13, & S14) of the reference array antenna.

bandwidth is extended by 240 MHz. This shows the decou-
pling slab does not degrade the impedance bandwidth of
the array antenna. Optimum impedance match of −25 dB is
observed at resonance frequency of 9.37 GHz. By applying
the simple decoupling slab, the measured isolation of greater
than 10 dB is achieved between the transmit patches (#1& #2)
and receive patches (#3 & #4). The minimum, average, and
maximum transition coefficients (S12, S13, and S14) are given
in Table 2. Due to symmetrical configuration of the proposed
array antenna, the isolation between other adjacent elements
is identical.

TABLE 2. Isolation between array antenna’s elements.

FIGURE 3. Simple decoupling slab structure (SDS).

III. DECOUPLING SLAB WITH EMBEDDED EM BANDGAP
Conventional microstrip antenna are built on dielectric sub-
strates that comprise conductive tracks implemented on the
top surface with a conductive ground-plane on the bot-
tom surface of the substrate. It is shown in [38] that only
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FIGURE 4. Array antenna configuration with embedded SDS, (a) simulated
top view, (b) simulated back view of ground-plane, (c) fabricated
prototype of the array, and (d) fabricated prototype of the ground plane.

TModd and TEeven modes propagate in a microstrip struc-
ture, and the cut-off frequency of TModd is independent of
substrate thickness. It is this mode that propagates through
a thin substrate, and along with surface currents contribute
towards mutual coupling. The suppression of surface currents
between adjacent radiating elements in an array antenna and

FIGURE 5. Measured S-parameters performances of the array antenna
with simple decoupling slab.

FIGURE 6. (a) Proposed MTM based EMBG decoupling slab embedded
with four unit-cells of double E-shaped slits, and (b) EM bandgap unit-cell
boundary conditions for full-wave simulation using finite element
method solver.

TModd mode is therefore necessary to prevent degradation
of the radiation pattern in array antennas. EMBG structure
shown in Fig. 6 is used here to minimize mutual coupling
between neighbouring antennas in the array.

The proposed MTM-EMBG structure consists of resonant
elements that are magnetically coupled to the dominant sub-
strate mode, as shown in Fig. 6. Construction of the EM
bandgap isolator involves embedding two identical E-shaped
slits in each arm of the conductive decoupling slab of Fig. 3.
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FIGURE 7. Transmission-line model of the EM bandgap unit-cell.

FIGURE 8. Comparison between full-wave and circuit model of coupling
coefficients (K1 and K2) as a function of gap between the E-shaped slits,
(a) K1, and (b) K2.

The slab essentially acts like a shunt inductance, and the two
outwards facing E-shaped slits act as a series capacitor. Hor-
izontally polarized magnetic-field coupling the slits induce
electric currents on the MTM-EMBG decoupling slab that
generate a magnetic-field in the opposite direction. When
the E-shaped slits are in close-proximity, the inductance of
the slab increases. At resonant frequency, the MTM-EMBG
decoupling slab becomes essentially a perfect magnetic con-
ductor that thwarts propagation of the substrate mode. Self-
inductance resulting from mutual coupling interaction can be
characterised by [39]

LT =
µrµ0Astrip

d
(1)

where Astrip is the surface area region bounding the E-shaped
slits, and d is the gap between the slits. Horizontal magnetic-
fields induce current in the conducting track that generates
perpendicular electric-fields at the edges of the slits, and the
corresponding capacitance can be calculated using [40]

CT = εrε0
K (kT )

K
(√

1− k2T

) (2a)

kT = sin
(π
2
η
)
+ 2
√
η

1+ η
(2b)

FIGURE 9. The proposed MTM EM bandgap decoupling structure etched
on the top side of the substrate and excited by 50� microstrip
transmission line on the bottom of the substrate: (a) Simulation model
for determining the characteristics of the MTM-EMBG decoupling
structure with slot width and length of Ws = 1.5mm and Ls = 24mm,
respectively. Note, MB and SB represent the master and slave boundaries,
respectively; (b) Simulated surface impedance of the MTM-EMBG
decoupling structure; and (c) Simulated and circuit model reflection and
transmission coefficients of the MTM-EMBG decoupling structure.

