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ABSTRACT Fiducial markers are commonly used to localize robots. Most existing systems use standard
cameras to detect simple patterns on flat tags. Since depth is not directly sensed, the pose must be inferred
from the tag geometry. These systems are low-cost and easy to implement on robotic systems, but their
performances suffer in low-light conditions and on computationally constrained processors. We propose
using 3D light detection and ranging (LiDAR) scanners tomitigate these issues. The reflectivitymeasurement
provided by most LiDAR sensors provides a simple way to discern geometric differences on surfaces.
We utilize this fact to create a custom ‘‘beacon’’ with reflective fiducials. Next, we design a high-performance
segmentation and localization algorithm to find the 2D pose of a mobile robot. Our experiments proved that
our system achieves an average euclidean error of less than 0.063 m at ranges of over 10 mwhile maintaining
a runtime of under 3 ms on a basic single board computer. Additionally, our system is highly occlusion
resistant. These results are confirmed with multiple field tests of the system.

INDEX TERMS 3D LiDAR, computer vision, fiducial based localization, mobile robots, robotics and
automation, robot sensing systems.

I. INTRODUCTION
Autonomous robots must be able to discern their positions
and orientations within an environment. Cameras are often
used in conjunction with a visual marker to provide this
feedback. These systems rely on a variety of marker types,
including visual fiducials [1], reflective fiducials [2], and
actively lit markers [3]. These methods provide a low cost
and unintrusive (little environmental modification required)
way to localize a robot or other object within its environment.
However, camera-based systems are subject to a common
set of problems. They are dependent on ambient lighting
conditions and generally (in the case of monocular systems)
cannot directly sense depth. Since depth must be inferred,
these algorithms are computationally complex and subject to
image distortion.

Three-dimensional light detection and ranging (LiDAR)
scanners could be applied to this problem to mitigate these
issues. A fiducial localization system based on LiDAR could
be used in the same ways as visual methods are: to provide
ground truth data for testing, to enable complete localization
for a system operating within line-of-site in a confined area,
and/or to correct error induced from other methods after the
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robot has left and re-entered the range of the fiducial system.
However, the use of LiDAR would allow operation of the
system in all lighting conditions and eliminate the image pro-
cessing necessary for depth inference. This is shown in [4],
where a 2D Hokuyo LiDAR sensor is used to provide a
homing reference to an autonomous sample return rover,
and [5], where a custom 3D LiDAR scanning system is used
to localize an unmanned aerial vehicle.

In this paper, we introduce a method of measuring 2D pose
relative to a passive and stationary beacon using a 3D LiDAR
sensor. We exploit the reflectivity measurement present in
the data output of most 3D LiDAR scanners to segment a
highly reflective beacon in real-time from sparse point cloud
data. Then, we use the beacon geometry to calculate the
2D pose of the robot in the beacon frame of reference. The
result is a versatile localization system that scales effectively
to different range requirements, is highly invariant to light-
ing conditions, and can operate despite significant occlusion
of the beacon (unlike other common fiducial systems [6]).
Our beacon design is easy to manufacture and requires no
active components. Additionally, our system is computation-
ally efficient and capable of operating at the full scanning
frequency of most LiDAR scanners while utilizing only a
small fraction of available CPU time.
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II. RELATED WORK
Robotic localization systems that use inertial and wheel sen-
sors can provide accurate poses over a short period of time.
However, since these methods rely on the integration of error-
prone measurements, their pose estimates will drift from the
true value [7]. Additionally, these methods are dependent on
the starting pose of the robotic system and do not account for
the kidnapped robot problem [8]. Global positioning systems
can provide solutions to these problems, but some systems
operate in GPS-denied environments. For these reasons, sys-
tems which provide localizations relative to one or more
fixed markers within the environment have been researched
extensively.

Early work in this domain focused on deriving the posi-
tion of robots using time-of-flight or orientation estimates
between a robot and multiple beacon nodes. Ultrasonics are
used in [9] to measure the time-of-flight between a set of sta-
tionary transducers and robot with several receivers. In [10],
Kurth et al. use radio beacons to determine the position of a
robot with time-of-flight measurements. A rotational optical
sensor is employed to detect stationary infrared landmarks
in [11].

