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ABSTRACT Active contour model (ACM) has been a successful method for image segmentation. The
existing ACMs poorly segment the images with intensity inhomogeneity or non-homogeneity, and the results
highly depend on the initial position of the contour. To overcome these disadvantages, we proposed a fuzzy
region-based active contour driven by weighting global and local fitting energy, wherein we propose a
fuzzy region energy with local spatial image information, which has been proved convex and ensures the
segmentation results independent of initialization, to motivate an initial evolving curve of pseudo level set
function (LSF), followed by the pseudo LSF and further smoothed by an edge energy to accurately extract
the object boundaries and maintain its distance feature. In addition, in the fuzzy region energy, instead of
using the Euler-Lagrange equation to minimize the energy functional, we develop a more direct method
to calculate the change of the fuzzy region energy. The experimental results on synthetic and real images
with high noise and intensity inhomogeneity show that the proposed model can obtain better performance
than the state-of-the-art active contour models, and takes less running time. The code is available at:
https://github.com/fangchj2002/FRAGL.

INDEX TERMS Active contour, intensity inhomogeneity, edge energy, fuzzy region energy.

I. INTRODUCTION
Image segmentation is an elementary task in the field of
image processing and widely used in image analysis, com-
puter vision, medical imaging, etc. [1]. Its aim is to divide a
given image into several regions where each region is homo-
geneous with regard to a certain characteristic, i.e. intensity,
color, texture [2]. Many image segmentation algorithms [3]
have designed for different applications. Among these algo-
rithms, active contour model (ACM) [4]–[6] is one of the
most effective image segmentation algorithms. Its advantage
is that the model can deal with topological changes of contour
curves. In these ACMs, the evolving contour is represented
as the zero level set and driven towards object boundaries by
minimizing the energy functional.

Generally, the existing ACMs are categorized into two
classes: edge-based ACMs and region-based ACMs. In the
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edge-based ACMs [4]–[5], gradient information is used to
guide the evolving contour to move toward the object bound-
aries. But it is sensitive to the initial contours. Different
from the edge-based ACMs, the region-based ACMs [6]–[8]
utilize the global image information to drive the motion of the
evolving contours. Many image features, such as intensity,
color, texture, are incorporated into the region-based energy
functional. In the region-based ACMs, a zero level set func-
tion (LSF) is used to express the contour curve, also called
signed distance function. The Chan-Vese model [6] based
on Mumford-Shah (M-S) model [8] is a most widely used
region-based ACM. It makes use of the difference between
the inside and outside average intensities to drive the motion
of the evolving curve instead of image gradient. But themodel
poorly deals with intensity inhomogeneity and its non-convex
energy function with the regularization termmakes the evolv-
ing curves stuck in local optima. In addition, its periodical
re-initialization of the LSF greatly increases computational
cost.

184518
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8960-9941


J. Fang et al.: Fuzzy Region-Based Active Contours Driven by Weighting Global and Local Fitting Energy

It is a challenging task to development a robust region-
based ACM to segment the images with severe intensity inho-
mogeneity. Many improved Chan-Vese models [9]–[23] are
proposed by incorporating local image information into the
energy functional. Vese and Chan [9] proposed a piecewise
smooth (PS) model and extended it to multiphase image
segmentation using two LSFs. But its computational cost
is very high. Li et al. [10], [11] proposed a local binary
fitting (LBF) model with a localized convolutional kernel
function to extract local image information. To extract image
features, it utilizes a scalable parameter with spatially varying
weight and local image information to control the evolution
curve. They further proposed a distance regularized level
set evolution (DRLSE) model [12], [13] to eliminate the
periodical re-initialization of LSF by introducing a penalty
term, which can smooth the LSF and maintain the distance
feature during the curve evolution. A local image fitting
(LIF) model [14] is constructed based on a fitted image with
local image information to approximate the input image.
In the LIF model, a Gaussian filter is used to smooth the
LSF and maintain the characteristic of the LSF during the
curve evolving. Many improved fitted energy-based models
are constructed to deal with intensity inhomogeneity, e. g.
local hybrid image fitting energy (LHIF) model [15], local
likelihood image fitting (LLIF) energy model [16], and local
cosine fitting energy [17]. An active contour model driven
by local pre-fitting energy (LPE) [18] is formulated based
on the average image intensities in local region before the
evolution of curve. The LPE model costs less running time,
but it is impossible to adaptively extract the object local
features. Local statistical region-based ACM [19]–[22] based
on the Chan-Vese model via Gaussian function is introduced
to formulate the energy function. A variational model [23] is
proposed to handle intensity inhomogeneity with the multi-
plicative noise. However, these models cannot obtain good
results for highly noisy and intensity inhomogeneity images.

Non-convex energy function in the region-based ACMs
makes the evolving contour stuck in local optima and causes
the segmentation results sensitive to the initial conditions.
To solve this problem, a fuzzy energy-based active contour
(FEBAC) [24] is proposed by incorporating fuzzy sets into
ACM. Later on, many improved FEBACmodel are proposed.
The global and local FEBAC model (GL-FEBAC) [25]–[27]
is constructed by incorporating both local spatial and inten-
sity information into ACM, which can decrease the effect of
intensity inhomogeneity in given images. Image feature, such
as kernel metric, [28], and shape prior [29], is also fused into
the FEBACmodel to improve the segmentation performance.
However, these models without the regularization term lead
to the non-smoothness of the evolving curve and cannot
maintain the distance feature of the pseudo LSF. In additions,
updating the degree of membership by computing the change
of pixel-by-pixel energy function in each iteration greatly
increases computational cost.

In this study, we proposed a novel Fuzzy Region-based
Active contourmodel withweightingGlobal and Local fitting

energy for image segmentation, called FRAGL. The FRAGL
model includes two parts. In the first part, a fuzzy region
energy is formulated by constructing a weighting hybrid fit-
ting energy with local spatial image information to approx-
imate the image with intensity inhomogeneity. The energy
functional has been proved strictly convex, which makes
the result independent of initial conditions. Then, a more
direct method is developed to compute the difference between
the new and old energy energies to update the pseudo LSF.
In the second part, an edge energy with a regularization term
and a penalty term is designed to accurately detect object
boundaries. The segmentation results on synthetic and real
images with severe intensity inhomogeneity show that the
proposed model can obtain better performance and take less
running time compared with the popular region-based ACMs.
Our main contributions are as follows:

1) The fuzzy region energy based onweighting local spatial
information is constructed to reduce effect of intensity inho-
mogeneity in given images. Meanwhile, to accurately extract
the object boundaries and maintain the distance feature of the
pseudo LSF, an edge energy with a regularization term and a
penalty term is designed.

2) The fuzzy region energy has been proved strictly con-
vex, which ensures the segmentation results independent of
initialization.