where η is the metallization ratio, and K (k) is the complete
elliptic integral of first kind defined by [40]

η =
ws

ws + d
(2c)

K (k) =
∫ π

2

0

d∅√
1− k2sin2∅

(2d)

where ws is width of slits, and d represents gap between them
(see Fig. 6). The inductance and capacitance of the EMBG
unit-cell at 9.4 GHz is determined to be LT = 12.8nH and
CS = 3.5pF , respectively.
From [39], [40] the transmission-line model for the MTM-

EMBG structure is shown in Fig. 7. Inductance of the EM
bandgap unit-cell can be representedwith an inductivemutual
coupling K1. The mutual coupling between two horizontal
E-shaped slits is represented byK2. Mutual coupling between
the equivalent transmission-line and the E-shaped slits is
expressed by capacitive coupling Cright and Cleft correspond-
ing to the right and left slits, respectively. Qf and Cp rep-
resent the quality-factor of the MTM-EMBG structure and
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FIGURE 10. Geometry of the array antenna with MTM-EM bandgap decoupling slab,
(a) simulated top view, (b) simulated bottom view of ground-plane, (c) fabricated
prototype of the array, (d) fabricated prototype of the ground plane, and (e) the equivalent
circuit model of the vertical unit-cell interfaced with patch antennas #1 and #2.

the parasitic capacitance between the slab and ground plane,
respectively.

To confirm the accuracy of the MTM-EMBG structure
model, a 3D EM full-wave solver (CST Microwave Stu-
dio ver. 2016) was employed. As shown in Fig. 6(b), the
perfect magnetic conductor (PMC) walls impose the bound-
ary conditions around the unit-cells. Perfectly matched lay-
ers (PMLs) are assigned to eliminate nonphysical reflections
at the boundary of the upper free-space and the front and
back sides. Perfect electric conductor (PEC) is assigned at

the bottom as ground plane. Equivalent circuit parameters of
the MTM-EMBG unit-cell from the 3D EM full-wave solver
is given in Table 3. This information was then used to deter-
mine the equivalent electrical circuit model, shown in Fig. 7,
which was verified using Keysight’s ADS (RF circuit solver).
Fig. 8 shows how the mutual coupling coefficient K1 and K2
are affected with variation in the gap between the E-shaped
slits using circuit model and 3D EM full-wave solver. The
proposed equivalent circuit model correlates well with the 3D
EM full-wave solver results.
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TABLE 3. Extracted circuit elements of the MTM-EMBG unit-cell
equivalent circuit model.

FIGURE 11. Dimensions (in millimetre) of the proposed antenna array
with MTM EM bandgap isolator.

FIGURE 12. Measured S-parameters of the array antenna with MTM EM
bandgap decoupling slab.

Mutual coupling coefficients K1 and K2 describe the
magnetic-field linkage between the substrate mode and the
EM bandgap isolator, and are dependent on the physical
dimensions of the EM bandgap isolator. Fig. 8 shows that as
the gap between the unit-cell becomes larger, the mutual cou-
pling between the two E-shaped gaps (K2) becomes weaker;
however, the inductive coupling between the substrate mode

FIGURE 13. Measured S-parameter responses of the proposed array
antennas before and after applying MTM-EMBG isolator, (a) between
elements #1 & #2, (b) between elements #1 & #3, and (c) between
elements #1 & #4.

and the unit-cell (K1) shows little variations to the gap
between the slits within the range (λg/16 ∼ λg/12).
Characterisation of the proposedMTM-EMBGdecoupling

structure can be obtained from simulation of the model
in Fig. 9(a). The simulated surface impedance is shown
in Fig. 9(b). It can be observed the MTM-EMBG decoupling
structure exhibits acceptable impedance over its operational
frequency range from 8.8 to 10.5 GHz. The reflection coeffi-
cients are shown in Fig. 9(c). The results show the decoupling
structure design is optimum at ∼9.85 GHz.
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FIGURE 14. Current density over the array antenna at 9.6 GHz, (a) with no MTM-EMBG
decoupling slab, and (b) with MTM-EMBG decoupling slab.

