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ABSTRACT The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms in
pattern recognition field because it is very simple to understand but works quite well in practice. However,
the performance of the kNN rule depends critically on its being given a good distance metric over the input
space, especially in small data set situations. In this paper, a new kNN-based classifier, called BPkNN,
is developed based on pairwise distance metrics and belief function theory. The idea of the proposal is that
instead of learning a global distance metric, we first decompose it into learning a group of pairwise distance
metrics. Then, based on each learned pairwise distance metric, a pairwise kNN (PkNN) sub-classifier can
be adaptively designed to separate two classes. Finally, a polychotomous classification problem is solved by
combining the outputs of these PkNN sub-classifiers in belief function framework. The BPkNN classifier
improves the classification performance thanks to the new distance metrics which provide more flexibility
to design the feature weights and the belief function-based combination method which can better address
the uncertainty involved in the outputs of the sub-classifiers. Experimental results based on synthetic and
real data sets show that the proposed BPkNN can achieve better classification accuracy in comparison with
some state-of-the-art methods.

INDEX TERMS Pattern classification, k-nearest-neighbor classifier, pairwise distance metric, belief func-
tion theory.

I. INTRODUCTION
Automatic classification of patterns is an important problem
in a variety of engineering and scientific disciplines such
as biology [1], psychology [2], medicine [3], marketing [4],
military affairs [5], etc. Generally, complete statistical knowl-
edge regarding the conditional density of each class is rarely
available, which precludes applications of the optimal Bayes
classification procedure [6]. In these cases, a good solution
is to classify each new pattern using the evidence of nearby
sample observations. One such non-parametric procedure has
been introduced by Fix and Hodges [7], and has since become
well-known in the pattern classification community as the
k-nearest neighbor (kNN) rule. Cover and Hart [8] also pro-
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vided a statistical justification of this procedure by showing
that, as both the number of samples N and the number of
neighbors k tend to infinity in such a way that k/N → 0,
the error rate of the kNN rule approaches the optimal Bayes
error rate. However, in the case of finite number of samples,
the classical k-NN rule is not guaranteed to be the optimal
way of using the information contained in the neighborhood
of query patterns.

In many practical pattern classification applications,
the available data may be insufficient, and the real class-
conditional probability distributions cannot bewell character-
ized using the limited training samples [9], [10]. In such small
data set situations (relative to the intrinsic dimensionality of
the data involved), the ideal asymptotical behavior of the kNN
rule degrades dramatically [11]. This is the reason why the
improvement of this rule has remained an active research
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topic in the past 60 years. One of the directions is to findmore
adequate distance metrics that potentially improve the kNN
classification performance in small data set situations.

The performance of the kNN rule depends critically
on its being given a good distance metric over the input
space, especially in small data set situations. To over-
come the limitations of the original Euclidean (L2) dis-
tance metric, many adaptive distance metrics and learn-
ing methods have been proposed. According to the
structure of the metric, these methods can be mainly
divided into two categories: global distance metric learning
[12]–[17], and local distance metric learning [18]–[23]. The
main drawback of the global learning approach is that the
learned single distance metric usually cannot separate all of
the class pairs well. As one representative label-based local
distance metric learning method, Paredes and Vidal [22],
[23] proposed to learn a class-dependent weighted (CDW)
distance metric adaptively for each class. However, as the
learned CDW distance metric is only relevant to the class
labels of the training samples, it is insufficient to reflect
the local specificities in feature space for query patterns in
different classes.

In this paper, we focus on the label-based local distance
metric learning problem 1. To overcome the limitations of the
CDW distance metric, two types of pairwise distance metrics
are defined, which can better characterize the local specifici-
ties in the input space. For a general polychotomous classifi-
cation problem, a new kNN-based classifier, called BPkNN,
is develop based on the pairwise distance metrics and the
belief function theory [26], [27]. The idea is that instead of
learning a global distance metric, we first decompose it into
learning a group of pairwise distance metrics. Because only
two classes are involved for each pairwise distance metric,
the feature weights can be learned in a more local way. Then,
based on each learned pairwise distance metric, a pairwise
kNN (PkNN) sub-classifier can be adaptively designed to
separate two classes. Finally, a polychotomous classification
problem is solved by combining the uncertain outputs of the
PkNN sub-classifiers in belief function framework. The main
contributions of this paper are as follows.

1) A pairwise weighted (PW) distance metric related to
the labels of the class pair to be classified is defined,
and the corresponding parameter optimization proce-
dure is designed based on the maximum likelihood
principle. As a more general dissimilarity measure,
the new PW distance metric can provide greater flex-
ibility to design the feature weights.

2) The PW distance metric is further extended to the
pairwise Mahalanobis (PM) distance metric, which can
effectively address the potential feature correlations
existed in many real-world applications.

3) A new BPkNN classifier is designed based on the
pairwise distance metrics in belief function framework,

1A preliminary version of some of the ideas introduced here was presented
in [24], [25]. The present paper is a deeply revised and extended version of
this work, with several new results.

which can better model and combine the uncertainty
involved in the outputs of PkNN sub-classifiers.