3) Instead of the Euler-Lagrange equations to solve the
fuzzy region energy, which has slow convergence, a direct
method, which computes the difference between the new and
old energies to update the pseudo LSF for the whole image
domain at a time, is developed and faster than the FBEAC
model.

The remainder of this paper is organized as follows.
Related work is described in Section 2. Section 3 describes
the proposed model, including the fuzzy region energy,
the edge energy, numerical approximation, and the algorithm
of the detailed description steps. Section 4 depicts the exper-
imental results including experimental results on synthetic
and real images, robustness to initialization, comparison with
the popular region-based ACMs, and effect of parameters.
Finally, the conclusion is given in Section 5.

II. RELATED WORK
A. CHAN-VESE MODEL
Let I (x) : � → Rd be a segmented image in the image
domain �, where d is the dimension of the vector I (x).
Specially d = 1 defines the gray images while d = 3 denotes
color images. The energy functional is defined as:

ECV (C, c1, c2) = µ · len(C)+ λ1

∫
Out(C)

(I (x)− c1)2 dx

+ λ2

∫
In(C)

(I (x)− c2)2 dx (1)

where λ1, λ2 and µ are three positive constants, Len(C) is the
length of the contourC , In(C) andOut(C) denote two regions
inside C and outside C , respectively, and its corresponding
average intensities are c1 and c2.
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To minimize the energy, a zero level set based on the
Lipschitz function ϕ(x) is used to express the contour curveC.
The LSF ϕ(x) is defined as follows:

φ(x) > 0 if x ∈ In(C)
φ(x) = 0 if x ∈ On(C)
φ(x) < 0 if x ∈ Out(C)

(2)

Therefore, the energy functional ECV (C, c1, c2) defined in
(1) is expressed as:

ECVε (c1, c2, φ)=µ ·
∫
�

δε(φ) |∇φ| dx+λ1

∫
�

(I (x)− c1)2

×Hε(φ)dx+λ2

∫
�

(I (x)−c2)2(1−Hε(φ))dx

(3)

where Hε(x) = 1/2 · d1+ 2/π · arctan (x/ε)e is the Heavi-
side function, δε(x) = dHε(x)/dx is the Dirac delta function,
where ε is a small positive constant.

Then, the variational method using the Euler-Lagrange
equation is used to minimize the energy ECV and the gra-
dient descent algorithm is used to update the LSF. However,
the Chan-Vese model cannot accurately handle the detection
of objects for the images with intensity inhomogeneity.

B. LBF MODEL
Li et al. [9] proposed a local binary fitting (LBF) model by
incorporating local image information, which is implemented
by a Gaussian kernel function, to deal with intensity inhomo-
geneity in images. The energy functional in the LBF model
is written as:

ELBF (φ, f1, f2) =
2∑
i=1

λi

∫
�

∫
�

Kr (x − y) (I (y)− fi(x))2

×Hi(φ)dydx + µ
∫
�

|∇H (φ(x))|dx (4)

where λi is positive constant,Kr is a Gaussian kernel function
with standard deviation r , y is a spatial pixel independent of x,
two smooth functions f1 and f2 are used to estimate the local
intensities inside and outside the contour C , respectively.

The energy function by adding a penalizing term can
avoid the re-initialization procedure and extract the desirable
object(s) from the intensity inhomogeneous image. But the
model still needs four convolution operators in every itera-
tion, which increases the computational cost. In additions,
the segmentation results are highly dependent on the initial
localization.

C. FEBAC MODEL
To obtain global convex energy function, Krinidis and
Chatzis [24] proposed a FBEAC model by incorporating the
fuzzy sets into ACM. Different from the popular ACMs,
the FEBAC model uses 0.5 level set as the evolving curve.

The pseudo LSF is defined as:
u(x) = 0.5 I (x) ∈ C
u(x) > 0.5 I (x) ∈ In(C)
u(x) < 0.5 I (x) ∈ out(C)

(5)

where I (x) is an input image, and In(C) and Out(C)
denote the regions inside and outside the contour curve C ,
respectively.

By introducing the pseudo LSF defined in (5), which
divides an input image into two regions, the energy function
is expressed as:

E(C, c1, c2) = η · Len(C)+ λ1

∫
�

[u(x)]m (I (x)− c1)2dx

+ λ2

∫
�

[1− u(x)]m(I (x)− c2)2dx (6)

where the constants η ≥ 0, λ1, λ2 ≥ 0 are three fixed param-
eters, c1 and c2 are average intensities inside and outside the
contour C , respectively, and m is an exponent. Two average
intensities are defined as:

c1 =

∫
�
u(x)mI (x)dx∫
�
u(x)mdx

, c2 =

∫
�
[1− u(x)]mI (x)dx∫
�
[1− u(x)]mdx

(7)

To obtain the updating variable, keeping the parameters c1
and c2 fixed and minimizing the energy function E(C, c1, c2)
in (6) with respect to u, the degree of member-ship u(x) can
be obtained as follows:

u(x) =
1

1+
(
λ1(I (x)−c1)2

λ2(I (x)−c2)2

) 1
m−1

. (8)

Specifically, in the computing process, the first step is to
calculate the fuzzy membership for a certain pixel x in the
image using (8). Then, the new fuzzy membership is updated
according to the change of the energy function 1E caused
by the change of the fuzzy membership. If the value 1E is
negative, then the fuzzy membership is updated. Otherwise,
the old one is kept. In the third step, the above process is
repeated for the whole image domain, and one iteration is
finished. Finally, the iterative process continues until the total
energy is unchanged.

III. THE FRAGL MODEL
In this section, we will describe the FRAGL model in detail.
Similar to the FEBAC model [24], the evolving contour C
expressed as a 0.5 level set function defined in (5) separates
the image domain � into two regions: object region and
background region. The object and background regions are
expressed as the inside region Cin(u > 0.5) and outside
region Cout (u < 0.5), respectively. The FRAGL model F
including the fuzzy region energy F fr and the edge energy
Fedg is written as:

F(u) = F fr (u, g)+ Fedg(u) (9)
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where g is an edge detector to reduce the image noise and
smooth the image edge, which is defined as follows:

g(x) =
1

1+ |∇Gσ ∗ I (x)|2
(10)

where ∇ is gradient operator of the input image I (x), and Gσ
is a Gaussian kernel with standard deviation σ .

A. FUZZY REGION ENERGY
The images in real world usually appear intensity inhomo-
geneity which causes blurred edges between adjacent regions.
The formulation describing intensity inhomogeneity is
usually written as:

I (x) = b(x)J (x)+ n(x) (11)

where I (x) is an intensity value of the observed image,
b(x) is a smoothly changing bias field which reflects inten-
sity inhomogeneity, J (x) is a real intensity value of the
inhomogeneity-free image, and n(x) is additive noise. The
additive noise n(x) exists in various types including Gaus-
sian noise, salt and pepper noise and speckle noise during
imaging. To overcome the disadvantages, a region descrip-
tor is used to eliminate the effects of intensity inhomo-
geneity. Or rather, a local region with spatial information
is used to approximate the observed image with intensity
inhomogeneity.