As the cost of cameras and computational power
decreased, research began to focus on visual methods. These
methods are typically more flexible than the older range
and heading based systems are because they can extract
more information from the artificial markers. In some cases,
a full six degrees of freedom localization can be derived
with a single marker. These systems can be categorized
into those which use active markers such as LEDs, includ-
ing [2], [3], [12], [13] and those which are completely passive
[1], [14]–[19]. In [1], visual tags which contain coded infor-
mation are localized with full six degrees of freedom in the
environment. In this work, Olson et al. focus on improving the
localization accuracy and coding system of other fiducial sys-
tems (such as [19]). In [14], stereo vision is used to triangulate
visual markers. Themarkers in this work are circular and have
colored rectangular borders capable of encoding information.
A camera with a fisheye lens is used to localize a robot based
on two artificial landmarks in [15]. The landmarks are cylin-
ders (instead of the more common flat tags) and the system is
capable of deriving both range and heading from each land-
mark. In [17], ceiling mounted markers are used in conjunc-
tion with a robot-mounted pan-and-tilt camera mechanism.
In this work, lighting differences are identified as a key issue
in the identification of markers and an iterative algorithm is
introduced to mitigate this problem. Visual fiducials consist-
ing of concentric circles have been proposed [16]. In [18],
ceiling mounted alphanumeric character-shaped landmarks
are used to localize a robot indoors.

Passive methods suffer from degraded performance in low-
light conditions. For this reason, many systems use active
lighting. In [12], Buchan et al. use a monocular camera to
detect LEDs and localize swarms of underwater vehicles
by solving a three-point PnP problem. A dynamic vision
sensor is used to localize an unmanned aerial vehicle (UAV)

FIGURE 1. Passive beacon design (red is retro-reflective, black is matte).

by detecting LEDs that blink at a high frequency in [13].
A monocular camera and several LEDs are used to provide
a six degrees of freedom localization of an UAV in [3].
In this system, variable numbers of LEDs can be mounted
on the UAV to increase the system robustness. In [2], trian-
gular, retro-reflective markers are used in conjunction with a
monocular camera to localize a robot in two dimensions. The
camera is surrounded with infrared LEDs to illuminate the
reflective marker.

Camera systems have been more thoroughly researched
than LiDAR based systems for this application. LiDAR based
systems are presented in [4] and [5]. In [5], an UAV is iden-
tified using a 2D LiDAR sensor. The scanner is constantly
moving to provide low-frequency 3D scans. This work uses
the reflectivity measurement from the scanner to determine
the UAV orientation. In [4], a 2D scanner is used to provide a
homing reference by detecting three equally-spaced vertical
bars. The direct depth measurement provided by the scan-
ner allows easy calculation of the robot position. However,
the intensity of the LiDAR returns is not used to facilitate the
marker identification. Instead, the gaps between the vertical
bars are used to ensure accurate identification. This makes the
marker placement important because the scannermust be able
to ‘‘see’’ past the maker (e.g. it could not be placed against a
wall).

III. REFLECTIVE FIDUCIAL SYSTEM
Our fiducial design consists of two highly reflective rect-
angles separated by a matte surface (Fig. 1). The reflective
portions can be created using retro-reflective tape or any other
material that reflects light in the infrared spectrum.

This shape was chosen because
• it is easy to manufacture,
• it results in spatially distinct clusters which can be used
to help identify the beacon by comparing characteristics
against the physical beacon, and

• its geometry facilitates the two-dimensional pose calcu-
lation.