Two types of experiments using both synthetic and real
data sets have been developed to evaluate the performance
of the proposed BPkNN classifier. In the synthetic data test,
we employed different data generation distributions with
different degrees of class overlapping. For all the cases,
the proposed BPkNN classifier produced the highest clas-
sification accuracy, which demonstrated the generalizability
of the proposed method on synthetic difficult data. In the
real data test, twenty data sets varying greatly in the number
of instances, features and classes, were selected from the
UCI Machine Learning Repository [28] for evaluation. The
comparison methods include those kNN classifiers based on
other representative distance metrics and some of the most
popular instance-based methods. The results reported show
the competitive performance of the proposal for a variety of
real tasks involving different data conditions.

The rest of this paper is organized as follows. Section II
briefly reviews related background. After that, two types
of pairwise distance metrics are defined and learned in
Section III. The BPkNN classifier is then designed and real-
ized based on the proposed pairwise distance metrics and
the belief function theory in Section IV. The experiments to
evaluate the performance of the proposedmethod are reported
in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND
This section briefly reviews the most important developments
related to the distance metric learning in kNN classifiers as
well as some other instance-based classifiers.

In the original k-NN rule [7], the Euclidean (L2) distance
metric is used to compute the distance between two patterns
as

dL2(x, y) =

√√√√√ P∑
j=1

(xj − yj)2, (1)

where x ∈ RP is a pattern in the training set, and y ∈ RP is a
query pattern to be classified.

The main drawback of the L2 distance metric is that it does
not take into account the weights of different features in the
input space. To overcome this limitation, a number of distance
metric learning methods have been proposed.

The first group of these methods learn the distance met-
ric in a global sense, i.e., the same global weighted (GW)
distance metric is defined for all the patterns by introducing
feature weights as

dGW (x, y) =

√√√√√ P∑
j=1

λ2j (xj − yj)
2, (2)

where λj is the weight of the j-th feature.
Based on the this GW distance metric, the feature weights

learning in [12]–[14] was formulated as a linear programming
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problem that minimizes the distance between the data pairs
within the same classes subject to the constraint that the data
pairs in different classes are well separated. Eick et al. [15]
introduced an approach to learn the feature weights that
maximizes the clustering accuracy of objects in the training
set, and similarly, the classification error rate of objects in
the training set was minimized to learn the feature weights
in [16], [17].

Although the above global distance metric learning meth-
ods are intuitively appealing, they are still not fine enough,
as the feature weights of the distance metric are irrelevant
with the class labels of the patterns. This issue becomes more
severe when some features behave distinctly for different
classes (e.g., one featuremay bemore discriminative for some
classes, but irrelevant for others). For classification problems
with a large number of classes, it is hard to learn a GW
distance metric that can simultaneously separate all of the
class pairs with well performance.

Therefore, the local distance metric learning approach was
developed to learn a local distance metric for some specific
patterns. According to the types of used local information,
this approach can be further divided into two subcategories:
geometry-based local distance metric learning and label-
based local distance metric learning.

For the geometry-based methods [18]–[21], the aim is to
learn a locally adaptive distance metric in the neighborhood
of each query pattern. Wang et al. [21] proposed an adaptive
kNN algorithm which involves a locally adaptive distance
measure by normalizing the ordinary Euclidean distance from
a query pattern to each training sample by the shortest dis-
tance between the corresponding training sample to training
samples of a different class.

In contrast, Paredes and Vidal [22], [23] provided an idea
to learn a label-based local distance metric. In their work,
a class-dependent weighted (CDW) distance metric which is
relevant to the class labels of the training samples was defined
as

dCDW (x, y) =

√√√√√ P∑
j=1

λ
j
c
2
(xj − yj)2, (3)

where, λjc is the weight of the j-th feature and c is the class
index of training sample x. The involved feature weights can
be optimized by minimizing the leaving-one-out classifica-
tion error of the given training set.

The CDW distance metric has become recently popular in
kNN classifiers as well as some other instance-based classi-
fiers. For example, in [29], a weighted data gravitation clas-
sification (DGC+) method was developed by employing a
matrix of weights to describe the importance of each attribute
in the classification of each class, which was used to weight
the distance between data samples.

As observed, the CDW distance metric provides more
freedom than the GW distance metric and can be learned
adaptively for different classes of the training samples.

However, as the learned CDWdistance metric is only relevant
to the class labels of the training samples, it is insufficient to
characterize the local specificities in the input space for query
patterns in different classes. This problem is enhanced as the
numbers of features and classes increase.

III. PAIRWISE DISTANCE METRIC: DEFINITION AND
LEARNING
To better characterize the local specificities in the input space,
in Section III-A, we define a pairwise weighted distance
metric and design a parameter optimization procedure to
learn it based on the maximum likelihood principle. Then,
in Section III-B, we extend the pairwise weighted distance
metric to further consider the potential correlations between
different features.

A. PAIRWISE WEIGHTED DISTANCE METRIC
Definition 1 (Pairwise weighted distance metric):

Suppose x and y are two P-dimensional patterns whose labels
belong to class pair {ωp, ωq} , �p,q. The pairwise weighted
(PW) distance metric between x and y is defined as

dPW (x, y) =

√√√√√ P∑
j=1

λ
j
p,q

2
(xj − yj)2, (4)

where λjp,q is a constant that weights the role of the j-th feature
in the distance metric concerning class pair �p,q.