Let� ∈ Rd be the image domain, where d is the dimension
of the vector I (x), point x be a pixel in the image domain �,
and point y be independent of point x and a neighborhood
point centered at pixel x in a small rectangle or circle region
�x ⊂ �. Two average intensities fo and fb respectively
corresponding to the inside (object) and outside (background)
regions in local image domain �x are defined as:{

fo = mean(I (y)|y ∈ �x ∩ u(y) > 0.5)
fb = mean(I (y)|y ∈ �x ∩ u(y) < 0.5)

(12)

where u(y) ∈ [0, 1] is the fuzzy membership function in the
local image domain�x . In this paper, we design a local spatial
weight ω(x, y) for pixel y

ω(x, y) =
1

1+ dis(x, y)
(13)

where dis(x, y) denotes the spatial distance between pixel x
and pixel y, the size of a local window is (2k+1)×(2k+1), the
constant k called as the radius of the local window is a positive
constant. Thus, two constants fo and fb can be represented as:

fo =

∫
�

∫
�x
ω(x, y)I (x)[u(x)]mdydx∫

�

∫
�x
ω(x, y)[u(x)]mdydx

(14)

fb =

∫
�

∫
�x
ω(x, y)I (x)[1− u(x)]mdydx∫

�

∫
�x
ω(x, y)[1− u(x)]mdydx

(15)

By filtering with local spatial windows, two constants fo
and fb can be considered as the local average intensities inside
and outside the contour C , respectively. When the evolving
curves reach the exact boundary, the average prototypes of

the inside and outside regions in the input image can be taken
as I frin = αfo+βc1 and I

fr
out = αfb+βc2, respectively, where α

and β are two weighted constants and satisfy α+β = 1. If the
image contains more high intensity inhomogeneity, a larger
value α is chosen. Otherwise, a smaller value α is chosen.
From the above analysis, the fuzzy region term F fr with

the fuzzy set [24] is given as follows:

F fr (u, g) = λ1

∫
�

[u(x)]m g (I (x)− (αfo + βc1))2 dx

+ λ2

∫
�

[1− u(x)]m g (I (x)− (αfb + βc2))2 dx

(16)

where λ1 and λ2 are positive weighted parameters, m is the
weighting exponent on each fuzzy membership.
To compute the pseudo LSF u(x), keeping the variables fs,

fb, c1, and c2 fixed and calculating the minimization of the
energy in (14) w. r. t u, we have:

λ1

∫
�

[u(x)]m g (I (x)− (αfo + βc1))2 dx

+ λ2

∫
�

[1− u(x)]m g (I (x)− (αfb + βc2))2 dx = 0 (17)

The membership function u(x) can be presented as:

u(x) =
1

1+
(
λ1(I (x)−(αfo+βc1))2

λ2(I (x)−(αfb+βc2))2

) 1
m−1

(18)

B. EDGE ENERGY
To obtain the precise positioning of the object boundary and
smooth the pseudo LSF, we designed an edge energy Fedg

consisting of a regularization term and a penalty term. The
edge energy is defined as:

Fedg(u) = l1L(u− 0.5)+ l2P(u− 0.5) (19)

where l1 and l2 are positive parameters, the first term called
as the regularization term is the length of evolving contour
to ensure the smoothness of the pseudo LSF, and the second
term called as penalty term is to keep the consistency between
the signed distance function and the pseudo LSF, and we
have:

L(u = 0.5) =
∫
�

δ(u− 0.5) |∇(u− 0.5)|dx (20)

P(u = 0.5) =
1
2

∫
�

(1− |∇(u− 0.5)|)2dx (21)

where ∇ denotes the Hamilton operator and (∇ϕ)x,y =(
∂ϕ
∂x ,

∂ϕ
∂y

)
is the gradient of ϕ = u− 0.5.

C. NUMERICAL APPROXIMATION
The usual method to minimize the energy function in the
region-based ACMs is the gradient descent optimizer based
on the Euler-Lagrange equation. But its convergence speed is
very slow. Inspired by the FEBAC model [24], we directly
calculate the difference between the new and old energies
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to update the pseudo LSF. If the changed value is nega-
tive, the new one is replaced. Otherwise, the old value is
unchanged. It is straightforward that the global minima of
the energy functional can easily obtain in an iterative way
if the energy functional defined in (16) is convex. There-
fore, we first prove the proposed energy functional is convex
(Appendix A).

Let P be a given point in the image domain �, its corre-
sponding intensity value and the degree of member-ship be
I0 ∈ I (x) and u0, respectively, and the fuzzy region energy be
F fr . Correspondingly, for the same point P, the constants c1,
c2, fo, and fb become four new ones: ĉ1, ĉ2, f̂o, and f̂b, and the
new total energy is F̂ fr when the new degree of membership
at is un. The process of computing the difference 1F fr =
F̂ fr − F fr between the old and new energies is presented in
Appendix B. Thus, the change of the energy function is given
as follows:

1F = F̂ fr − F fr =
(
F̂ frA + F̂

fr
B

)
−

(
F frA + F

fr
B

)
= gt1

(
α

ω(x, y) ∗1u1
ω(x, y) ∗ (t1 +1u1)

(I0 − fo)

+β
1u1

t1 +1u1
(I0 − c1)

)2

+ gt2

(
α

ω(x, y) ∗1u2
ω(x, y) ∗ (t2 +1u2)

(I0 − fb)

+β
1u2

t1 +1u1
(I0 − c2)

)2

+ g1u1

(
αω(x, y) ∗ t1

ωσ (x, y) ∗ (t1 +1u1)
(I0 − fo)

+
βt1

t1 +1u1
(I0 − c1)

)2

+ g1u2

(
αω(x, y) ∗ t2

ω(x, y) ∗ (t2 +1u2)
(I0 − fb)

+
βt2

t2 +1u2
(I0 − c2)

)2

(22)

where t1 =
∑
� [u(x)]m, 1u1 = umn − um0 , t2 =∑

� [1− u(x)]m, and 1u2 = (1− un)m − (1− u0)m.
From above, for pixel x, we can use (22) to compute

the change of the energy functional. In the whole image
domain �, let the degree of memberships u(x) before and
after updating respectively be u0(x) and un(x), the change
value of the energy be 1F(x), so we have u0(x) =

∑
� u0,

un(x) =
∑
� un, and I (x) =

∑
� I0. The change of the energy

function 1F(x) can be written as:

1F(x) =
∑

�
1F

= g
∑

�
t1

(
α

ωσ (x, y) ∗1u1
ωσ (x, y) ∗ (t1 +1u1)

(I0 − fo)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ g
∑

�
t2

(
α

ω(x, y) ∗1u2
ω(x, y) ∗ (t2 +1u2)

