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ABSTRACT The development of rolling element bearing fault diagnosis systems has attracted a great deal
of attention due to bearing components having a high tendency toward unexpected failures. However, under
low-speed operating conditions, the diagnosis of bearing components remains a problem. In this paper,
the adaptive resilient stacked sparse autoencoder (ArSSAE) is proposed to compensate for the shortcomings
of conventional fault diagnosis systems at low speed. The efficiency of the proposed ArSSAE model is
initially assessed using the CWRU database. Then, the proposed model is evaluated on actual vibration
analysis (VA) and acoustic emission (AE) signals measured on a bearing test rig at low operating speeds
(48–480 rpm). Overall, the analysis demonstrates that the ArSSAE model is able to perform an accurate
diagnosis of bearing components under low-speed conditions.

INDEX TERMS Low speed, bearing fault diagnosis, vibration analysis, acoustic emission analysis, adaptive
resilient stacked sparse autoencoder (ArSSAE).

I. INTRODUCTION
Rolling element bearings are commonly used in machin-
ery such as excavators, stackers, swing shovels and steel
mill cranes [1]. These machines are operated at low speeds
due to their heavy weight and large structures. An unex-
pected failure of a heavy machinery bearing may result in
an economic loss and lead to a long period of maintenance.
Recently, many fault diagnosis systems have been focused
on high-speed bearing fault diagnosis using vibration signal
monitoring [2].

In order to prevent such failures, effective fault diagnosis
systems for bearing components operating at low speeds
require further development. Moustafa et al. wrote that an
effective fault diagnosis system has been introduced for
bearing components in high-speed conditions; however, fault
diagnosis in low-speed operation still remains a difficult
problem [3]. According to Caesarendra et al., the range of
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low-speed operation is around 10–600 rpm [4]. The limitation
of vibration analysis (VA) in low-speed operating machine
fault diagnosis has led to the exploration of acoustic emis-
sion (AE) techniques [4], [5]. Caesarendra and Tjahjowidodo
reported that the vibration signature produced at low speed
is masked by a heavy background noise, which makes the
signal more complex and makes it difficult to extract reliable
features from the signal [6]. This is because the vibration
signal is directly proportional to the acceleration of the vibrat-
ing component. However, Xiong et al. achieved satisfactory
performance in diagnosing bearing conditions at a rotation
speed of 230 rpm using EMD denoising and alpha-stable
distribution [7]. In addition, Song et al. proposed a new signal
feature extraction method for bearing conditions under low-
speed operation [8].

AE techniques can be more sensitive than VA in detecting
defects at low operating speed [9]. There are two condi-
tions of the generation of AE signal, as mentioned in [4].
At high speed, the AE signal is generated based on the impact
between the rolling element and the bearing raceway. Mean-
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while, at low speed, the transient elastic wave is generated
based on the interaction of the rolling element and the bearing
raceway. However, the AE signal is difficult to process due
to the high sampling rate, typically up to 10 MHz [10].
Bechhoefer et al. conducted research on improving AE fea-
ture extraction [11]. The authors stated that the AE signal
contains a large volume of data that must be processed,
and the extracted AE features must be selected properly
depending on the application (e.g., bearing or gear). The chal-
lenges and limitations of AE methods have been discussed
by Sikorska and Mba [12]. Attempts to process the AE sig-
nal have been made by several researchers. For example,
Van Hecke et al. resampled the AE signal using a het-
erodyne frequency reduction approach [13]. In addition,
Ruiz-Cárcel et al. diagnosed bearing defects by using a
spectral kurtosis diagram to enhance the fault features in
AE signals [14]. In the past few decades, the AE burst
detection system has been used in bearing fault diagno-
sis [15], [16]. This system could eliminate the difficulty of
processing the continuous AE signal.

In recent years, deep learningmodels have been introduced
to overcome the limitations of the traditional fault diagnosis
system. The traditional system utilizes two common machine
learning models: an artificial neural network (ANN) and a
support vector machine (SVM). In general, it is necessary
to properly extract and select features for ANN and SVM
models so that they can be accurately classified [17]. The
shallow architecture of traditional machine learning is only
applicable for feature classification purposes [18]. In con-
trast, deep learning architecture is capable of extracting and
designing the input data automatically using each layer of
the deep network. This process could eliminate the need for
manual feature extraction and feature selection, which are
time-intensive. Liu et al. emphasized that deep learning out-
performs any other traditional machine learning techniques
in term of automated feature processing [19]. Deep learning
techniques as applied to bearing fault diagnosis systems are
rapidly being developed and it is able to deal with multiple
types of input data as listed in Table 1. There are three types
of input data that can be summarized from the literature
analysis: statistical features, time domains and images of
time-frequency transformation.