This definition includes, as particular cases, the distance
metrics reviewed in the previous section. If λjp,q = 1 for all
p = 1, · · · ,M , q = 1, · · · ,M , j = 1, · · · ,P, the above
defined PWdistancemetric reduces to the L2 distancemetric.
In addition, the GW and CDW distance metrics correspond
to the cases where the metric weights do not depend on the
class labels or are only dependent on the class label of the first
pattern, respectively. Therefore, the PW distance metric is a
more general dissimilarity measure than the L2, GW or CDW
distance metrics and can provide greater flexibility to design
the feature weights so that the local specificities in the input
space can be well characterized.

In the above defined PW distance metric, the only free
parameters are the feature weights related to the labels of
the two considered classes. In the following part, we aim to
learn feature weights λjp,q (1 ≤ p < q ≤ M , j = 1, · · · ,P)
from the training data by optimizing some criteria. A simple
way of defining the criteria for the desired metric is to keep
the data pairs from the same class close to each other while
separating those data pairs from different classes far from
each other [12].

We divide training set T intoM subsets Tk , k = 1, · · · ,M ,
with each Tk containing all of the Nk training data belonging
to class ωk :

Tk = {(xi, ωk ) | i ∈ Ik},

where Ik is the set of indices for training data xi belonging to
class ωk .
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We now consider learning feature weights λjp,q (j =
1, · · · ,P) from training subsets Tp and Tq. Let us denote the
set of data pairs from the same class as

S =
{
(xm, xn) | m, n ∈ Ip;m < n

}
∪
{
(xm, xn) | m, n ∈ Iq;m < n

}
,

and the set of data pairs from different classes as

D =
{
(xm, xn) | m ∈ Ip; n ∈ Iq

}
.

In order to estimate the probability for any data pair
(xm, xn) to share the same class or different classes, the logis-
tic regression model is used here. The reasons for choosing
this model are as follows. Firstly, The logistic function in this
model can ensure that the predicted values are probabilities
and are therefore restricted to (0, 1). Furthermore, because the
logistic regression model predicts probabilities, rather than
just classes, the parameters of this model can be easily fitted
using the maximum likelihood estimation.

With the logistic regression model, the probability Pr for
any data pair (xm, xn) to share the same class is

Pr(+ | (xm, xn)) =
1

1+ ed
2
PW (xm,xn)−µp,q

, (5)

and then the probability Pr for any data pair (xm, xn) to share
different classes is

Pr(− | (xm, xn)) = 1−
1

1+ ed
2
PW (xm,xn)−µp,q

=
1

1+ eµp,q−d
2
PW (xm,xn)

, (6)

where ‘‘+’’ and ‘‘−’’ denote data pair (xm, xn) belonging to
the same class and different classes, respectively. Parameter
µp,q is the threshold. The data pair (xm, xn) will be assigned
higher probability to be in the same class when their square
PW distance is much smaller than threshold µp,q. In contrast,
if their square PWdistance is much larger than thresholdµp,q,
they will be given more probability to have different classes.

Then, the overall log-likelihood for both the data pairs in
S and D can be written as

Lg
(
{λjp,q}

P
j=1, µp,q

)
= log Pr(+ | S)+ log Pr(− | D)

= −

∑
(xm,xn)∈S

log
(
1+ ed

2
PW (xm,xn)−µp,q

)
−

∑
(xm,xn)∈D

log
(
1+ eµp,q−d

2
PW (xm,xn)

)

= −

∑
(xm,xn)∈S

log

1+ e

P∑
j=1
λ
j
p,q

2
(xmj−xnj)2−µp,q


−

∑
(xm,xn)∈D

log

1+ e
µp,q−

P∑
j=1
λ
j
p,q

2
(xmj−xnj)2

 . (7)

With the maximum likelihood principle, the PW distance
metric learning can be formulated as the following optimiza-
tion problem:

max
{λ
j
p,q}

P
j=1,µp,q

Lg
(
{λjp,q}

P
j=1, µp,q

)
s.t. λjp,q ≥ 0, j = 1, · · · ,P, and µp,q ≥ 0. (8)

This is a convex programming problem, which can be solved
using Newton’s method [30].

B. EXTENSION TO PAIRWISE MAHALANOBIS
DISTANCE METRIC
In the above subsection, the distancemetric was learned under
the assumption that the P considered features are indepen-
dent. However, in many real-world applications, this assump-
tion is hardly tenable [31]. Therefore, in this subsection,
we extend the PW distance metric to further consider the
correlations between different features.
Definition 2 (Pairwise Mahalanobis distance metric):

Suppose x and y are two P-dimensional patterns whose labels
belong to class pair �p,q. The pairwise Mahalanobis (PM)
distance metric between x and y is defined as

dPM (x, y) =
√
(x− y)TAp,q(x− y), (9)

where Ap,q ∈ RP×P is a positive semi-definite matrix (i.e.,
Ap,q � 0) that weights the role of features in the distance
metric concerning class pair �p,q.

This definition provides a more generalized pairwise
distance metric by introducing the potential correlations
between different features. If we restrict Ap,q to be diago-
nal, the defined PM distance metric just reduces to the PW
distance metric in Definition 1.