(I0 − fb)

+ β
1u2

t1 +1u1
(I0 − c2)

)2

+ g
∑

�
1u1

(
αω(x, y) ∗ t1

ω(x, y) ∗ (t1 +1u1)
(I0 − fo)

+
βt1

t1 +1u1
(I0 − c1)

)2

+ g
∑

�
1u2

(
αω(x, y) ∗ t2

ω(x, y) ∗ (t2 +1u2)
(I0 − fb)

+
βt2

t2 +1u2
(I0 − c2)

)2

= gt1

(
α

ω(x, y) ∗1u1(x)
ω(x, y) ∗ (t1 +1u1(x))

(I (x)− fo)

+ β
1u1

t1 +1u1
(I (x)− c1)

)2

+ gt2

(
α

ω(x, y) ∗1u2(x)
ω(x, y) ∗ (t2 +1u2(x))

(I (x)− fb)

+ β
1u2

t1 +1u1
(I (x)− c2)

)2

+ g1u1(x)
(

αω(x, y) ∗ t1
ω(x, y) ∗ (t1 +1u1(x))

(I (x)− fo)

+
βt1

t1 +1u1(x)
(I (x)− c1)

)2

+ g1u2(x)
(

αω(x, y) ∗ t2
ω(x, y) ∗ (t2 +1u2(x))

(I (x)− fb)

+
βt2

t2 +1u2(x)
(I (x)− c2)

)2

(23)

where1u1(x) = umn (x)−u
m
0 (x) and1u2(x) = (1−un(x))m−

(1− u0(x))m.
From the above computing process, unlike the FEBAC

model [24], which calculates the alterations of the ener-
gies for each pixel at a time and needs large computation,
we directly update the pseudo LSF of the whole image
domain at a time by computing the difference between the
old and new energies.
In the process of computing the edge energy, we cal-

culate the derivative in (19) with regard to u, which is
written as:

∂Fedg

∂u
= l1δε(u− 0.5)div

(
∇(u− 0.5)
|∇(u− 0.5)|

)
+ l2

(
∇

2(u− 0.5)− div
(
∇(u− 0.5)
|∇(u− 0.5)|

))
(24)

In this paper, two weighting constants l1 and l2 are set to 1.

D. DESCRIPTION OF ALGORITHM STEPS
The computation step of the FRAGL model is described as
follows:

184522 VOLUME 7, 2019



J. Fang et al.: Fuzzy Region-Based Active Contours Driven by Weighting Global and Local Fitting Energy

1. Specify an input image, and initial parameters:
weighting constants λ1, λ2, α, β, l1 and l2, the maximum
number of iterations IterNum, the radius of the
local window k , and the edge detector matrix g.

2. Initialize pseudo LSF: set u0(x) > 0.5 for one part, and
u0(x) < 0.5 for the other.

3. Compute the initial averages using (7) and (13):
c1, c2, fo, and fb.

4. Update parameters: the degree of membership u(x)
using (16), the new constants ĉ1, ĉ2, f̂o and f̂b using (7)
and (14)-(15).

5. Compute the difference between the new and old
energies 1F(x) using (23) in the whole image domain
�. For point x ∈ �, if the following equation 1F(x) is
negative, then replace u0(x) with un(x); otherwise, keep
the old value u0(x).

1F(x) = gt1

(
α

ω(x, y) ∗1u1(x)
ω(x, y) ∗ (t1 +1u1(x))

(I (x)− fo)

+ β
1u1

t1 +1u1
(I (x)− c1)

)2

+ gt2

(
α

ω(x, y) ∗1u2(x)
ω(x, y) ∗ (t2 +1u2(x))

(I (x)− fb)

+ β
1u2

t2 +1u2
(I (x)− c2)

)2

+ g1u1(x)
(

αω(x, y) ∗ t1
ω(x, y) ∗ (t1 +1u1(x))

(I (x)−fo)

+
βt1

t1 +1u1(x)
(I (x)− c1)

)2

+ g1u2(x)
(

αω(x, y) ∗ t2
ω(x, y) ∗ (t2 +1u2(x))

(I (x)−fb)

+
βt2
t2
+1u2(x)(I (x)− c2)

)2

where 1u1(x) = umn (x) − um0 (x) and 1u2(x) = (1 −
un(x))m − (1− u0(x))m.
6. Regularize and smooth the pseudo LSF using the
edge energy in (24).

7. Repeat steps 3-6 till the iterations are finished.

IV. EXPERIMENTS AND RESULTS
In this section, we test the segmentation performance of the
proposed model on the synthetic and real images. Unless
otherwise specified, some default parameters are set as fol-
lows: the pseudo LSF u(x) = 0.7 and u(x) = 0.3
respectively corresponding to the inside and outside regions,
m = 2, the radius of the local weighting window k = 5,
and the maximal number of iteration IterNum = 100. The
experiments are processed using a 3.2-GHzIntel 4-core PC
computer with 3GB of memory using the Matlab pro-
gramming language. The code is available at the website:
https://github.com/fangchj2002/FRAGL.

FIGURE 1. Segmentation results of the proposed model on synthetic
image with different levels of Gaussian noise. Three rows of results
correspond to Gaussian noise with mean 0 and sigma = 5, 10, and 15,
respectively.

FIGURE 2. Segmentation results of the proposed model on synthetic
image with different levels of speckle noise. Four rows of results
correspond to speckle noise with mean 0 and variance 0.01, 0.1, 0.2, and
0.3, respectively.

A. EXPERIMENT RESULTS ON SYNTHETIC
AND REAL IMAGES
To quantitatively validate the efficiency of the proposed
model, we test synthetic images by adding different types
of noise shown in Figs.1-3. In our experiments, the types of
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FIGURE 3. Segmentation results of the proposed model on synthetic
image with different levels of salt and pepper noise. Four rows of results
correspond to salt and pepper noise with densities of 0.05, 0.10, 0.15,
and 0.20, respectively.

image noise consist of zero mean Gaussian noise, speckle
noise, and salt and pepper noise. The parameters are set as
follows: λ1 = λ2 = 1 and α = β = 0.5. In Fig.1, three
images in the 1st column are from the clean image corrupted
byGaussian noise with themean 0 and sigma= 5, 10, and 15,
respectively. In the 2nd column to the 3rd column, the final
positions of the evolving curves and the segmentation results
are shown, respectively. In Fig. 2, four images by adding
different level speckle noises with mean 0 and variance 0.01,
0.1, 0.2, and 0.3 respectively, which is an inherent feature in
ultrasound images, are shown in the 1st column. The final
positions of the evolving curves and the segmentation results
are shown in the 2nd column and the 3rd column, respectively.
In Fig.3, the salt and pepper noise with densities of 0.05,
0.10, 0.15, and 0.20 respectively is fused into synthetic image
shown in the 1st column. The final positions of the evolving
curves and the segmentation results are shown in the 2nd

column and the 3rd column, respectively. It can be seen that
the proposed model can still extract three objects though the
images is gravely corrupted by different types of noise.