The required size of the beacon scales with range and
sensor resolution. Typically, the limiting factor is the vertical
separation of the LiDAR scanlines. If all of the points on the
beacon surface are collinear, a planar model cannot be fit to
the data. For this reason, at least two scanlines must hit the
beacon surface. With this requirement and the model shown
in Fig. 2, the necessary beacon height h for a given range r
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FIGURE 2. Scanner-beacon interaction model.

and a vertical scan line resolution of ϕ is

h = 2r tanϕ (1)

and the required horizontal width w of the reflective rectan-
gles is

w = 2r tan(2θ ) (2)

where θ is the horizontal angular resolution of the LiDAR
scan points. The components of (2) are not included in Fig. 2,
but the model is the same. Note that the model is designed
to account for the worst case scenario of scanner-beacon
alignment. For this reason, the equations are calculated using
an additional scanline (i.e. the model includes three scanlines
when only two are required) or horizontal return. This is
because pitching the scanner causes different scanline align-
ments with the beacon. If scanlines are hitting at the top edge,
middle, and bottom edge of the reflective stripe, then a slight
pitch of the scanner will cause just two scanlines to hit the
reflective surface.

Theoretically, the algorithm can succeed with as few as
three total points hitting each reflective stripe on the beacon
surface. However, experimentally this creates poor results
because measurements from the LiDAR scanner are noisy
and averaging more data points creates a higher accuracy
localization. For this reason, we suggest designing the beacon
to allow at least four points to hit the reflective surface per
scanline (as in (2)).

Finally, the distance s between the inside edges of the
reflective rectangles is given by

s =
3
2
max(w, h) (3)

Bymaking the separation 50% larger than either dimension of
the beacon stripe, the segmentation algorithm is easily able to
create two distinct clusters from the beacon in the point cloud.

These values form only the lower limits that the algorithm
requires to localize reliably. Increasing the size of the reflec-
tive rectangles while maintaining the required separation
from (3) will increase the accuracy of the localization output

because more scan points will hit the beacon surface. If a
smaller beacon size is used, the system may still successfully
localize in most of the region of interest. However, in this
case, the system using the beacon-based localization should
be designed to be robust to occasional failures.

A. SEGMENTATION
The beacon segmentation algorithm is responsible for seg-
menting the clusters of points which belong to the reflective
beacon stripes (shown in Fig. 3). This object recognition
problem is difficult because the algorithm must continue to
operate as the sparsity of the point cloud grows with range.
This means that the system must be able to successfully
identify a cluster containing less than ten to over one thousand
discrete LiDAR returns. We developed a custom segmenta-
tion pipeline which utilizes the specific geometric properties
of the beacon to solve this problem. This algorithm represents
themain contribution of this paper. It consists of the following
steps:

1) intensity threshold filter;
2) voxel grid down-sample;
3) euclidean clustering with intensity threshold;
4) planar random sample consensus on individual clus-

ters;
5) generation of identification heuristic parameters; and
6) selection of clusters based on identification heuristics.

1) INTENSITY THRESHOLD FILTER
The reflectivity of the beacon fiducials relative to the rest of
the environment is the most obvious factor that differentiates
the beacon in the point cloud data. For this reason, the first
step in the segmentation process is to remove all points which
are below the possible reflectivities of the beacon fiducial
clusters. This spatially isolates the clusters belonging to the
beacon while significantly reducing the dataset that needs
to be processed by the next steps in the algorithm. LiDAR
scanners typically have a documented intensity value which
is indicative of a retro-reflective surface in the point cloud.
This value can be used as the intensity threshold. If the system
is expected to operate in exceptionally dusty environments,
this threshold may need to be lower than the retro-reflective
intensity value. This is because dust can accumulate on the
beacon surface.

2) VOXEL GRID DOWN-SAMPLE
The number of points which hit the reflective stripes is highly
dependent on the distance between the LiDAR scanner and
the beacon. Changes in the point density can cause significant
increases in the run-time of the algorithm. A voxel grid down-
sample [20] is applied to each point cloud input to solve this
problem. This down-sampling algorithm builds a euclidean
grid in the 3D point cloud and finds the centroid of all points
that fall within each grid cube. These centroids represent the
down-sampled point cloud. This grid will reduce the number
of points in the data set when the scanner is near the beacon
while preserving the resolution when the scanner is far away.