In a similar way as described in the above subsection,
the PM distance metric learning can also be formulated as
a nonlinear optimization problem. However, in the case of
learning a full matrix Ap,q, the positive semi-definite con-
straint of Ap,q becomes difficult to enforce, and Newton’s
method often becomes prohibitively expensive (requiring
O(P6) time to invert the Hessian over P2 parameters). To sim-
plify the computation, we model the matrix Ap,q using the
eigenspace of the training samples [32]. Based on training
subsets Tp and Tq, the covariance matrix between any two
features is computed as

Mp,q =
1

np,q − 1

∑
i∈Ip,q

(xi − x)(xi − x)T , (10)

where, Ip,q is the set of indices for training sample xi belong-
ing to class ωp or ωq, np,q is the number of training samples,
and x is themean feature vector over the np,q training samples.
Denoting vkp,q, k = 1, 2, · · · ,K , the topK (K ≤ P) eigenvec-
tors of matrix Mp,q, we model Ap,q as a linear combination
of the top K eigenvectors as

Ap,q =

K∑
k=1

γ kp,qv
k
p,qv

k
p,q

T
, (11)
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FIGURE 1. Scheme of kNN classification with pairwise distance metrics and belief function theory.

where γ kp,q, k = 1, 2, · · · ,K , are the non-negative weights
for linear combination.

Then, with the above decomposition of matrix Ap,q,
the overall log-likelihood for both the data pairs in S and D
can be written as

Lg
(
{γ kp,q}

K
k=1, µp,q

)
= log Pr(+ | S)+ log Pr(− | D)

= −

∑
(xm,xn)∈S

log
(
1+ ed

2
PM (xm,xn)−µp,q

)
−

∑
(xm,xn)∈D

log
(
1+ eµp,q−d

2
PM (xm,xn)

)

= −

∑
(xm,xn)∈S

log

1+ e

K∑
k=1

γ kp,qν
k
m,n−µp,q


−

∑
(xm,xn)∈D

log

1+ e
µp,q−

K∑
k=1

γ kp,qν
k
m,n

 , (12)

with νkm,n = (xm − xn)T vkp,qv
k
p,q

T (xm − xn).
With the maximum likelihood principle, the PM distance

metric learning can be formulated as the following optimiza-
tion problem:

max
{γ kp,q}

K
k=1,µp,q

Lg
(
{γ kp,q}

K
k=1, µp,q

)
s.t. γ kp,q ≥ 0, k = 1, · · · ,K , and µp,q ≥ 0, (13)

which is similar to the optimization of the PW distance metric
learning, and can be solved using the same optimization
method.

IV. KNN CLASSIFICATION WITH PAIRWISE DISTANCE
METRICS AND BELIEF FUNCTION THEORY
With the proposed pairwise distance metrics concerning class
pair �p,q, a pairwise kNN sub-classifier PkNNp,q can be

designed to separate the two classes ωp and ωq based on the
training subset Tp ∪ Tq. Then, for an M -class classification
problem, M (M − 1)/2 sub-classifiers PkNNp,q (1 ≤ p <
q ≤ M ) can be designed and the final classification result
is obtained by combining the outputs of these PkNN sub-
classifiers. A variety of schemes have been proposed for
deriving a combined decision from individual ones, such as
voting rule [33], Bayes combination [34], neural networks
[35], and evidential combination [36]–[40]. Considering that
the output of each PkNN sub-classifier may involve great
uncertainty, the PkNN sub-classifiers are combined in belief
function framework [26], [27] due to its well capability of
modeling and combining uncertain information. Figure 1
shows the scheme of kNN classification with pairwise dis-
tance metrics and belief function theory.

Using belief function theory to solve a specific problem
generally involves three processes: evidence representation,
evidence combination, and decision making based on the
combined results. Thus, after a brief recall of the basics of
belief function theory in Section IV-A, we will show how to
represent pieces of evidence for the outputs of PkNN sub-
classifiers in Section IV-B, and how to combine the generated
pieces of evidence andmake a final decision for classification
in Section IV-C.

A. BASICS OF BELIEF FUNCTION THEORY
The belief function theory [26], [27], also known as
Dempster-Shafer theory or evidence theory, is a general-
ization of probability theory. It offers a well-founded and
workable framework to represent and combine a large vari-
ety of uncertain information. The prerequisite of reasoning
in belief function framework is the representation of the
available information, which is usually called evidence. This
is done based on some basic functions used to represent
our knowledge about the considered problem. At a glance,
there are three main functions: mass, belief and plausibility
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functions. The mass function is the most basic and intuitive
way of expressing someone’s degrees of belief. The belief and
plausibility functions are often used to compute intervals in
order to bound the uncertainty.

In belief function theory, a problem domain is represented
by a finite set � = {ω1, ω2, · · · , ωM } of mutually exclusive
and exhaustive hypotheses called the frame of discernment.
A mass function expressing the belief committed to the ele-
ments of 2� by a given source of evidence is a mapping
function m: 2�→ [0, 1], such that

m(∅) = 0 and
∑
A∈2�

m(A) = 1. (14)

The mass functionm(A) measures the degree of belief exactly
assigned to a proposition A and represents how strongly the
proposition is supported by evidence. The belief assigned to
�, or m(�), is referred to as the degree of global ignorance.
Shafer [27] also defines the belief function and plausibility

function of A ∈ 2� as

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A6=∅

m(B). (15)

Bel(A) represents the exact support to A and its subsets,
and Pl(A) represents all the possible support to A and its
subsets. The functions m, Bel and Pl are in one-to-one
correspondence.