Fig. 4 shows the segmentation results on natural images
with different types of noise. The parameters in the experi-
ment are set as follows: λ1 = λ2 = 1 and α = β = 0.5.
For color image, the average value of image intensity is
written as I = (IR + IG + IB)/3, where IR, IG and IB
denote the pixel values corresponding to the R, G, and

FIGURE 4. Segmentation results of the proposed model on natural image.
The 1st column: The image with initial contour; The 2nd column: The final
positions of the evolving curves; The 3rd column: The segmentation
results of the proposed model.

FIGURE 5. The total energy correspond to the images with different types
of noise in Fig. 4 during 100 iterations.

B components, respectively. In the 1st column, the latter three
images is generated by adding Gaussian noise with mean
0 and sigma = 15, speckle noise with mean 0 and variance
0.05, and salt and pepper noise with densities of 0.05, respec-
tively. The final positions of the evolving curves are shown in
the 2nd column and the 3rd column. The region energy during
100 iterations is shown in Fig. 5, respectively. According
to the segmentation results, the proposed model is able to
accurately extract desired objects and can rapidly converge
to the global optima in less than 30 iterations. From these
figures, it can be seen that the proposed model needs more
iterations to reach steady state when the images containsmore
severe intensity inhomogeneity.
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FIGURE 6. Segmentation results for natural image with different shapes. In the 1st column: Initial contours with different shapes; The
2nd column: The finial stopping positions; The 3rd column: The finial segmentation results.

FIGURE 7. The final region energy and the changed energy corresponding to Fig. 6 during 100 iterations. (a) The final
region energy during curve evolution; (b) The changed energy during curve evolution.

B. ROBUSTNESS TO INITIALIZATION
The following experiments is used to validate that the fuzzi-
ness of the energy can provide a balanced technique with a
strong ability to reject local minima. Fig. 6 and Fig. 8 show
the segmentation results of the proposed model with different
initial shapes for images. The image in Fig. 8 is generated
first corrupted by Gaussian noise with sigma = 10, followed
by speckle noise with mean 0 and variance 0.1, and finally by
salt and pepper noise with a density of 0.01. The parameters
in the experiments are set as follows: λ1 = λ2 = 1 and
α = β = 0.5. In Fig. 6 and Fig. 8, different shapes with
initial contour and the final stopping positions of the curves
are shown in the 1st and 2nd columns, respectively, and the
segmentation results are shown in the 3rd column. To clearly
depict the running process of the proposed model, four fuzzy
region energies corresponding to Fig. 6 and Fig. 8 are shown
in Fig. 7(a) and Fig. 9(a) during 100 iterations, respectively.

Fig. 7 (b) and Fig. 9 (b) show the difference between the
new energy and old energy corresponding to Fig. 6 and
Fig. 8, respectively. The segmentation results both show that
the proposed model with different initial conditions (shapes
and positions) can obtain similar results, the final stopping
contours are almost the same, and the proposedmodel reaches
the steady state in less than 10 iterations. In conclusion, our
model is robust to initialization.

C. COMPARISION WITHTHE POPULAR
REGION-BASED ACMS
To demonstrate the performance of the proposed model,
we compare the proposed model with the popular region-
based ACMs, such as the Chan-Vese model [6], the LBF
model [9], the LIF model [12], the FEBAC model [24],
the GL-FEBAC model [25], and FEACC [26]. The codes of
the LIF model is available at http://www.kaihuazhang.net/.
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FIGURE 8. Segmentation results for natural image by adding hybrid noise with different shapes. In the 1st column: Initial contours
with different shapes; The 2nd column: The finial stopping positions; The 3rd column: The finial segmentation results.

FIGURE 9. The final region energy and the changed energy corresponding to Fig. 8 during
100 iterations. (a) The final region energy during curve evolution; (b) The changed energy
during curve evolution.

To quantitatively evaluate these region-based ACMs, we use
Dice coefficient [30] to measure performance with ground
truth and region entropy [31] tomeasure performancewithout
ground truth. Dice coefficient between two regions P and Q
is defined as follows:

J (P,Q) =
2× |P ∩ Q|
|P| + |Q|

(25)

where |P|, |Q| and |P ∩ Q| are the pixel number of two regions
P, Q, and their union area, respectively. The closer the value
J (P,Q) is to 1, the better the segmentation results is.
The region entropy is defined as:

RE = El(I )+ Er (I ) (26)

where El(I ) and Er (I ) are a layout entropy and an desired
region entropy, respectively.

Here, El(I ) and Er (I ) are defined as follows:

El(I ) = −
N∑
i=1

(
Si
SI

)
log

(
Si
SI

)
(27)

Er (I ) = −
N∑
i=1

(
Si
SI

)∑
m

(
Li(m)
Si

)
log

(
Li(m)
Si

)
(28)

where Si/Sl is the probability of a pixel belong to region Ri,
and Li(m) is the number of pixels in region Ri which has value
m of a luminance.
To validate the robustness of the proposed model, the seg-

mented images from MSRA-B database are firstly corrupted
by Gaussian noise with sigma = 15, followed by speckle
noise with mean 0 and variance 0.05, and finally by salt and
pepper noise with a density of 0.05. Figs. 10-11 depict the
segmentation results of natural images using different region-
based ACMs. Since the images includes severe intensity
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FIGURE 10. The final stopping positions for natural image from MSRA-B database using different models. (a) The original image
with initial curves; (b) C-V; (c) LIF; (d) LBF; (e) FEBAC; (f) GL-FEBAC; (g) the proposed model.

inhomogeneity, accurately extracting the desired object
boundaries of these images is a challenging task. From
Figs.10-11, it can be seen only the proposed model can
exactly extract the objects in five images, and the Chan-
Vese model extract the brightest regions, while the GL-FEAC
models can obtain better results than other ACMs (LIF, LBF
and FEAC). To clearly present the performance and effi-
ciency, comparative results in terms of Dice coefficient and
average running time are shown in Tables 1-2. From these
tables, it is also seen that the Chan-Vese model and the LIF
model occupied the most running time of all the segmented
images because these models with convolutional operation

TABLE 1. Comparison of the popular ACMs in terms of Dice coefficient.

need more running time. On the other hand, the FEAC model
takes the least average time while our model takes minimum
executing time. The models based fuzzy energy-base active
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FIGURE 11. Segmentation results in Fig. 10 using different models. (a) C-V; (b) LIF; (c) LBF; (d) FEBAC; (e) GL-FEBAC; and (f) the
proposed model.

TABLE 2. Comparison of the region-based ACMs in terms of running
time(Seconds).

contour have fast convergence due to its strictly convex
energy.