VOLUME 7, 2019 45293



S. Davis et al.: Reflective Fiducials for Localization With 3D LiDAR Scanners

FIGURE 3. Reflective beacon in point cloud (left, color represents intensity), intensity filtered and down-sampled point cloud (middle, color represents
intensity), and cluster extraction (right, color changes represent different clusters).

If the grid cube size is too large, the beacon may not be
accurately identified in the point cloud by the next steps in
the algorithm. However, as the voxel size decreases, the algo-
rithm’s total computing time increases. Therefore, the voxel
size should be set to a small value and then increased until
computational requirements are met while ensuring that the
beacon can still be identified. We experimentally determined
0.1min(h,w) to be a good starting value, where the height h
and width w of the beacon are calculated with (1) and (2).

3) EUCLIDEAN CLUSTERING
After the intensity threshold filter, the clusters belonging to
the reflective beacon stripes will be spatially isolated. The
segmentation algorithm then uses an intensity thresholded
euclidean clustering algorithm to divide the point cloud into
separate clusters. This algorithm grows clusters as long as a
distance threshold l is met and an intensity similarity thresh-
old is satisfied. A k-d tree [21] is used to efficiently search
for spatially close points. An appropriate l threshold can be
calculated with

l = max(h,w) (4)

to ensure all of the points from each cluster are accurately
grouped. The intensity difference threshold id should be
determined experimentally because this value is dependent
on the particular LiDAR scanner used. The threshold should
be set so that points that do not have similar reflectivity values
are not grouped. However, the threshold should not be so low
that points are erroneously rejected from the reflective stripe
clusters. After completing the clustering operation, the algo-
rithm prunes clusters by removing those which contain too
few or too many points. The minimum value should be based
on the sparsity of the generated point cloud at the maximum
range of operation, while the maximum should be determined
by the number of points in each cluster when the scanner is
very close to the reflective beacon stripes. Three points can be
used as an absolute minimum value, and a maximum of about
1000 is large enough for most scanners. These can be tuned
by examining the density of the point clouds at the system’s
minimum and maximum operating ranges.

4) PLANAR RANDOM SAMPLE CONSENSUS
In rare circumstances, points representing obstructions near
the reflective stripes can be fused with the beacon clusters.
These erroneous points are rejected with a planar RANSAC
algorithm [22]. If an adequate number of inliers are not found
to fit a planemodel in every cluster, the cluster is rejected. The
exact outlier distance threshold is dependent on the accuracy
of the 3D LiDAR scanner. We found that a value of two
to three times the specified range accuracy of the LiDAR
scanner reliably extracted the planar points in the cluster.

5) IDENTIFICATION METRIC GENERATION
The previous steps leave the segmentation process with a col-
lection of point clusters that contain planar, highly reflective
points. Now, the algorithm must determine which clusters
belong to the beacon. The following metrics are used to make
this determination:
• centroid separation;
• covariance matrix eigen values;
• angle between plane normal vectors; and
• difference in distance from cluster plane to origin.

After the clusters are partitioned from the point cloud,
the centroid vector c to each cluster is computed by aver-
aging the coordinates of each point. The euclidean distance
cs between any two cluster centroids can then be calculated
with (5).

cs = ‖c1 − c2‖ (5)

The other heuristic parameters are derived with principal
component analysis. First, the covariance matrix P of the
cluster is calculated using

P =
1
n

n∑
k=1

(xk − c) (xk − c)T (6)

where n is the number of points in the cluster, xk is the kth
point in the cluster, and c is the respective cluster centroid.
Next, eigen decomposition is performed on this covariance
matrix to yield three eigen values (λ1, λ2, λ3) and three
associated eigen vectors (v1, v2, v3). These eigen values and
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their associated eigen vectors are arranged such that λ1 >
λ2 > λ3. The eigen values of a covariance matrix are equal to
the variance along the principal component axes. Therefore,
after ordering, v3 points in the direction ofminimumvariance,
which is the same direction as the least-squares fit normal
vector of the planar cluster. The normal vector of a particular
cluster will be referred to as n moving forward, where n =
v3/||v3||. Since the normal vectors are not unique, care must
be taken to ensure that two anti-parallel normal vectors are
reoriented to be parallel. In our implementation, all normal
vectors are flipped to face the origin.