Several distinct bodies of evidence characterized by differ-
ent mass functions can be combined using Dempster’s rule
of combination

⊕
. Mathematically, the Dempster’s rule of

combination of two mass functions m1 and m2 defined on the
same frame of discernment � is

m(A) =


0, for A = ∅∑

B,C∈2�;B∩C=A
m1(B)m2(C)

1−
∑

B,C∈2�;B∩C=∅
m1(B)m2(C)

, for A∈2� \ ∅.

(16)

As described in [27], Dempster’s rule of combination is both
commutative and associative.

For decision-making, the maximum plausibility (as
defined in Eq.(15)) rule is usually utilized to make the final
decision. Suppose m = m1

⊕
m2, then

Pl({ωi}) ∝ Pl1({ωi})Pl2({ωi}),∀ωi ∈ �. (17)

That is, when combining several pieces of evidence, we do
not need to compute the complete mass function using Demp-
ster’s rule of combination. Instead, we can compute the
combined plausibility using Eq.(17) to make the decision
equivalently.

In order tomanipulate the belief functionsmore effectively,
some probabilistic operations (conditioning, deconditioning,
etc) are introduced to belief function framework [41]. Con-
ditional beliefs represent knowledge which is valid provided
that a hypothesis is satisfied. Letm� be a mass function on�,
S ⊆ � an hypothesis and m�S the categorical mass function

such that m�S (S) = 1. Then the conditional mass function
m�[S] is

m�[S] = m�
⊕

m�S . (18)

The above operation is referred to as Dempster’s rule of
conditioning. In contrary, if we want to recover m� from the
conditional mass function m�[S], the following decondition-
ing operation can be used:

m�(A ∪ S) = m�[S](A), for A ∈ 2� \ ∅, (19)

where S denotes the complement of set S with respect to
set �.

B. EVIDENCE REPRESENTATION FOR THE OUTPUTS OF
PKNN SUB-CLASSIFIERS
Our aim is to use the belief function theory to model the
uncertainty inherent in the pairwise classification. Now, with
a set of sub-classifiers PkNNp,q (1 ≤ p < q ≤ M ), we first
study the representation of their outputs in belief function
framework. As reviewed in the above subsection, there are
three main functions for evidence representation, i.e., mass,
belief and plausibility functions. In this work, the frequently
used mass function is selected for its easiness and intuitive-
ness of representing evidence.

For the output of each sub-classifier PkNNp,q, two types of
uncertainty are involved as follows.

• Outer-pair uncertainty. This type of uncertainty is
caused by the fact that the real class label of query
pattern y may actually not belong to class pair �p,q.
Therefore, the output of sub-classifier PkNNp,q should
be represented within the global frame of discernment
� = {ω1, · · · , ωM }.

• Inner-pair uncertainty. When the real class label of
query pattern y belongs to class pair�p,q, affected by the
noise of the training samples, the classification result of
sub-classifier PkNNp,q is not always accurate. This type
of uncertainty can be modeled within the local frame of
discernment �p,q = {ωp, ωq}.

When classifying query pattern y using sub-classifier
PkNNp,q, suppose xj is one of its k nearest neighbors in the
training subset Tp ∪ Tq, and its class label is ωi ∈ �p,q.
It can be seen as a piece of evidence that supports the query
pattern y belonging to ωi. However, considering the outer-
pair uncertainty, this piece of evidence should be constructed
conditioned on the hypothesis ωi ∈ �p,q as

m�[�p,q]({ωi} | xj) = 1. (20)

Further, due to the inner-pair uncertainty, this piece of evi-
dence does not by itself provide 100% reliability. In the
formalism of belief function theory, this can be expressed by
saying that only some part of the belief is committed to ωi.
Because the class label ωi ∈ �p,q does not point to other
particular class, the rest of the belief should be assigned to the
local frame of discernment�p,q representing local ignorance.
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Therefore, this piece of evidence can be represented by the
following mass function:{

m�[�p,q]({ωi} | xj) = αj
m�[�p,q](�p,q | xj) = 1− αj,

(21)

where αj ∈ [0, 1] is the belief that sample xj and query pattern
y share the same class, and can be determined using the PW
distance metric-based logistic regression model in Eq. (5)
when the features are assumed to be independent:

αj =
1

1+ exp
(
d2PW (xj, y)− µp,q

) . (22)

Otherwise, the following PM distance metric-based logistic
regression model is selected:

αj =
1

1+ exp
(
d2PM (xj, y)− µp,q

) . (23)

C. EVIDENCE COMBINATION AND DECISION MAKING
FOR CLASSIFICATION
For the sub-classifier PkNNp,q, based on the k nearest neigh-
bors of query pattern y, we can calculate all the corresponding
k mass functions as the way developed in the above sub-
section. As the items of evidence from different neighbors
are independent, the k mass functions are combined using
Dempster’s rule defined by Eq. (16) to form a resulting mass
function synthesizing the overall conditional mass regarding
the label of y as

m�[�p,q] = m�[�p,q](· | xi1 )⊕ m
�[�p,q](· | xi2 )

⊕ · · · ⊕ m�[�p,q](· | xik ), (24)

where i1, i2, · · · , ik are the indices of the k nearest neighbors
of query pattern y.

