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ABSTRACT In this paper, we present a new scheme for implementing virtual keyboards, which uses only two
to four motion-recognition rings per hand and a two-dimensional keyboard template (e.g., an A4 size paper
with printed key positions). It has the benefit of portability, customizability, and low-cost when compared
with existing approaches. Essentially, we have shown that wearing two wireless IoT rings on the middle
phalanges of two fingers of each hand, users can input the alphabetic characters into a computing device by
typing on a flat paper on a desk, and potentially in mid-air. We have demonstrated that two rings are sufficient
in capturing the gestures and motions of all fingers in a typing hand for keystrokes recognition. A single
wireless IoT ring, which weighs 7.8 grams, consists of a Bluetooth low energy (BLE) unit, a micro inertial
measurement unit (mIMU), and a cell battery. The 3-axes attitude angles and the Z-axis acceleration of each
ring are adopted as the features for keystroke recognition. The overall keystroke recognition accuracy rate
can reach as high as 94.8% when two IoT rings are worn by a user on each hand; this accuracy rate increases
to 98.6%, when four rings are worn on each typing hand.

INDEX TERMS Wearable sensors, wireless IoT ring, keystroke recognition, virtual keyboard, micro IMU.

I. INTRODUCTION
Nowadays human-computer interaction has become an essen-
tial living skill for the general public. In particular, the typing
on QWERTY keyboards has been a dominant communica-
tion method between humans and machines for many years.
Although technological advances have greatly accelerated the
development of other devices and computer input methods,
the keyboard is still the pervasive device today for the general
users of computing systems. But the problems that consumers
experience when using a keyboard, such as poor portability
and typing noise, have yet to be solved. To address these
problems, various methods and devices have been devel-
oped with the goal of replacing the physical keyboard for
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approving it for publication was Pietro Savazzi.

human-computer interactions. For example, speech input [1]
is a popular alternative solution, which seems more natural
and much more ‘‘portable’’, but it has problems such as low
accuracy of dialectal accent recognition and voice interfer-
ence to and from people nearby. Another increasingly popular
input method is using a software-based screen keyboard [2],
but this method limits the input speed and the accuracy
becomes a concern when a screen becomes too small.

Many concepts and prototypes of virtual keyboard have
been proposed and developed recently against the back-
drop of booming human-computer interaction technologies
in the past few years. Unlike QWERTY keyboards, virtual
keyboards break the limitation of physical contact between
fingers and keys, and an increasing number of commer-
cial virtual keyboards have been developed based on dif-
ferent principles and platforms, but thus far, no virtual
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keyboard technology has gained wide consumer acceptance.
Virtual keyboards can be roughly divided into three cate-
gories: vision-based, wearable, and other non-contact virtual
keyboards.

A. VISION-BASED VIRTUAL KEYBOARDS
This type of virtual keyboard come in two popular types. The
first type generally adopt a camera to recognize keystrokes
by tracking finger movements or position through optical
image data and gesture recognition algorithms [3]–[9]. The
other type is the laser-based virtual keyboards [10]–[13] that
mostly utilizing Infrared (IR) light and a camera to detect
the movement and position of the fingers on a laser-projected
virtual keyboard. A key problem with this type of technology
is that, when a finger pauses on a key’s virtual position, it is
hard to determine whether to the motion should be interpreted
as a key-typing input or just a resting finger. Also, this method
still has the portability problem compared to wearable virtual
keyboards.

B. WEARABLE VIRTUAL KEYBOARDS
Wearable virtual keyboards [14]–[18] are installed with var-
ious sensors on the hands or fingers to detect their ges-
tures and motion, which can be matched with the motions
of typing different keys. The ‘‘data glove’’ [18]–[22], inte-
grating sensors, is a common example. Through detecting
finger gestures, it can be applied as a keyboard, a mouse,
or other interactive devices. However, this kind of gloves
is often unwieldy, constraining, and uncomfortable to use.
Another type of virtual input scheme is the hand-writing
approach [23]–[28], which applies the motion sensors to
acquire the motion trajectories or motion features for the
recognition of hand-written characters. All these wearable
virtual keyboards are aimed at more portability and comfort,
and they indeed have been improved significantly recently,
but more revolutionary works are required in order to improve
the existing devices for consumer acceptance.