Among deep learning models, the stacked sparse autoen-
coder (SSAE) has shown promising performance in various
applications such as medical imaging processing [20]–[22],
speech recognition [23] and human activity recognition [24].
Several authors highlighted that SSAE performance is
highly dependent on its architecture hyperparameter and
human expertise is required to determine the exact values
for hyperparameters or performance will suffer [25]–[27].
In addition, there is no standard procedure to determine the
number of hidden nodes and layers in an SSAE network.
At present, the SSAE’s hyperparameter and hidden node
number has been successfully optimized using metaheuris-
tic algorithm as mentioned in the following research [28].
Wang et al. mentioned the effects of autoencoder hidden

TABLE 1. Application of deep learning model on different input data.

layer numbers on the model performance [29]. For example,
Liu et al. used three hidden layers of SSAE network to
diagnose bearing condition based on STFT image classifi-
cation [30]. Ahmed et al. and Sun et al. stacked two layers
of SAEs to extract a significant feature from a processed
bearing signal [31], [32]. Chen and Li combined two hidden
layers of SAEs and three hidden layers of DBNs so that
a significant feature could be automatically extracted from
the input data [33]. Meanwhile, Di and Wang discussed the
varied prediction accuracies produced with different numbers
of hidden layers [34].

In this paper, a novel method called an adaptive resilient
stacked sparse autoencoder (ArSSAE) is proposed in order to
deal with the aforementioned problems. The proposed model
is applied to analyze three types of input data: time-frequency
images, time domains and statistical features from VA and
AE signals. The capability of themodel to deal with the online
dataset and experimental dataset has been studied.

The rest of the paper is organized as follows. Section II dis-
cusses the sparse autoencodermodel and Section III describes
improvements to it. Section IV discusses the preliminary
analysis using the proposed model on the online database.
Section V presents the experimental study on the bearing test
rig. Sections VI and VII discuss the results and conclude the
paper, respectively.

II. STRUCTURE OF STACKED SPARSE AUTOENCODER
An autoencoder network is based on a symmetrical three-
layer network to learn high-level data representation.
The model can be trained in an unsupervised manner.
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The basic autoencoder network contains encoder and decoder
functions. The hidden representation (h ∈ Rk ) is mapped
using the encoder function h = f (w1x + b). The decoder
function x̂ = g (w2h+ b) reconstructs the hidden repre-
sentation to produce an output that has approximately equal
characteristics to the original input. The loss function of an
autoencoder is defined in Eq. 1:

J (W , b) =
1
2

∥∥hw,b (x)− y∥∥2 , (1)

where J (W , b; x, y) represents the mean square error.
The sparse autoencoder (SAE) is another variant of autoen-

coder which enforces a constraint onto the hidden units to
discover interesting features in the data [42]. The sparse
autoencoder loss function is described in Eq. 2:

Jsparse (W , b) = J (W , b)+ β
n∑
j=1

KL(ρ‖ρ̂j), (2)

where KL(ρ‖ρ̂j) = ρ log ρ

ρ̂j
+ (1− ρ) log 1−ρ

1−ρ̂j
represents

the sparsity penalty term, β is a weight of the sparsity penalty
term, ρ is the sparsity parameter and ρ̂j is the average activa-
tion of the hidden unit. The overall loss function of a stacked
sparse autoencoder is shown in Eq. 3:

E = Jsparse (W , b)+ Jweight (W , b) , (3)

where Jweight (W , b) = λ
2

nl∑
l=1

sl−1∑
i

sl∑
j

(
W (l)
ij

)2
is a weight

decay term to prevent the network from overfitting.
The sparse autoencoder (SAE) network is stacked up to

several numbers, and the softmax network is located on top
of the stacking sparse autoencoder network. In this study,
the combination of stacking SAE networks and softmax is
called SSAE architecture, where the stacking of the SAE
network represents the hidden layer of the whole network.
Softmax is a classifier that aims to classify the features that
were processed by the sparse autoencoder. The mathematical
model of the softmax classifier is shown in Eq. (4):

hθ
(
x i
)
=


p(yi = 1|x i; θ )
p(yi = 2|x i; θ )

.
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1
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, (4)

where θ1, θ2, . . . , θk ∈ Rn+1 are the model parameters and

1/
k∑
i=1

eθ
T
j x

i
normalizes the distribution to ensure that the sum

is equal to one.

III. PROPOSED MODEL OF BEARING FAULT DIAGNOSIS
SYSTEM
In this section, the proposed model is developed in order
to deal with current problems as reported in the literature
analysis. The first problem is that advance fault diagnosis

systems for bearing fault diagnosis are limited under low-
speed operating conditions. Second, several studies have
found that AE outperforms vibration for monitoring bearing
components at low operating speeds. However, a paper has
been published on the application of vibration at an operating
speed of 230 rpm where the fault diagnosis can be performed
at low speed condition using vibration signal [7]. Third, there
are three types of input data that can be fed into the deep
learning model depending on the deep learning networks and
machinery applications. Each type of input data (e.g. statisti-
cal features, time domains and images of time-frequency) will
provide a different number of features. At present, each type
of input data needs a different set of deep learning models,
which require human intervention to manually change the
architecture of the model depending on the input data charac-
teristics. The performance of the machine learning model is
heavily dependent on the quantity and quality of the features.