In a similar way, based on the outputs of the M (M − 1)/2
sub-classifiers PkNNp,q (1 ≤ p < q ≤ M ), we can calculate
all the correspondingM (M−1)/2 conditionalmass functions.
In order to combine these conditional mass functions in a uni-
form framework, the conditional mass function constructed
as Eq. (24) should be deconditioned using Eq. (19) as

m�p,q({ωq}) = m�[�p,q]({ωp})
m�p,q({ωp}) = m�[�p,q]({ωq})
m�p,q(�) = m�[�p,q](�p,q).

(25)

where {ωp} and {ωq} denote the complement of set {ωp} and
{ωq} with respect to set �, respectively.

Because the mass and plausibility functions are in one-to-
one correspondence, we can compute the plausibility function
Plp,q from the above deconditioned mass function m�p,q using
Eq. (15) as

Plp,q({ωi}) =


1− m�[�p,q]({ωq}), if i = p
1− m�[�p,q]({ωp}), if i = q
1, otherwise .

(26)

In order to decrease the computation complexity, instead
of combining the M (M − 1)/2 mass functions m�p,q (1 ≤

p < q ≤ M ) using Dempster’s rule of combination, we can
compute the combined plausibility function Pl directly using
Eq. (17) for decision making as follows:

Pl({ωi}) ∝ Pl ′({ωi}) =
∏

1≤p<q≤M

Plp,q({ωi}), ∀ωi ∈ �. (27)

Note that the combined plausibility function Pl is propor-
tional to Pl ′, so the maximum plausibility rule can be used for
Pl ′ equivalently to make a decision. Finally, the class label
of query pattern y is assigned to the class with maximum
plausibility.
Remark 1: The usage of belief function theory in kNN-

based classification is not new. An evidential version of kNN,
denoted by EkNN [42], has been proposed based on the
belief function theory; it introduces the ignorance class to
model the uncertainty. In [43], the EkNN rule was further
extended to deal with uncertainty using rejection class and
meta-classes. Recently, an evidential editing procedure was
developed in [44] to preprocess the original training samples
in order to model the imprecision and uncertainty of samples
in overlapping regions or noisy patterns. However, neither of
them has considered the distance metric learning problem in
belief function framework, which is the subject of this work.

V. EXPERIMENTS
The performance of the proposed BPkNN classifier was
assessed by two different types of experiments. In the first
experiment, synthetic data sets were used to show the behav-
ior of the proposed classifier in controlled settings. In the sec-
ond one, twenty real data sets from the UCI Machine Learn-
ing Repository [28] were considered, with the aim to show
that the proposed technique is adequate for a variety of real
tasks involving different data conditions: large/small size,
high/low dimension, etc.

A. SYNTHETIC DATA TEST
1) A DEMONSTRATION EXAMPLE
A two-dimensional three-class classification example was
designed to show the process and advantage of the proposed
BPkNN classifier. The following class-conditional normal
distributions were assumed:

µA = (6, 6)T , µB = (14, 6)T , µC = (14, 14)T ,

6A = 3I2, 6B = 3I2, 6C = 3I2.

As shown in Figure 2(a), a total number of 60 training sam-
ples were generated using equal prior probabilities, and we
consider the classification of one test sample y, whose real
label is Class B. We can see that the test sample y is quite
close to the boundaries of the three classes, and in this small
training data set condition, it is quite difficult to make the
right classification. As can be seen from Figure 2(b), the orig-
inal kNN classifier based on L2 distance metric (L2-kNN)
just misclassifies this data point as Class A with the 1NN
rule. Next, we will see how the proposed BPkNN classifier
performs for this classification problem.
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FIGURE 2. Classification results of test sample y with 60 training samples (with ’©’ for class A, ’�’ for class B and ’4’ for class
C, respectively). (a) Data set. (b) Result of L2-kNN. (c) Result of PkNNA,B|. (d) Result of PkNNA,C|. (e) Result of PkNNB,C|.

The first step of the BPkNN classifier is to make clas-
sification using pairwise sub-classifiers. For this three-class
classification problem, three pairwise sub-classifiers can be
designed with separately learned feature weights as follows.

PkNNA,B: λXA,B = 0.2231, λYA,B = 0.0357;
PkNNA,C : λXA,C = 0.2200, λYA,B = 0.2050;
PkNNB,C : λXB,C = 0.0265, λYB,C = 0.2156.

Figures 2(c)-(e) show the classification results of the test
sample y using the above pairwise sub-classifiers with the
1NN rule. To visualize the results, each original point x is
replaced by Ax, where A is a diagonal matrix filled by the
learned feature weights. After this procedure, the classifi-
cation problem is transformed into applying the standard
Euclidean metric to the rescaled data to find the nearest
neighbors. Thanks to the locally learned pairwise distance
metrics, when classifying y between Class A and Class B,
feature X is assigned larger weight, whereas in classifying y
between Class B and Class C, feature Y is assigned larger
weight. As shown in Figures 2(c) and (e), both the two sub-
classifiers PkNNA,B and PkNNB,C provide the correct classi-
fication result as Class B. However, as shown in Figure 2(d),
the sub-classifiers PkNNA,C misclassifies this data point as
Class A.