C. OTHER NON-TOUCHED VIRTUAL KEYBOARDS
There are also many other types of novel and fashionable
wearable virtual keyboards. The WIKEY system [29] pro-
posed by K. Ali is a good example, which is established
using the change in Channel Status Information (CSI) val-
ues of WiFi signals when typing. Also, other schemes such
as acoustics-based [30]–[32], electromagnetic emissions-
based [33] and EOG (electrooculography) or EEG (elec-
troencephalogram) based [34]–[36] principles have also been
explored to create virtual keyboards.

In this paper, we present a new wearable virtual human-
computer interaction technique based on using as little as two
wireless IoT rings on each hand and a paper with printed
keyboard patterns. For this new technology, keystrokes are
recognized based on the varying finger motions and gestures
when typing different keys. Attitude angle and acceleration
of the fingers on each hand are used as the main features for
keystroke recognition. By analyzing the correlation between

the touching finger and non-touching fingers during typing,
we found that twowearable IoT sensors are enough to support
the letter-typing work of each hand with reasonable accu-
racy. In our experiments, the best combination for two rings
on each hand is: two rings worn on the little and middle
fingers of the left hand, and two rings worn on the ring
and middle fingers of the right hand. The result shows that
this scheme currently delivers an average recognition rate of
about 94.8% for all 26 English alphabet keys on a ‘paper
keyboard’. With more data collection and feature selection,
or possibly wearing more rings per hand, we are optimistic
that this technology could provide a higher keystroke-input
accuracy in the future.

We note here that, most of the proposed wearable virtual
keyboards, such as the data glove and ‘‘Tap’’ [15] often
require users to learn a new typing method different from the
traditional keyboard-typing motions. Our proposed wireless
IoT rings based method allows users to input letters with less
constraint and type keys using their own typing behavior.
With further refinement of software, we envision that users
can transfer their typing habit from the traditional keyboards
to our virtual keyboard smoothly. Moreover, our proposed
scheme has the advantages of less typing noise and extreme
portability; we expect this new type of input method can be
used in many situations, such as quiet offices, meeting rooms,
and even public places where using a physical keyboard
is inconvenient. With the further development of wearable
sensor technology, the IoT rings will be much smaller and
cheaper in the near future, and therefore, it could shift the
paradigm of virtual computer-human interaction technology
for consumer computing devices in the coming decade.

II. SYSTEM SETUP
A. HARDWARE SYSTEM
The IoT ring consists of a BLE (Bluetooth Low Energy)
unit, a mIMU (micro Inertial Measurement Unit), and a cell
battery. The IoT ring has a small size (19mm × 17mm ×
25mm) and weight (7.8grams in total, including a 0.8grams
coin cell battery, a 1.7grams sensor board, and a ‘‘ring’’
structure weighing 5.3grams). In the future, these IoT rings
can be further reduced in size such that users could wear
these devices as jewelry items when typing on a desk or
even in air. In designing the IoT rings, we mainly consid-
ered: 1) low energy consumption and 2) small chip size.
In Table 1, we summarize the corresponding parameters of
the commonly used chipsets which have BLE and mIMU
chips.

As shown in Table 1, DA14583 chipset (which includes
a BLE chip, a 3-axes accelerometer and gyroscope chip,
and a 3-axes magnetometer chip) meets the requirement of
lower wireless transmission power and smaller overall foot-
print. Hence, we developed wireless sensor module based
on the DA14583 chipset with specifications of: 1) Blue-
tooth Low Energy chip using 3.4mA for data transmis-
sion and 3.7mA for receiving signals; 2) a BMI160 chip
with 3-axes accelerometer (+/ − 2g range with resolution
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TABLE 1. Parameter comparison between different commonly used
chipsets with BLE wireless data transmission.

of 16384LSB/g) and 3-axes gyroscope (+/ − 2000deg/sec
range with resolution of 16LSB/(deg/sec)); 3) a BMM150
chip with 3-axes magnetometer (+/ − 2300µT (x, y-axis),
+/− 2500µT (z-axis) range with resolution of 0.3µT/LSB).

The entire board could be operated with a 48mAh coin cell
battery, which could function for about 8 hours continuously
(with sample frequency of the IoT Ring set to 65HZ for data
collection). The chipset is widely used in such applications
such as augmented reality, indoor navigation, andmotion cap-
turing (e.g., see [37]). The overall electrical components are
orderly arranged in a small space, which could be integrated
within a wearable ring for our project, as shown in Fig. 1(a).
For the experiments described in this paper, the rings are worn
on the middle phalanges of the fingers, as shown in Fig. 1(b).