To further validate robustness of the proposed model,
cell images with severe intensity inhomogeneity are tested
shown in Figs. 12-13. In Fig. 12, to enhance intensity

TABLE 3. Comparison of the region-based ACMs in terms of region
entropy.

inhomogeneity in given images, the 2nd, 3rd and 4th cell
images are first corrupted byGaussian noise with sigma= 15,
followed by speckle noise with mean 0 and variance 0.05,
and finally by salt and pepper noise with a density of 0.05.
From Figs. 12-13, we obverse that only the proposed model
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FIGURE 12. The final stopping positions for natural image using different models. (a) The original image with initial curve; (b) C-V;
(c) LIF; (d) LBF; (e) FEBAC; (f) GL-FEBAC; (g) the proposed model.

can exactly extract the objects in four cell images with
severe intensity inhomogeneity. The corresponding compar-
ative results in terms of region entropy and average running
time are shown in Tables 3-4. From these tables, it is also
seen that the proposed model has the largest values in terms
of average Dice coefficient in all of the region-based ACMs.

Moreover, since our method update the pseudo LSF of the
entire image domain for each iteration, the proposed model
takes the least running time. In addition, the convex fuzzy
region energy causes fast convergence.

In Fig.14, we select a complex medical image to further
validate our proposed model. The input image with initial
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FIGURE 13. Segmentation results corresponding to Fig. 12 using different models. (a) C-V; (b) LIF; (c) LBF; (d) FEAC;
(e) GL-FEAC; and (f) the proposed model.

TABLE 4. Comparison of the region-based ACMs in terms of running time and iterations.

curve is shown in Fig. 14(a). The segmentation results using
the C-V model, LIF model, FEACC model, and the proposed
model are shown in Fig. 14(b)-(e), respectively. From Fig. 14,

the C-V model includes more noise than other models
because it is based on the global image information. However,
the FEACC loses detailed information due to its local
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FIGURE 14. Segmentation results using different models. (b) Input image with initial curve; (b) C-V; (c) LIF; (d) FEACC; (e) Our model.

FIGURE 15. The segmentation results of the proposed model with different parameters for medical image. (a) The
original image with initial contour; (b-d) Keeping α = β = 0.5 and the windows size k = 3 fixed, the parameters λ1
and λ2 are set to (0.1,0.9), (0.5,0.5), and (0.9,0.1), respectively; (e-h) Keeping λ1 = λ2 and α = β = 0.5 fixed,
the windows size k is set at 9, 7, 5 and 3; (i-l) Keeping λ1 = λ2 and the windows size k = 5 fixed, the weighting
parameters α and β are set at

(
1,0

)
,
(
0.9,0.1

)
,
(
0.5,0.5

)
and

(
0.1,0.9

)
, respectively.

spatial information. Among these models, our proposed
model can obtain similar results with the LIF model. But the
LIF model is sensitive to initial position.

D. EFFECT OF PARAMETERS
The parameters play an important role in segmenting the
object(s). In our model, there are three important parameters
to decide the segmentation performance: the weights α and β,
and the radius of the local windows k . The radius of the local
window is used to decide the degree of intensity inhomo-
geneity and smooth the pseudo LSF. In general, more severer
intensity inhomogeneity andmore noise the segmented image
includes, a larger value of the size of a local window is
selected. The weights α and β of the approximated images
is to control the degree of intensity inhomogeneity in given
image. If the image contains severe intensity inhomogeneity,
a large value α should be chosen, and vice versa.

To illustrate the effect of parameters, the segmentation
results with different parameters on medical images with
severe intensity inhomogeneity are shown in Fig.15. The
image with initial curve is shown in Fig. 15(a). In Fig. 15(b)-
(d), we keep α = β = 0.5 and the radius of the local
window k = 5 fixed, and set weighting parameters λ1
and λ2 to (0.1, 0.9), (0.5, 0.5), and (0.9, 0.1), respectively.

Then, in Fig. 15(e)-(h), we keep the parameters λ1 = λ2 = 1
and α = β = 0.5 fixed, and change the radius of the
local windows to 9, 7, 5 and 3. Finally, in Fig. 15(i)-(l),
the parameters λ1 = λ2 = 1 and the radius of the local
windows k = 5 fixed, the weighting parameters α and β
are set at (0, 1), (0.1, 0.9), (0.5, 0.5) and (0.9, 0.1), respec-
tively. From these results, it can be seen that the constants λ1
and λ2 have little influence on the proposed model. In our
experiment, the constants λ1 = λ2 = 1 are to balance the
object and background region. The larger the weight value
α is, the higher intensity inhomogeneity the proposed model
can handle, and vice versa. With the decrease of the radius of
the local windows shown in Fig. 15 (e)-(h), the ability of the
proposedmodel to extract local image information is weaken.
But too large value may lead to too many small objects to
extract, so a reasonable radius of the local windows is selected
in terms of the degree of intensity inhomogeneity.

V. CONCLUSION
In this paper, we present a fuzzy region-based active contour
model driven by weighting global and local fitting energy
to segment the images with intensity inhomogeneity. The
proposed model includes two parts: fuzzy region energy and
edge energy. In the first part, the fuzzy region energy, which
has been proved to be strictly convex, is formulated with local
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spatial image information and is used to drive the motion of
the evolving curve(s). In the second part, an edge energy is
designed in order to make the evolving curve accurately stop
the object boundaries. Instead of using the Euler-Lagrange
equation tominimize the fuzzy region energy, a direct method
by computing the difference between the old and new energy
functions is developed to update the pseudo LSF in the whole
image domain for each iteration. The experimental results
show that the proposed model can successfully extract the
object from both synthetic and real images with noise and
intensity inhomogeneity. But our method cannot segment the
images when the object is very similar to the background
region. In future, our model can be applied to many famous
ACMs, such as kernel space [33] and multi-phase image
segmentation [12].

APPENDIX A
The fuzzy energy function in (16) can be written as follows:

F fr (u) = λ1F
fr
A (u, g)+ λ2F

fr
B (u, g), u ∈ [0, 1] (A-1)

where F frA (u, g) and E
fr
B (u, g) are defined as:

F frA (u, g) =
∫
�

[u(x)]m g (I (x)− (αfo + βc1))2 dx (A-2)

F frB (u, g) =
∫
�

[1− u(x)]m g (I (x)− (αfb + βc2))2 dx

(A-3)

The equation F frA (u, g) in (A-2) can be written as

ε
fr
A (x, g) = [u(x)]m g (I (x)− (αfo + βc1))2 (A-4)

and F frA (u, g) =
∫
�
ε
fr
A (x, g)dx.