IV. ARRAY ANTENNA WITH MTM-EM
BANDGAP ISOLATOR
Functionality of the proposed MTM-EMBG decoupling slab
is demonstrated with a four-element antenna array, where
the cross shaped decoupling slab is inserted between the
patch antenna arrangement, as shown in Fig. 10(a), where
Antennas #1 & #2 are used for transmission (TX), and

Antennas #3 & #4 are used for reception (RX) in a RF
transceiver. The ground-plane on the back side of the sub-
strate is truncated, as shown in Fig. 10(b). The distance
between the adjacent radiating elements (d1) and gap between
the elements and the decoupling slab (d2) are 20 mm (0.6λ0)
and 2 mm (0.06λ0), respectively, where λ0 is the free space
wavelength at 9.12 GHz.
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FIGURE 15. Measured radiation patterns of the array antennas, i.e. reference, with SDS, and with
MTM-EMBG, at the operational frequencies of 9.18, 9.4, and 9.6 GHz. Please note with reference to
Fig. 1(a) the left-hand plots are in the x-y plane and the right-hand plots are in the y-z plane.

The MTM-EMBG decoupling slab was designed for opti-
mum performance at 9.6 GHz. The equivalent circuit model
of the vertical unit-cell coupled to patch#1 & #2 is shown
in Fig. 10(e). The equivalent circuit of other unit-cells cou-
pled with adjacent patch antennas is similar. Value for RLC
parameters are: 5.2 �, 11.5 nH, and 7.8 pF, respectively. The
decoupling slab has a slot width of Ws = 1.5 mm and slot
length of Ls = 24 mm. Dimensions of the array antenna are
given in Fig. 11.

The antenna’s S-parameter responses are depicted
in Fig. 12. The bandwidth of the array antenna is 840 MHz
(9.12 GHz to 9.96 GHz), with a fractional bandwidth of 8.8%.
The bandwidth has extended by 360 MHz. Besides the

TABLE 4. Isolation between array antenna’s elements.

reflection coefficients, the magnitude of the transition coef-
ficients (S12, S13, and S14) have substantially dropped. The
minimum, average, and maximum magnitudes for S12 are:
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TABLE 5. S-Parameter characteristics of the proposed array antenna.

−34.2 dB,−47 dB, and−60 dB; for S13 they are−28.33 dB,
−36.12 dB, and −44.3 dB; and for S14 they are −27 dB,
−30 dB, and −33 dB. For clarity these results are given
in Table 4. The proposed structure’s optimum performance
is at 9.6 GHz with impedance matching of −15.0 dB. At this
frequency the antenna’s isolation between elements #1 & #2,
#1 & #3, and #1 & #4 are 38.2 dB, 38.2 dB, and 30.15 dB,
respectively. This reveals greater than 10 dB improvement
in isolation compared with the reference antenna at 9.6 GHz
between the transmit patches (#1 & #2) and receive patches
(#3 & #4). Due to symmetrical configuration of the proposed
array antenna, the isolation between other adjacent elements
is identical.

The measured S-parameter responses without decoupling
slab (reference case), with SDS, and with MTM-EMBG
decoupling slab are shown in Fig.13. It is evident that with
MTM-EMBG, (i) the reflection coefficient is better than
−15 dB at around 9.6 GHz; and (ii) improvement in the
impedance bandwidth is greater than 350 MHz. It’s worth
to mention that, the resonance frequencies for the reference
antenna without decoupling slab and the antenna with simple
decoupling slab are same. However, it has shifted to the high
frequency after applying the metamaterial decoupling slab.
The reason is that, when we have realized the metamaterial
properties by etching the E-shaped slots on the decoupling
slab the series left-handed capacitances have generated that
enhance the capacitive property of the entire structure, which
is caused to shift the resonance frequency to higher frequency.