B. PROPOSED RING AND PAPER KEYBOARD CONCEPT
Our proposed paper-keyboard scheme is built based using
wearable IoT rings. The individual rings are small, comfort-
able to wear, and easy to use comparedwith existingmethods,

such as vision-based, WiFi-based, and electromagnetic
emissions-based input devices. The key concept is to use
MEMS (microelectromechanical systems) motion sensors to
collect the motions of fingers while they undergo typing
motions for different keystrokes. Our basic hypothesis is that,
during the typing motion of a particular key, a user will move
some fingers towards to the key in a unique formation and
direction, and hence, a special angular pattern in the time-
series for typing each key can be detected by the IoT rings
worn on specific fingers. We have shown that it is possible to
utilize the attitude angle to quantify the unique patterns of the
finger motions, and the relationship between finger motions
and keystrokes could be mapped.

The keystroke recognition process, which is shown
schematically in Fig. 2, entails data collection, data pro-
cessing, feature extraction, and data classification. When the
‘‘keys’’ on a paper are pressed, the motion sensing rings will
collect and send the motion data to a mobile device or a
computer through BLE, and subsequently, the typing motion
data is sent to a remote server via Cloud technology. All the
feature extraction and classification work could be completed
on ‘Cloud’ computing platforms if mobile phones or iPads
could not perform the computing work fast enough.

Correspondingly, the implementation method of the exper-
iments is shown in detail in Figure 1. Each alphabetic key is
typed by a particular finger according to the standard typing
method, which is shown in Fig. 1(c). Each subject can type
in their habitual speed and gesture. Before typing, fingers of
both hands are put on the Home Row Keys correspondingly.
The Home Row Keys are defined as: ‘‘ASDF’’ for the left
hand and ‘‘JKL;’’ for the right hand. Also, to eliminate the

FIGURE 1. The experimental setup, which includes the wearable IoT rings and the paper keyboard. (a) Dimensions of the motion sensing board
(including the coin cell battery) which is embedded in a ring. (b) Photograph of a student performing experiments using the IoT rings and a printed
keyboard (18.5 × 5.5 cm) on a paper; the individual key dimensions and locations are the same as those of the keys of a standard physical keyboard.
Bluetooth is adopted to transmit the IMU sensor data to the mobile devices. Two rings are worn on the little finger and middle finger of the left hand,
while the other two rings are worn on the ring finger and middle finger of the right hand. (c) The corresponding relationship of the fingers and keys in
standard typing method.
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FIGURE 2. The schematic diagram of the keystroke recognition process.

impacts of psychological and other factors, the subjects are
required to look at the monitor during typing.

III. EXPERIMENTAL METHOD
A. DATA PREPROCESSING
To remove the Zero drift of sensors, the accelerometer and
gyroscope of the ring were calibrated separately before the
experiment. After the motion data was received, we applied
a zero-bias compensation to eliminate the zero bias. The
algorithm is shown as following the equations:

x ′ =
1

m− n

m∑
i=n

xr (i) (1)

x(i) = xr (i)− x ′, i = n, ...,m (2)

where xr is the raw data of accelerometer and gyroscope, n is
the starting point of the sampling sequence, m is the ending
point, and x(i) is the value after zero bias compensation [38].

Next, a moving average filter was applied to eliminate the
high-frequency noise of accelerometer data and smooth the
waveforms. The filter is shown in the following equation:

y(i) =
1
M

M−1∑
j=0

x[i− j] (3)

where y(i) is the output signal, andM is the size of the moving
window of the average filter [39].

B. FEATURE SELECTION
From the comparison of the waveforms collected from typing
different keys using the accelerometer, angular velocity, and
magnetometer data, we found that none of the three can
produce an acceptable accuracy of keystroke recognition.
As discussed by prior research results, accelerometer data
could be used to easily distinguish some finger and hand
gestures [40]–[43], such as up, down, left and right. But it is
still difficult to recognize the keys with high accuracy because
of the high similarity among these adjacent keystrokes and
the changing typing speed. Keystroke recognition using the
angular velocity data also has the same problems. And,
the magnetometer data is easily affected by environmental
noise.