The angle between two cluster normal vectors n1 and n2
can be calculated with

φ = arccos (n1 · n2) . (7)

The distance from a planar cluster to the origin can be calcu-
lated with

d = |n · x| (8)

where x is any point on the plane. Then, the origin distance
difference od between two clusters can be calculated with

od = |d1 − d2| . (9)

6) CLUSTER SELECTION
After generation of the cluster heuristic parameters, the algo-
rithm has all of the necessary information to determine which
clusters belong to the beacon.

First, the separation distance must satisfy

|cs − (s+ w)| < ts (10)

where s and w are calculated from (3) and (2). ts represents
the maximum allowable deviation from the correct centroid
separation. This threshold can be set to a fraction of the
expected distance between the centroids s + w. A value in
the range of 20% to 40% worked well in our experiments.

Next, the Eigen values of the covariance matrix must sat-
isfy λ1 > t1λ , λ2 > t2λ , and λ3 < t3λ (where tnλ is some
threshold) to ensure that the cluster accurately fits a planar
model. λ3 must satisfy a maximum because this corresponds
to the variance of the points along the normal vector. For
a good quality plane fit, this variance should be low. If the
cluster is planar, λ1 and λ2 should be large in comparison to
λ3 because the points will be distributed throughout the plane.
As an example, a cluster consisting of only collinear points
would be rejected because only one axis would have a large
variance. These thresholds are best determined experimen-
tally by calculating the eigen values of a correctly identified
cluster. Finally, od must be less than a threshold tod and |φ|
must be less than tφ . tod sets the maximum allowable distance
between the cluster planes (assuming they are parallel). The
planes are parallel if tφ is satisfied. Neither of these parame-
ters is particularly sensitive, but there is some dependence on
the scanner accuracy and beacon construction. tφ is sensitive
to warping of the beacon, which can occur if the beacon is
constructed with flexible material. A value in the range of

FIGURE 4. Coordinate systems.

20◦ to 30◦ worked well in our experiments. tod is intended
to reject clusters which do not lie in the same plane. It is also
subject to beacon warping. For this reason, we suggest setting
it to a percentage of s + w (a larger beacon presents more
possibility for warping and misalignment). We found that
a value of 40% to 60% reliably rejected erroneous clusters
while recognizing the beacon successfully.

If all of these conditions are satisfied, then the algorithm
has found the set of clusters that belongs to the beacon
to a high degree of certainty. In this case, the information
generated in the identification phase can now be used in the
localization step. However, if one of the heuristics is not
satisfied, the algorithm cannot confidently use the cluster pair
to generate a pose and will continue comparing clusters.

B. LOCALIZATION
After the beacon clusters have been successfully seg-
mented, the identification algorithm has generated centroids
(c1 and c2) and normal vectors (n1 and n2) of the matched
cluster pair.

The localization algorithm uses this data to determine the
2D pose of the robot. First, the orientation of the clusters
must be computed. The vectors c1 and c2 are the vectors
drawn from the LiDAR sensor coordinate system origin to
the centroid of each reflective rectangle in the LiDAR point
cloud. The z-axis is oriented vertically (i.e. out of the page
in Fig. 4) relative to the sensor, and the other axes are oriented
according to Fig. 4. With these axes, the orientation can be
determined by examining the sign of the angle difference
of the two vectors. First, the beacon position vector cb is
computed with

cb =
c1 + c2

2
. (11)

Then, the angle of that vector in the xy-plane is computedwith

θb = atan2
(
cby, cbx

)
(12)

and the angle of c1 and c2 with

θ1 = atan2
(
c1y, c1x

)
(13)
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and

θ2 = atan2
(
c2y, c2x

)
. (14)

Then, the left and right vectors cl and cr are determined by
comparing θ1 to θb. If θ1−θb > 0 (where care is taken to wrap
angles to (−π, π] in subtraction) then cl = c1 and cr = c2.
Otherwise, cl = c2 and cr = c1.
Next, the centroid difference vector cd is computed with

cd = cr − cl (15)

and the beacon normal vector nb with

nb =
n1 + n2
‖n1 + n2‖

. (16)