Surface wave suppression functionality of the
MTM-EMBG decoupling slab is evident in the experimen-
tal transmission coefficient (S12) response between antenna
elements #1 & #2, shown in Fig. 13(a). MTM-EMBG decou-
pling slab has a significant effect on whole of the frequency
bandwidth from 9.12 – 9.96 GHz. At 9.18 GHz, the differ-
ence in isolation is more than 40 dB and at 9.6 GHz the

isolation deteriorates to more than 20 dB. This is because the
MTM-EMBG unit-cell has a finite operational bandwidth.
Due to symmetrical configuration of the array antenna the
transmission coefficient between elements #3 & #4 is identi-
cal to between elements #1 & #2 (i.e. S34 = S12). The mea-
sured transmission coefficient response between elements #1
& #3, and elements #1 & #4 with and without MTM-EMBG
are shown in Figs. 13(b) and 13(c), respectively. It is clear
from Fig. 13(b) that, the MTM-EMBG decoupling slab has
moderate effect at higher frequencies and the isolation tends
to converge between 9.4 and 9.6 GHz. The measured trans-
mission coefficient between elements #1 & #4 are shown
in Fig. 13(c), which is identical to between elements #2 & #3
(S23 = S14). At 9.18 GHz, the difference in isolation is
15 dB, and at 9.6 GHz the isolation is 12 dB. These results
clearly show the effectiveness of the MTM-EMBG decou-
pling structure in reducing the mutual coupling between adja-
cent antennas encountered in array antennas. The results are
summarized in the Table 5. It should be noted in the proposed
technique no short-circuit grounding using via-holes has been
used. Due to the symmetrical configuration of the proposed
array antenna, the magnitude of S11 is identical to S22, S33,
and S44. Also, S12 = S34, S13 = S24, and S14 = S23.

Current density distribution over the array antenna
with and without MTM-EMBG decoupling slab is shown
in Fig.14. It is evident from these plots the MTM-EMBG
decoupling slab soaks up the fringing fields that would oth-
erwise couple with the adjacent radiating elements.

The measured radiation patterns of four-element array
antennas under the all three conditions (reference antenna
with no loading, SDS and MTM-EMBG loadings) at
9.18 GHz, 9.4 GHz and 9.6 GHz are shown in Fig. 15.
It is observed the radiation patterns with MTM-EMBG
decoupling slab approximates the original reference antenna,
and over certain angular directions can exhibit better
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TABLE 6. Proposed antenna characteristics compared with recent works.

gain performance. The maximum gain of the array antenna
with the decoupling slab increased from 3.3 dBi to 5.4 dBi
corresponding to 63% improvement.

V. COMPARISONS WITH OTHER ANTENNAS
The proposed array antenna is compared with the several
recent works in Table 6. In the literature, all the proposed
designs are constructed with only two radiation elements,
since they have not symmetrical configuration that impossi-
ble them to realize the arrays with more than two elements.
However, in our case due to the symmetrical configuration of
the structure we have increased the array elements to four. All
papers referenced in Table 6 have defected ground plane to
enhance isolation between the two radiating elements, which
caused to enhance complexity of the structure and therefore
the cost for manufacture procedures has increased. With the
proposed technique the size of the array antenna remains
unchanged. The maximum isolation improvement between
adjacent antennas with the proposed method is 40 dB, which
is comparable to [41], however unlike [41] in the proposed
technique there is no need to temper with the ground plane,
and the MTM-EMBG decoupling structure didn’t require
short-circuit vias. This resulted in a simple technique which
can be retrofitted to existing antenna arrays quickly and at
low cost for MIMO systems and SAR applications.

VI. CONCLUSIONS
A novel technique is demonstrated to suppress mutual cou-
pling between adjacent radiating elements in array anten-
nas. This involves inserting a metamaterial electromagnetic
bandgap decoupling structure between the radiating ele-
ments. The proposed MTM-EMBG structure, which does

not require any via-holes and defected ground plane struc-
tures, can be directly implemented on the surface of the
planar array antenna. In addition, the MTM-EMBG struc-
ture can also be retrofitted with ease. Experimental results
show excellent isolation is achieved with the decoupling slab
across 9.12 to 9.96 GHz. The results confirm the proposed
technique is suitable in applications such as synthetic aper-
ture radar (SAR) andmultiple-input multiple-output (MIMO)
systems.
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