Due to the differently positioned keys in a keyboard layout,
the typing path of each keystroke should be unique, and
which should lead to different finger gestures and motions.
And, assuming that the typing motion of fingers is stable and
consistent, it is possible to recognize keystrokes by analyzing
the gestures of fingers. We hypothesize that during the typing
process, the attitude angles of the fingers can be used to
express the gestures of fingers. Therefore, we used attitude
angles as the features to describe the typingmotion of fingers.
There are three kinds of attitude angles: pitch angle, roll angle
and yaw angle. To obtain the attitude angles, we adopted
angle complementary filter for angle estimation [45] (for
only the pitch and roll angles). The algorithm is shown as
follows:

θAngle = (1− α)∗aAcc + α∗(θAngle + ωGyro∗dt) (4)

where θAngle is the final estimated attitude angle, aAcc is the
angle estimate based on measured accelerometer data, and
(θAngle + ωGyro∗dt) is the angle estimate based on measured
angular velocity integration over time, α is the weight coeffi-
cient, which is determined by the following equation:

α =
τ

τ + dt
(5)

where τ is the time constant of the filter. As for yaw angle,
we only estimated the angle roughly using the angular veloc-
ity, because the angle is not affected by the acceleration data.

To verify the stability and consistency of the angles, we car-
ried out a series of experiments, and collected 50 sets of
data for typing each alphabetic key. Focusing on the relative
values of the attitude angles, the initial angle is shifted to zero.
In Fig. 3, as examples, we show the calculated attitude angles
as a function of time of the motions of different fingers of
the left hand as they are used to type three different keys.
The red lines represent the average attitude angles of these
data sets. We can see evident differences among different
keystrokes using this method. And, as shown in the experi-
mental data in Fig. 3, the change of attitude angles of a finger
is consistent while typing a particular key. We adopted the
difference between the angles before and after a keystroke as
the features for keystroke recognition. Despite the differences
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FIGURE 3. The waveforms of 50 sets of time-series attitude angles data
for the keys ‘E’, ‘G’, and ‘V’ typed by the left hand. The roll and pitch angles
were calculated based on Eq. 4, and the yaw angle was calculated by
integrating the angular velocity data from the gyroscope.

of the measured attitude angles among keystrokes of typing
the same key (i.e., from typing the same key 50 times), the
dynamic trend in attitude angles of a specific key is the
same.

C. FEATURE EXTRACTION
In Fig. 4, we present the change in the attitude angles of four
fingers for both hands when typing different keys. By using a
keyboard typing monitor software developed by our team and
repeated experiments, we found a peak or valley in the middle
of the attitude angle waveforms, which only occurs at the
moment of typing. At the same time, a sharp change occurs in
the waveforms of the acceleration data, which indicates that
the finger is pressing a key. Therefore, these peaks or valleys
of the angle waveforms were used as the basis for feature
extraction.

The first step for angle extractionwas to interpret the wave-
form of each keystroke by accurately detecting the starting
and ending points. From Fig. 4, we see that the amplitude
of attitude angle change of some keys is small, and hence it
is not easy to detect the starting and ending points of each
peak and valley directly. Since the change in the raw angular
velocity data from the gyroscope are more obvious for these
cases, the starting and ending points were detected by using
the raw angular velocity data if the amplitude change of the
attitude wave form is too small. For example, from Fig. 5(a),
we can see that the angular velocity data of a particular finger
is stable when no key is pressed. Once a key is pressed,
the angular velocity in all 3 axes changes sharply. And, when
the typing is finished, i.e., the typing finger moves back to its
original position, the angular velocities return to their normal
values again. Therefore, the starting and ending points can be
detected by the forward difference method easily, as shown
in equation (6):

1ωk =
∣∣ωxk − ωxk−1 ∣∣+ ∣∣ωyk − ωyk−1 ∣∣+ ∣∣ωzk − ωzk−1 ∣∣ (6)

FIGURE 4. The attitude angle waveforms for all 26 alphabetic keys as typed by different fingers of each hand.
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FIGURE 5. The starting and ending points detection for the recognition of
the angular waveforms of keystrokes. (a) 3-axes angular velocity data.
(b) The sum of the absolute difference values of the angular velocity on
3-axes.

where1ωk is sum of the absolute difference of 3-axes angular
velocities at k point. A moving average filter is applied again
to smooth the differential sequence of angular velocity, which
is then defined as:

S(k) =
1
N

∑k

i=k−N
1ωk (7)

where N is the window size of the moving filter [46].
Thresholds αth and βth were set to detect the starting and

ending points of the waveforms, where βth is a length thresh-
old of the motion time used to eliminate the accidental jitters
of the fingers. For the sampling sequence after difference,
if any point satisfy the condition S(k) > αth, we will consider
S(k) as a starting points or ending point. Then, an extra
condition was added to judge the attribution of the point:{

S(k) > S(k − 1), S(k − 3)
S(k) < S(k + 1), S(k + 3)

(8){
S(k) < S(k − 1), S(k − 3)
S(k) > S(k + 1), S(k + 3)

(9)

If S(k) satisfied the set of conditions in (8), it was con-
sidered as the starting point. Similarity, if S(k) satisfied
the conditions in (9) it was identified as the ending point.
However, the hand jitter and environmental noisy may cause
disturbance on the recognition of motion patterns. Hence, βth,
which was used to denote the holding time of pressing a
key, was also used to restrict the length of the data sampling
window. If we define the starting point as k1, and the ending
points as k2, then the limitation of the keystrokes window can
be described as the inequality equation:

k2 − k1 > βth (10)

Then, the final typing point k can be selected by the rela-
tionship below:

k = (k1 + k2)/2 (11)

The angle values of the 3 axes at point k were extracted
as the feature vector for recognition. To explore a suitable
classifier for keystroke recognition, we compared four typical
classifiers: the distance-based k-Nearest Neighbor (k-NN)
algorithm, the probability estimation-basedNaive Bayes (NB),
the SRM (Structural Risk Minimization) principle-based
Support Vector Machine (SVM) algorithm, and the Random
Forest (RF) algorithm that consists of multiple decision
trees [47]. In our comparative analysis, accuracy, recall
and precision were adopted as the indicators to evaluate the
performance of these algorithms.

IV. EXPERIMENTAL RESULT
A. COMPARISON BETWEEN DIFFERENT
CLASSIFIERS AND SUBJECTS
For experimental results presented below, three subjects
typed in their own typing speed and finger gesture for data
collection. The 26 letters in four different pre-determined
orders of letter sequence were typed using the paper key-
board and the angular velocity data were collected. That is,
we have defined 4 sequences of how each subject should
type the 26 letters, where the order of the letters in each
sequence was randomly chosen. Then, each subject per-
formed 100 sets of typing experiments, with 25 sets of exper-
iments for each sequence of letters. We randomly selected
20 sets of data as the template and applied the other sets of
data for classification. Asmentioned before, four typical clas-
sifiers, i.e., k-Nearest Neighbor (k-NN), Naive Bayes (NB),
Support Vector Machine (SVM) and Random Forest (RF),
were adopted and evaluated to recognize the keystrokes. The
recognition accuracy of each algorithm is shown in Table 2.

TABLE 2. The recognition accuracy of four classifiers for three different
subjects of each hand.

As shown in Table 2, the recognition accuracy is different
among the three subjects A, B, and C, which is caused by the
variability of their individual typing motions. However, the
overall accuracy rate for each subject can be as high as 95%
for all 26 keystrokes. The classifier k-NN delivers a higher
accuracy than the other classifiers as shown in Table 2 and
Fig. 6. Hence, we will present and discuss our experimental
results using the k-NN as the classifier below.
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FIGURE 6. The average accuracy of three subjects for both hands based
on different classifiers.

TABLE 3. The confusion matrix of recognition results. The data of
subject C wearing four rings was utilized on both hands for keystroke
recognition.

As an example, the detailed recognition results of subject C
for typing each of the 26 alphabets are shown in the confusion
matrix of Table 3. For a particular key typed, the column data
represents the false-positive (FP) recognitions while the row
data shows the false-negative (FN) recognitions. The diagonal
elements of the confusion matrix are the true-positive (TP)
recognitions. For convenience, the results from left hand are
discussed as an example. The overall accuracy of keystroke
recognition from typing with the left-hand fingers is above
95% (i.e., sum of TPs/total no. of samples, where the total
number of samples is 15keys x 80samples/key). However,
the recalls (TP/(TP + FN)) of the keys ‘A’ and ‘D’ were
below 90%. Keys such as ‘A’, ‘S’, ‘D’ and ‘F’ were misiden-
tified due to their similar feature patterns. Take the key ‘F’
for example, it was misidentified as key ‘A’ five times and
as key ‘D’ for one time. Hence, the recall for typing the