The second step of the BPkNN classifier is to combine
the outputs of these PkNN sub-classifiers in belief function
framework to get the final classification result. For doing this,
we should first build a mass function based on the output of
each PkNN sub-classifier. Using Eqs.(20)-(22), the following

three mass functions can be built as
PkNNA,B: m�[{A,B}]({B}) = 0.8108,

m�[{A,B}]({A,B}) = 0.1892;
PkNNA,C : m�[{A,C}]({A}) = 0.9920,

m�[{A,C}]({A,C}) = 0.0080;
PkNNB,C : m�[{B,C}]({B}) = 0.8977,

m�[{B,C}]({B,C}) = 0.1023.
Then, Using Eqs.(24)-(27), we get the combined result as

Pl ′({A}) = 0.17, Pl ′({B}) = 1, Pl ′({C}) = 0.09.

Finally, based on the maximum plausibility rule, we get the
correct final classification result as Class B.

2) TEST OF DATA SETS WITH DIFFERENT CLASS
OVERLAPPING
This experiment was designed to compare the proposed
BPkNN classifier with those kNN classifiers based on other
representative distance metrics, including the original kNN
classifier based on L2 distance metric (L2-kNN) [7], the kNN
classifier based on GW distance metric (GW-kNN) [12] and
the kNN classifier based on CDW distance metric (CDW-
kNN) [23]. A ten-dimensional twenty-class classification
problem was considered. The multidimensional Gaussian
mixture model was assumed for the data distributions. The
mean value of each class-conditional Gaussian distribution
was drawn randomly from the feature space [−10, 10]10. For
comparisons, we changed the covariance of each distribution
to control the degree of class overlapping (larger covariances
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FIGURE 3. Classification accuracy rate (in %) for synthetic data sets with different class overlapping. (a) Case 1. (b) Case 2. (c) Case 3.

lead to a higher degree of class overlapping):

Case 1: 6i = 4I10, i = 1, 2, · · · , 20;
Case 2: 6i = 5I10, i = 1, 2, · · · , 20;
Case 3: 6i = 6I10, i = 1, 2, · · · , 20.

For each case, a training set of 200 samples were generated
using equal prior probabilities, and a test set of 2000 sam-
ples was used for classification accuracy estimation. A total
of 30 trials were performed with independently generated
data sets. The average classification accuracy and the corre-
sponding 95% confidence interval were calculated. For the
proposed BPkNN classifier, as the features are independent
from each other in this study, we used the PWdistancemetric.
For all of the considered classifiers, values of k ranging from
1 to 25 have been investigated.

Figure 3 shows the classification accuracy of the consid-
ered classifiers for the three cases with different degrees of
class overlapping. As can be seen from these results, the GW-
kNN classifier shows similar performance as compared to
the original L2-kNN classifier, which is mainly because the
learned GW distance metrics have almost the same weights
for the ten involved features. The CDW-kNN classifier, which
is based on CDW distance metric, is just slightly better than
the original L2-kNN classifier. The proposed BPkNN clas-
sifier produces the highest classification accuracy for all of
the three cases, which demonstrates the generalizability of
the proposed method on synthetic difficult data. The reason
is that, for each PkNN sub-classifier, the PW distance metric

characterizes more local specificities in the feature space, and
further in the combination process, the output uncertainty of
those PkNN sub-classifiers is well addressed. In addition,
the performance improvement is more significant when the
number of neighbors k takes smaller values, in which cases
the distance metric plays a more important role in determin-
ing the performance of the kNN-based classifiers.

B. REAL DATA TEST
1) DATA SETS AND EXPERIMENTAL CONDITIONS
Twenty representative data sets from the UCI repository were
selected to evaluate the performance of the proposed BPkNN
classifier. Themain characteristics of the 20 data sets are sum-
marized in Table 1. It can be seen that the selected data sets
vary greatly in the number of instances (from 80 to 12,690),
the number of features (from 4 to 60), and the number of
classes (from 2 to 11).

To develop the experiments, we consider the B-Fold Cross-
Validation (B-CV) model. Each data set is divided into B
blocks, with B− 1 blocks as a training set and the remaining
block as a test set. Therefore, each block is used exactly once
as a test set.We use the 10-CV here, i.e., ten random partitions
of the original data set, with nine of them (90%) as the training
set and the remainder (10%) as the test set. For each data set,
we consider the average result of the ten partitions.

To assess whether significant differences exist among dif-
ferent methods, we adopt a nonparametric statistical analysis.
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TABLE 1. Statistics of the real data sets used in the experiment.

For conducting multiple statistical comparisons over multiple
data sets, as suggested in [45], [46], the Iman and Davenport
test and the corresponding post hoc Bonferroni-Dunn test
were employed. For performing multiple comparisons, it is
necessary to check whether the results obtained by different
methods present any significant difference (Iman and Daven-
port test), and in the case of finding one, we can find out by
using a post hoc test to compare the control method with the
remaining methods (Bonferroni-Dunn test). We use α = 0.05
as the significance level in all cases. For a detailed description
of these tests, one can refer to [45], [46].