After computation of these vectors, the 2D pose can be calcu-
lated. The xy-plane in the beacon coordinate system is defined
as the plane that has a normal vector orthogonal to cd and
nb while containing the point cb. The x-axis is parallel to nb
while the y-axis is parallel to cd . The x-coordinate can then
be calculated with

x = −nb · cb (17)

since nb is normalized, the y coordinate with

y = −
cd · cb
‖cd‖

(18)

and lastly θ with

θ =
π

2
− atan2

(
cdy, cdx

)
. (19)

IV. EXPERIMENTAL RESULTS
We have presented an algorithm which segments a beacon
from point cloud data and calculates a 2D localization. In this
section, we prove the operation of this system through several
experiments. First, we characterize the system accuracy and
region of operation. Next, we verify the real-time operation of
the algorithm on an embedded computer. Finally, the system
is deployed on a prototype Martian mining robot.

Our algorithm was implemented in C++. The Point Cloud
Library [23] provided pre-built implementations of some of
the algorithms used in our system. We utilized a Velodyne
VLP-16 3D LiDAR scanner. This sensor has 16 scan lines
with a 2◦ vertical separation and better than 0.4◦ horizontal
resolution. Its measurements are accurate to 3 cm and the
scanner was configured to run at 10 Hz for all of the following
tests. Due to the requirements of our deployment application,
we chose to build a system that had a 6 m range. With this
requirement, we arrived at the parameters shown in Table 1
to configure the algorithm and build the beacon. In this table,
sm is the maximum intensity value returned by the scanner.
The reflective portions of the beacon were constructed using
micro-prismatic retro-reflective tape laid on top of matte
black foam board.

TABLE 1. Localization System Parameters.

FIGURE 5. Localization test points.

A. ACCURACY AND REGION OF OPERATION
In order to characterize the accuracy of the system, we placed
the scanner at 92 different points shown in Fig. 5 (beacon is
at the origin). We then derived a ground truth pose estimate
by triangulating the scanner pose using laser rangefinders.
We used Bosch GLM 35 laser measures which have an accu-
racy of ±1.6 mm. This ground truthing method allows us to
prove that our algorithm accurately calculates the pose of the
scanner throughout the region of operation.

We triangulated the pose of the scanner by measuring a
distance l1 to the left edge of the beacon and l2 to the right
edge of the beacon from the center of our Velodyne scanner.
Then, we calculate an internal angle φl of the formed triangle
with

φl = arccos
l21 − u

2
− l22

−2ul2
(20)

where u is the distance from the left to the right edge of the
beacon. If φl = π/2 then the ground truth position can be
calculated with

xg = l2

yg = −
u
2

(21)
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FIGURE 6. Histogram of yaw errors.

FIGURE 7. Histogram of euclidean distance errors.

but if φl < π/2 then

xg = l2 sinφl

yg = −l2 cosφl +
u
2

(22)

otherwise

xg = l2 sin (π − φl)

yg = l2 cos (π − φl)+
u
2
. (23)

The yaw angle can then be calculated by taking a second set
of measurements at a point collinear with the scanner x-axis:

θg = atan2
(
yg2 − y

g
1, x

g
2 − x

g
1

)
(24)

The superscript indicates a ground truth point. We performed
these measurements by attaching the scanner to a custom test
fixture. This consisted of a rigid mount for the scanner and
a long beam providing a surface to perform the secondary
measurement to derive yaw.

Fig. 6 shows the histogram of yaw angle differences from
the truth point (rangefinder triangulation) and the reflective

FIGURE 8. Histogram of errors along x-axis.