‘‘F’’ key is about 93%, and the precision (TP/(TP + FP))
is only 86%. Low precision was also found in another two
groups of keys: ‘W’, ‘T’ and ‘E’, and ‘C’ and ‘X’. They
could be easily mistaken as each other because of the similar
typing motions of the subject. These problems also occurred
when the keys were typed using the right hand. Our analysis
of the experimental process indicates that the habit of typing
is very hard to change for individuals. However, the feature
vectors of typing each key can be improved to produce more
differentiable differences in separating the typing motion
data. Therefore, it became necessary to find other new fea-
tures to improve the recognition accuracy as discussed in the
following sub-section.

B. IMPROVEMENT OF FEATURE VECTORS
The raw acceleration data proved to be effective for improv-
ing the accuracy of keystroke recognition. This is because the
typing finger will induce a greater fluctuation in acceleration
data than the other fingers, especially for typing the Home
Row Keys. In Fig. 7, we show the acceleration data measured
from different fingers of each handwhen they typed theHome
Row Keys.

FIGURE 7. Comparison of acceleration data from different fingers of each
hand when they typed the home row keys.

Take the key ‘S’ for example, when it is typed, the typing
finger (ring finger) shows a much bigger fluctuation in accel-
eration. Therefore, besides being factored into the calculation
of attitude angles, the z-axis acceleration data was also added
into the keystroke feature vectors. After the recognition of
keystrokes using machine learning algorithm, we adopted
the maximum of acceleration data on z-axis to assist the
recognition of the Home Row Keys, as shown in Fig. 7.
With these acceleration features, we improved the recognition
accuracy of the Home Row Keys by identifying or excluding
the candidate keys.

Table 4 shows the final recognition results for each hand
after adding the acceleration data. As shown, the new fea-
ture vectors, which include the acceleration data, can greatly
increase the accuracy of keystroke recognition. By using
this method, the overall recognition accuracy for typing all
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TABLE 4. The accuracy of keystroke recognition before (type 1) and
after (type 2) the improvement of feature vectors with acceleration data
on each hand.

TABLE 5. Accuracy of wearing the IoT rings on different combinations of
two fingers. (Notations: 1-Little finger, 2-Ring finger, 3-Middle finger,
4-Index finger).

26 keys on the paper keyboard is increased to 98% on average
for the 3 test subjects. This method is more effective for
subject C than it is for subjects A and B in terms of improving
the accuracy of keystroke recognition. This means that the
more the features, the broader applicability the method has.

C. KEYSTROKE RECOGNITION WITH
TWO RINGS ON EACH HAND
From the experiments, we also found a significant corre-
lation between the motion of the finger touching a key on
the paper keyboard (i.e., the finger that the user utilized to
type a particular key) and some of the fingers that do not
touch the keyboard. That is, when one finger is typing on
a key, the other fingers will move with it naturally, which
makes it possible to recognize keystrokes with fewer rings.
Therefore, different combinations of fingers wearing rings
were tested. As we reduced the number of rings from four to
one, the accuracy rate gradually decreased as expected, while
the accuracy for the scenario where three or two rings are used
are more acceptable. A summary of the experimental results
based on two rings for each hand is provided in Table 5.

Table 5 shows the recognition accuracy on each hand of the
3 test subjects. For all these three subjects, the combination
of rings worn on the little finger and middle finger of the
left hand shows a higher accuracy than each of the other
combinations. While for the right hand, the best combination
of rings is worn on the middle finger and ring finger of the
right hand. Moreover, experiments also showed that the dif-
ference in the accuracy of different subjects increased when a
smaller number of rings were used; this is because more rings
are required to provide enough information for recognizing
different ways of typing. When the number of rings was
reduced to one, the keystroke recognition accuracy sharply

decreased to a very low level, i.e., as high as only 87.3%
accuracy and as low as 63.5% accuracy, as shown in Table 6.
The accuracy rate of different keys varied significantly. For
subjects A and B, the highest accuracy can reach up to 87.3%,
when the ring is worn on the middle finger. But when wearing
the ring on the other fingers, the accuracy dropped to a low
level. For example, the recognition accuracy of the keys such
as ‘W’, ‘E’, ‘S’, and ‘F’ was below 50%.