2) CLASSIFICATION ACCURACY EVALUATION
In this experiment, we aim to compare the classification
accuracy of our proposed BPkNN classifier with those kNN
classifiers based on other representative distance metrics
including L2-kNN [7], GM-kNN [12], CDW-kNN [23],
A-kNN [21], as well as the DGC+ classifier [29], which
is a popular instance-based method based on weighted data
gravitation classification. Besides, in order to evaluate the
effectiveness of the combination process using the belief
function theory, apart from the above compared methods,
we also considere the method of combining the PkNN sub-
classifiers using the voting rule (denoted asVPkNN). Settings
of the comparison methods are summarized in Table 2.

Table 3 shows the classification accuracy rates of our pro-
posed BPkNN classifier in comparison with other state-of-
the-art methods for real data sets. The numbers in brackets
represent the rank of each method and the best classification
accuracy for each data set is highlighted in bold. As can be
seen from these results, the proposed BPkNN classifier out-
performs the other methods in 9 of the 20 data sets and obtains
competitive accuracy rates in the other data sets. In addition,
the BPkNNclassifier always performs better than theVPkNN

TABLE 2. Settings of the comparison methods.

classifier (except the data sets with only two classes, in which
cases, only one pairwise sub-classifier is designed and no
combination is needed), which demonstrates the effectiveness
of the belief function theory for the combination of PkNN
sub-classifiers.

To compare the results statistically, we carry out nonpara-
metric tests for multiple comparisons based on the average
ranks obtained over the considered data sets. First, we use
the Iman and Davenport test to determine whether signifi-
cant differences exist among all of the average values. The
Iman and Davenport statistic (distributed according to the
F-distribution with 6 and 114 degrees of freedom) is 10.39 for
average ranks and the corresponding critical value is 2.18 for
a significance level of α = 0.05. Given that the Iman and
Davenport statistic is clearly greater than the critical value,
the test rejects the null hypothesis, and therefore, it can be
said that there are significant differences among the accuracy
results of the methods.

Then, we apply the post hoc Bonferroni-Dunn test to
compare the best ranking method (i.e., BPkNN) with the
remaining ones. Fig. 4 shows the test result of the average
ranks with a significance level of α = 0.05, in which case the
calculated critical difference is 1.73. The critical difference
value is represented as a thicker horizontal line, and those
values that exceed this line are methods with significantly
different results than the control method (i.e., BPkNN). It can
be seen that the proposed BPkNN classifier performs signif-
icantly better than all those kNN classifiers based on other
distance metrics, including L2-kNN, GM-kNN, CDW-kNN
and A-kNN.

FIGURE 4. Bonferroni-Dunn test result of the average ranks.
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TABLE 3. Classification accuracy rate (in %) for real data sets.

TABLE 4. Average runtime (in s) of BPkNN in comparison with L2-kNN for real data sets.

3) TIME COMPLEXITY ANALYSIS
In this experiment, a time complexity analysis of the proposed
BPkNN classifier is provided to show to what extent the
runtime depends on factors such as the number of instances,
the number of features and the number of classes. Nine rep-
resentative real data sets selected from Table 1 are considered
for evaluation. The numerical experiment is executed by
MATLAB 7.8.0 on a Lenovo desktopM4500 with an Intel(R)
Core(TM) i5-4590 CPU @3.30 GHz and 4 GB memory.

Table 4 shows the average runtime of the proposed BPkNN
classifier in comparison with L2-kNN classifier under 10-CV
in the training and testing phases, respectively. It can be seen
that, in the training phase, the L2-kNN classifier does not cost
any time, whereas some time is consumed for the proposed
BPkNN classifier in order to learn the pairwise distance
metrics. The test time of the BPkNN classifier is positive
correlated with the number of train instances, the number of
features and the number of classes, but is acceptable even for
those complex data sets, such as Nursery, Vowel, and Sonar.
In the testing phase, the BPkNN classifier consumes more
time than the L2-kNN classifier. For the BPkNN classifier,
the fusion process of PkNN sub-classifiers is quite time-
efficient, and therefore the time is mainly consumed in the

classification process of multiple PkNN sub-classifiers. Even
though the number of PkNN sub-classifiers is M (M − 1)/2
(withM being the number of classes), each sub-classifier only
uses the train instances from the corresponding two classes
(about 2N/M instances averagely, with N being the number
of train instances). Hence the total number of computed
instances is about N (M − 1), which is just M − 1 times
larger than the original L2-kNN classifier approximately. The
last column of Table 4 shows the runtime ratio of BPkNN to
L2-kNN, which is in accordance with the above theoretical
analysis. For most real classification problems, like those
studied in this experiment, the number of classes is not very
large, so the time complexity of the proposed method is not
very high.

VI. CONCLUSION
In order to improve the performance of the kNN-based classi-
fier in small data set situations, two types of pairwise distance
metrics have been proposed in this paper. Compared with
the existing distance metrics, the pairwise distance metrics
provide greater flexibility to design the feature weights so
that the local specificities in the input space can be well
characterized. The parameter optimization procedures were
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designed to learn the pairwise distance metrics from the train-
ing data set. For a general polychotomous classification prob-
lem, a BPkNN classifier was developed, which combines the
outputs of locally learned PkNN sub-classifiers in the belief
function framework. From the results reported in the last
section, we can conclude that the proposed method achieved
a uniformly good performance when applied to a variety of
classification tasks, including those with high dimension and
small sample size, in which cases the training data set is not
rich enough to well characterize the real class-conditional
probability distributions.
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