Now we first prove the equation εfrA (x, g) is convex. Let
x1, x2 ∈ �, for ∀θ ∈ [0, 1].Then we have

θx1 + (1− θ )x2 = θ (x1 − x2)+ x2 ∈ � (A-5)

Therefore, the domain of εfrA (x, g) is convex. The second
order derivative of (A-4) w. r. t. u, and we have

∂2ε
fr
A

∂u2
=
∂

∂u

(
∂ε

fr
A

∂u

)
=
∂

∂u

(
m [u(x)]m−1 g (I (x)−(αfo+βc1))2

)
= m(m− 1) [u(x)]m−2 g (I (x)− (αfo + βc1))2 (A-6)

Since m > 1, u(x) ∈ [0, 1], and g (I (x)− (αfo + βc1))2 ≥
0, so ∂2εfrA /∂u

2
≥ 0.

Since the domain of εfrA (x, g) is convex and ∂
2ε
fr
A /∂u

2
≥ 0,

so εfrA (x, g) is convex. Therefore, ∀x1, x2 ∈ � and θ ∈ [0, 1],
and we can get the following relation:

ε
fr
A (θx1 + (1− θ )x2) ≤ θε

fr
A (x1)+ (1− θ )εfrA (x2) (A-7)

Calculating the integral of the two sides of (A-7), we can
obtain the following formulation:∫
�

ε
fr
A (θx1 + (1− θ )x2)dx ≤ θ

∫
�

ε
fr
A (x1)dx

+ (1− θ )
∫
�

ε
fr
A (x2)dx (A-8)

With F frA (u, g) =
∫
�
ε
fr
A (x, g)dx, (A-8) can be rewritten as:

F frA (θx1 + (1− θ )x2) ≤ θF
fr
A (x1)+ (1− θ )F frA (x2) (A-9)

Hence, F frA is convex.
Similarly, let

ε
fr
B (x) = [1− u(x)]m g (I (x)− (αfb + βc2))2 (A-10)

where εfrB : � → R. The equation (A-2) is written as
F frB (u, g) =

∫
�
ε
fr
B (x, g)dx. In the same way, we can also

prove that the formulas F frB (u, g) is convex.
In (A-1), since λ1 > 0 and λ2 > 0, then the region energy

F fr (u) consists of two weighting convex functionals. So the
energy function F fr (u) is convex with regard to u.

APPENDIX B
Two constants c1 and c2 in (7) are converted into discrete
space and written as:

c1 =

∑
� I (x) · [u(x)]

m∑
� [u(x)]m

c2 =

∑
� I (x) · [1− u(x)]

m∑
� [1− u(x)]m

(B-1)

where u(x) is the degree of membership for pixel x, and I (x)
is the corresponding intensity value.

Two local average intensities fo and fb in (13) with weight-
ing function ω(x, y) are expressed as:

fo =

∑
� ω(x, y) ∗ [I (x)[u(x)]

m]∑
� ω(x, y) ∗ [u(x)]m

(B-2)

fb =

∑
� ω(x, y) ∗ [I (x)[1− u(x)]

m]∑
� ω(x, y) ∗ [1− u(x)]m

(B-3)

For point P, suppose that the degree of membership is u0,
the intensity value is I0. When the new degree of member-
ship is changed into un, the constants c1, c2, fo and fb corre-
spondingly become new constants ĉ1, ĉ2, f̂o and f̂b. The new
constant ĉ1 is computed as follows:

ĉ1=

∑
� I (x) ·

[
û(x)

]m∑
�

[
û(x)

]m =

∑
� I (x) · [u(x)]

m
+(umn I0−u

m
0 I0)∑

� [u(x)]m+(umn −u
m
0 )

=
t1c1+I0(umn −u

m
0 )

t1+(umn − u
m
0 )
=c1+

1u1
t1+1u1

(I0−c1) (B-4)

where t1 =
∑
� [u(x)]m, and 1u1 = umn − um0 . In the same

way, we can obtain the new values ĉ2

ĉ2 = c2 +
1u2

t2 +1u2
(I0 − c2) (B-5)

where t2 =
∑
� [1− u(x)]m and1u2 = (1−un)m−(1−u0)m.

The new pixel average intensities f̂o are expressed as fol-
lows:

f̂o =

∑
� ω(x, y) ∗

[
I (x)[û(x)]m

]∑
� [û(x)]m ∗ ω(x, y)

=

∑
� ω(x, y) ∗

(
I (x)[u(x)]m + umn I0 − u

m
0 I0
)∑

� ω(x, y) ∗
(
[u(x)]m + umn − u

m
0

)
=

∑
� ω(x, y) ∗ I (x)[u(x)]

m
+ ω(x, y) ∗1u1I0∑

� ω(x, y) ∗ [u(x)]m + ω(x, y) ∗1u1
(B-6)
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where ∗ is convolution operation. From (B-2), we can get:∑
�
ω(x, y) ∗

[
I (x)[u(x)]m

]
= foω(x, y) ∗

∑
�
[u(x)]m = foω(x, y) ∗ t1 (B-7)

Combing (B-6) and (B-7), we can get:

f̂o =

∑
� ω(x) ∗ I (x)[u(x)]

m
+ ω(x, y) ∗1u1I0∑

� ω(x, y) ∗ [u(x)]m + ω(x, y) ∗1u1

=
foω(x, y) ∗ t1 + I0ω(x, y) ∗1u1
ω(x, y) ∗ t1 + ω(x, y) ∗1u1

= fo +
I0ω(x, y) ∗1u1 − foω(x, y) ∗1u1
ω(x, y) ∗ t1 + ω(x, y) ∗1u1

= fo +
(I0 − fo) ω(x, y) ∗1u1

ω(x, y) ∗ t1 + ω(x, y) ∗1u1
(B-8)

In the same way, we can also obtain the new f̂b:

f̂b = fb +
(I0 − fb) ω(x, y) ∗1u2

ω(x, y) ∗ t2 + ω(x, y) ∗1u2
(B-9)

It is easy to calculate the change of the fuzzy region energy
using the formulations defined in (B-2)-(B-5). For the same
point P, when the degree of membership is changed from
u0 into un, the fuzzy region energy F fr is correspondingly
changed into F̂ fr . First, we give the energy F fr in (16) in the
discrete space as follows:

F fr = F frA + F
fr
B = λ1

∑
�
[u(x)]m g (I (x)− (αfo + βc1))2

+ λ2
∑

�
[1− u(x)]m g ((I (x)− (αfb + βc2))2

(B-10)

with

F frA = λ1
∑

�
[u(x)]m g (I (x)− (αfo + βc1))2 (B-11)

F frB = λ2
∑

�
[1− u(x)]m g ((I (x)− (αfb + βc2))2 (B-12)

Correspondingly, the new energy F̂ fr is represented as:

F̂ fr = F̂ frA +F̂
fr
B =λ1

∑
�

[
û(x)

]m g (I (x)− (αf̂o + β ĉ1))2
+ λ2

∑
�

[
1−û(x)

]m g ((I (x)−(αf̂b+β ĉ2))2
(B-13)

with

F̂ frA = λ1
∑

�

[
û(x)