TABLE 6. Accuracy rate based on wearing one ring on the left hand.

TABLE 7. Comparison of overall accuracy of typing all 26 keys.

D. FURTHER DISCUSSION: TWO AND FOUR RINGS
Here, we compare the recognition results of the left hand, the
right hand and with both hands while wearing two and four
rings per hand. The IoT rings were worn on the middle, little,
ring, index fingers for the four ring per hand experiments.
When typing the 26 alphabetic keys with both hands, the final
average accuracy of three subjects with four rings on each
hand is 98.6% and that with two rings is 94.8%, as shown
in Table 7.

When the number of rings worn on a hand is reduced,
the keystroke accuracy rate declines. However, this declin-
ing accuracy is dependent on individual users. For example,
the difference of recognition results for wearing 2 or 4 rings
for subject C was considerably lower for subject C,
i.e., approximately 6.5% drop in accurate recognition when
less rings were used. A possible explanation is that subject C
may have a low proficiency in typing, i.e., the subject’s
typing pattern was not stable or consistent enough. The low
typing proficiency may have led to the inconsistency of the
calculated attitude angle waveforms in typing the same keys
during the experiments. This problem could have been further
aggravated by the lack of supporting motion data when only
two rings were used on each hand. Increasing the sample
quantity may be helpful in improving the accuracy.

In Fig. 8, we compare the average key-recognition accu-
racy of three subjects for typing on the paper keyboard
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FIGURE 8. Comparison of the average accuracy of typing 26 alphabetic keys conducted by three subjects while wearing 2 rings and 4 rings per hand.

while wearing 2 rings and 4 rings per hand, respectively.
The accuracy for recognizing keys such as ‘A’, ‘D’, ‘H’, and
‘L’ is significantly lower when only two rings were used
on each hand. This is because the reduction of acceleration
data from other fingers when only 2 rings are worn on each
hand, but the accuracy could be improved if much higher
resolution acceleration sensors are used in the future. That is,
the variations of accelerations between some keys cannot
be clearly distinguished by the sensor data from only two
fingers, unless the sensors are much more sensitive to the
motions of the non-ring fingers. Therefore, identifying new
keystroke features and correlation between different finger
motions and implementing sensors with higher sensitivity
will be the key factors to improving the recognition accuracy
if fewer rings are worn on each hand.

Since the typing habit of each subject could also vary
significantly, it is difficult to establish a unified model for
all subjects. Consequently, utilizing a specific model for each
subject is an efficient way to improve keystroke recognition.
Thus, techniques customizing a paper-based keyboard for
individual subjects based on their own typing habit should
also developed in the future.

In the experiments, users were allowed to just type one
single key at a time, i.e., once a user types a letter using a
particular finger, all fingers must return to the positions on
the Home Row Keys. If a user types continuously without
returning the fingers to the positions of Home Row Keys,
the waveforms of the attitude angles will be overlapped, and
it will be very difficult to decouple and recognition them.

The accuracy of our proposed scheme also can be affected
by other factors, such as the gap between the keys, the shape
of keyboard, and even the layout of keyboard. But our paper
keyboard can be customized easily to meet the habits of
different people.

V. CONCLUSION
We present a new approach to implement a ‘‘virtual key-
board’’ for human-computer interaction using wireless IoT
sensing rings and a ‘‘paper keyboard’’ in this paper. This
wearable virtual keyboard is implemented by using micro-
motion sensors, which have the benefits of portability,
ease of implementation, and low-cost. In the experiments,

attitude angles and acceleration data were selected and
extracted as features for keystrokes recognition. The highest
accuracy of keystroke recognition (of 26 alphabets) with four
rings worn on each hand was 99.3% for a particular subject
and was 98.6% on average for 3 different subjects.When only
two rings are worn on each hand of the test subjects, a subject
achieved 96.7% typing accuracy, and the average accuracy
for three subjects was 94.8%. In addition, our experiments
indicate that rings worn on the little finger and middle finger
on the left hand, and ring finger andmiddle finger on the right
hand, were the best combination of ring-wearing fingers for
keystroke recognition for all subjects. With improvements in
typing accuracy and continual reduction of overall ring size,
we expect this new type of virtual input method to find many
applications in human-computing interactions devices in the
future.
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