FIGURE 9. Histogram of errors along y-axis.

beacon system measurements. A maximum error of 4.13◦

was observed over the measurements within the designed
range. In Fig. 7, the euclidean distance error from the truth
points to the algorithm measurements is shown. The maxi-
mum euclidean error across all measurements was 0.127 m.
Fig. 8 and Fig. 9 show the histogram of errors along each
axis. Note that our ground truth measurement range exceeds
the designed range of the localization system. We tested
at ranges of up to 10 m to demonstrate that our system
gracefully degrades. During our data collection procedure,
some localization failures were observed beyond the spec-
ified range of the system. Our histograms include only the
errors from within the designed range (under 6 m). However,
the algorithm never incorrectly identified the beacon even
after exceeding the designed range, and the localization accu-
racy did not degrade significantly. This shows that our algo-
rithm does not become unstable at the edge of its specified
range. It can be safely used in a mobile robot which regularly
enters and leaves the fiducial based localization system’s area
of operation with no special considerations. The maximum
euclidean and angular errors outside the operational area were
0.249 m and 7.19◦, respectively.
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FIGURE 10. Highly occluded beacon view (left), point cloud view (middle-left), filtered point cloud (middle-right), cluster selection (right).

TABLE 2. Algorithm Performance.

B. REAL-TIME PERFORMANCE
The system was deployed on a VIA EPIA P910 Pico-ITX
single board computer. This processor has an x86-64 archi-
tecture and a clock frequency of 1.2 GHz. We also tested
the system on a laptop with a 2.50 GHz Intel i5-2520M
processor. Both systems ran Ubuntu version 16.04 and the
software was compiled using GCC version 6.3 with full opti-
mizations. We ran the localization algorithm 163 times using
point clouds from various ranges to account for different point
densities. About 10% of the point clouds were failure cases
(where the algorithm was unable to detect the beacon). The
results are shown in Table 2.

This data proves that our algorithm is efficient and capable
of operating in real-time while consuming a small percentage
of the available computing power. Additionally, these results
indicate that our system will continue to function in real-time
with higher density point clouds, which will be important as
higher resolution LiDAR scanners become readily available.

C. OCCLUSION RESISTANCE
Our system is highly resistant to occlusions. This is shown
in Fig. 10, where the scanner is placed in front of two
highly occluded beacons. In both test cases, the algorithm

FIGURE 11. Robot navigating autonomously with localization system
(beacon is against the back wall).

successfully identifies the beacon within the point cloud and
localizes the scanner. We observed a maximum euclidean
error of 0.044 m and a maximum yaw error of 3.1◦ across
both examples. This shows that the center matte area of the
beacon can be completely occluded with no effect on the
localization output. The reflective regions can be occluded
until the minimum number of points from each scanline are
no longer able to reflect off the beacon surface. As shown
in Fig. 10, this means that more than 50% of the stripe can be
occluded with no ill-effects on the localization.

D. DEPLOYMENT
We deployed the system on a prototype Martian mining robot
which competed in the NASA Robotic Mining Competition.
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FIGURE 12. Robot localizations during a field deployment test.

Fig. 11 shows this system operating in a mining arena.
A video of the robot navigating autonomously can be seen
in [24]. During two years of operation, this localization sys-
tem enabled every competition run to be completed fully
autonomously. Fig. 12 shows the localizations collected from
a deployment test. The different densities of points show
changes in the robot’s speed as it traverses across the sim-
ulated Martian landscape.

V. CONCLUSION
As shown by the experimental results, this paper presents
an algorithm which robustly derives the two-dimensional
position and orientation of a robot within a confined region.
We showed that a LiDAR sensor based system has several
distinct advantages over visual systems. In particular, direct
depth measurement helps the algorithm be computationally
efficient, resistant to beacon/marker occlusion, and invariant
to lighting conditions. Unlike many other similar systems,
our architecture requires the introduction of only a single
artificial, passive marker into the environment. It has no
dependence on environmental features beyond the beacon
itself. In systems which consistently return back to a home
location, this method introduces a simple way to eliminate
errors induced by other localization methods such as wheel
odometry. When the robot remains within a confined region,
this system can provide a complete localization solution.
High resolution LiDAR scanners are continuing to become
more readily available. This trend will enable our system to
operate with smaller beacon sizes at longer ranges, which
widens its applicability.
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