]m g (I (x)− (αf̂o + β ĉ1))2 (B-14)

F̂ frB = λ2
∑

�

[
1− û(x)

]m g ((I (x)− (αf̂b + β ĉ2)
)2
(B-15)

In the following, we separately compute the new formulas
F̂ frA and F̂ frB . The new formula F̂ frA is computed as:

F̂ frA =
∑

�

[
û(x)

]m g (I (x)− (αf̂ + β ĉ1))2
=

∑
�
[u(x)]m g

(
I (x)−

(
αf̂o + β ĉ1

))2
+ g

(
umn − u

m
0
) (
I0 −

(
αf̂o + β ĉ1

))2
(B-16)

To simplify the above equation, we first calculate the equa-
tions (I (x)−(αf̂o+β ĉ1))2 and (I0−(αf̂o+β ĉ1))2 by inserting
(B-4) and (B-8), then(
I (x)−

(
αf̂o + β ĉ1

))2
= (I (x)− (α(fo +

ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+β(c1 +
1u1

t1 +1u1
(I0 − c1)))2

=

(
I (x)− (αfo + βc1)−

(
α

ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ t1 + ω(x, y) ∗1u1

+ β
1u1

t1 +1u1
(I0 − c1)

))2

=

(
α

ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ t1 + ω(x, y) ∗1u1

+β
1u1

t1+1u1
(I0−c1)

)2

+ (I (x)− (αfo + βc1))2 − 2 (I (x)− (αfo + βc1))(
α

ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ t1 + ω(x, y) ∗1u1

+ β
1u1

t1 +1u1
(I0 − c1)

)
(B-17)(

I0 − (αf̂o + β ĉ1)
)2
= (I0 − (αfo + βc1)

− (α
ω(x, y) ∗1u1 (I0 − fo)
s1 + ω(x, y) ∗1u1

+ β
1u1

t1 +1u1
(I0 − c1)))2

= (α (I0 − fo)+ β (I0 − c1)

− (α
ω(x, y) ∗1u1 (I0 − fo)

ω(x, y) ∗ t1+ω(x, y) ∗1u1
+β

1u1
t1+1u1

(I0−c1)))2

=

(
αω(x, y) ∗ t1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+
βt1(I0 − c1)
t1 +1u1

)2

(B-18)

Combing (B-16), (B-17) and (B-18), the formulation F̂ frA
can be written as:

F̂ frA =
∑

�
[u(x)]m g

(
I (x)−

(
αf̂o + β ĉ1

))2
+ g

(
umn − u

m
0
) (
I0 −

(
αf̂o + β ĉ1

))2
=

∑
�
[u(x)]m g (I (x)− (αfo + βc1))2

+

∑
�
[u(x)]m g

(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

− 2g
∑

�
[u(x)]m g (I (x)− (αfo + βc1))(

α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)
+ g

(
umn − u

m
0

)
g
(
αω(x, y) ∗ t1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+
βt1(I0 − c1)
t1 +1u1

)2
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= F frA +
∑

�
[u(x)]m g

(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

− 2g
∑

�
[u(x)]m (I (x)− (αfo + βc1))(

α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)
+ g1u1

(
αω(x, y) ∗ t1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+
βt1(I0 − c1)
t1 +1u1

)2

(B-19)

From (B-1) and (B-6), we have E(q. (B-1) and Eq. (B-2),∑
�
I (x) · [u(x)]m = t1c1 (B-20)∑

�
ω(x, y) ∗

[
I (x)[u(x)]m

]
= fos1 (B-21)

Combing (B-20), (B-21) and α + β = 1, we have

F̂ frA =
∑

�
[u(x)]m g

(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ g1u1

(
αω(x, y) ∗1t1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+
βt1(I0 − c1)
t1 +1u1

)2

+F frA − 2g
(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+β
1u1

t1+1u1
(I0−c1)

)∑
�
[u(x)]m (I (x)−(αfo+βc1))

=

∑
�
[u(x)]m g

(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ g1u1

(
αω(x, y) ∗ t1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+
βt1(I0 − c1)
t1 +1u1

)2

+F frA − 2g
(
α
ω(x, y) ∗1u1 (I0 − fo)
ω(x, y) ∗ (t1 +1u1)

+ β
1u1

t1 +1u1
(I0 − c1)

)
(βt1c1 + αfos1 − (αt1fo + βt1c1))

= F frA + gt1

(
α

ω(x, y) ∗1u1
ω(x, y) ∗ (t1 +1u1)

(I0 − fo)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ g1u1

(
αω(x, y) ∗ t1

ω(x, y) ∗ (t1 +1u1)
(I0 − fo)

+
βt1

t1 +1u1
(I0 − c1)

)2

(B-22)

Similarly, we can get

F̂ frB = gt2

(
α

ω(x, y) ∗1u2
ω(x, y) ∗ (t2 +1u2)

(I0 − fb)

+ β
1u2

t1 +1u1
(I0 − c2)

)2

+F frB + g1u2

(
αω(x, y) ∗ t2

ω(x, y) ∗ (t2 +1u2)
(I0 − fb)

+
βt2

t2 +1u2
(I0 − c2)

)2

(B-23)

Therefore, by inserting (B-22) and (B-23) into (B-13),
we have

F̂ fr = F frA + gt1

(
α

ω(x, y) ∗1u1
ω(x, y) ∗ (t1 +1u1)

(I0 − fo)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ gt2

(
α

ω(x, y) ∗1u2
ω(x, y) ∗ (t2 +1u2)

(I0 − fb)

+ β
1u2

t1 +1u1
(I0 − c2)

)2

+ g1u1

(
αω(x, y) ∗ t1

ω(x, y) ∗ (t1 +1u1)
(I0 − fo)

+
βt1

t1 +1u1
(I0 − c1)

)2

+F frB + g1u2

(
αω(x, y) ∗ t2

ω(x, y) ∗ (t2 +1u2)
(I0 − fb)

+
βt2

t2 +1u2
(I0 − c2)

)2

(B-24)

So the alteration 1F fr = F̂ fr − F fr between the new and
old total energy is written as

1F fr = gt1

(
α

ω(x, y) ∗1u1
ω(x, y) ∗ (t1 +1u1)

(I0 − fo)

+ β
1u1

t1 +1u1
(I0 − c1)

)2

+ gt2

(
α

ω(x, y) ∗1u2
ω(x, y) ∗ (t2 +1u2)

(I0 − fb)

+ β
1u2

t1 +1u1
(I0 − c2)

)2

+ g1u1

(
αω(x, y) ∗ t1

ω(x, y) ∗ (t1 +1u1)
(I0 − fo)

+
βt1

t1 +1u1
(I0 − c1)

)2

+ g1u2

(
αω(x, y) ∗ t2

ω(x, y) ∗ (t2 +1u2)
(I0 − fb)

+
βt2

t2 +1u2
(I0 − c2)

)2

(B-25)
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