The modified architecture of the original autoencoder is
constructed as illustrated in Fig. 1. The structure of the
ArSSAE should have flexibility in processing any type of
dataset in order to eliminate dependency on any particular
feature extraction and feature selection methods. The devel-
oped model should also be robust and able to address the
current problems of bearing fault diagnosis. First, the resilient
back-propagation (Rprop) algorithm is implemented on the
ArSSAE network to reduce the training time of the model
Then, the ArSSAE hyperparameters (e.g., the number of hid-
den nodes, weight decay parameter λ′, sparsity parameter ρ,
and weight of sparsity penalty term β) are optimized using
the differential evolution (DE) optimization method. Based
on studies reviewed by Ab Wahab et al., DE is among the
best optimization methods [43]. The details of the DE and
resilient algorithm implementation in the SSAE network can
be referred to the following works [28]. To solve the hidden
layer problem discussed in the preceding section, we devel-
oped a stacking layer of SAEs depending on the feature size
as an initial reference configuration. However, the model may
change the number of stacking layers if the initial hidden
layer does not provide an accurate prediction. Determining
the number of layers contained in a deep learning model
is a problem that requires a trial and error process, and
it is sometimes based on intuition. The common problems
of deep learning models are computer processing load and
time. The SSAEmodel suffers from two computational costs:
i) computational processing for training the SSAE network
and parameters (e.g. weight and bias); and ii) computational
processing for optimizing the SSAE hyperparameters. Thus,
we used DE and Rprop to reduce both costs by avoiding
unnecessary computational processing, because the amount
of computational processing required is directly proportional
to the size of the network. The proposed model algorithm and
flowchart are presented in Table 2 and Fig. 2 respectively.

A. DIFFERENTIAL EVOLUTION
In order to solve the hyperparameter selection problem dis-
cussed in the preceding section, DE is utilized to automate
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FIGURE 1. Proposed diagnosis system.

the process. The DE operator employs the sequence of muta-
tion, crossover and selection. In addition, DE naturally alters
its search behavior from exploration to exploitation as the
population evolves due to its self-referential mutation. The
selection process determines the vectors that will survive for
the next generation.

In the mutation process, a mutant vector Vi,G is generated
by multiplying the amplification factor as in Eq. (4):

Vi,G = Xr i1,G
+ F .(Xr i2,G

− Xr i3,G
), (5)

where i = 1, . . . ,NP, r1r2r3 are random numbers, r1 6=
r2 6= r3 6= i, x is a decision vector and F is an amplifica-
tion factor ([01]) that determines the differential variation of
(Xr i2,G

−Xr i3,G
). The process continues with the crossover step.

In the crossover operators, the offspring takes the probability
1 − Cr from the mutant vector Vi,G of the current popula-
tionX . The parent vector is combined with the mutated vector
using Eqs. (6) and (7) to produce trial vector U :

Ui,G+1 =
(
U1i,G+1,U2i,G+1, . . . ,UDi,G+1

)
(6)

and

Uji,G

{
Vji,G+1 if (rand i,j [0, 1] ≤ Crorj = jrand )
Xji,G otherwise.

(7)

where j = {1, 2, . . . ,D, Cr[0, 1] is the predefined crossover
rate constant, rand i,j [0, 1] is the random number and
jrand (1, 2, . . . ,D) is randomly chosen to ensure Uji,G gets at
least one component from Vi,G.

The next step involves the selection process for choosing
a vector between (Ui,G+1) and (Xji,G) for the next generation
G + 1. In an optimization problem, a vector with a higher
fitness value is chosen using Eq. (8):

Xi,G+1 =

{
Ui,Gf

(
Ui,G

)
< f (Xi,G+1)

Xi,Gf
(
Ui,G

)
≥ f (Xi,G+1).

(8)

In the DE algorithm, there are several control parameters,
such as the scale factor F , the crossover rate Cr and the
population number NP, that need to be set. Storn and Price
recommended that the parameters should be [0.5,1], [0.8,1]
and 10D for scale factor, crossover rate and population num-
ber respectively [44]. In this paper, the DE parameters are set
as follows: F = 0 : 8,Cr = 0 : 7,NP = 50 and a maximum
generation number Gmax = 100 is chosen as the termination
criterion.

B. RESILIENT BACK-PROPAGATION ALGORITHM (RPROP)
The back-propagation algorithm updates the SSAE network
parameters (e.g., weights and bias) in order to minimize the
error function. Rprop has a faster speed of convergence and
higher accuracy than other backpropagation algorithms [45].
It also has a different weight update routine compared to
other methods. The algorithm updates the weight by consid-
ering the sign of the error gradient. The weight is updated
via Eq. (9):

1ij (t) =


η+1ij (t − 1) , if

δE
δwij

(t − 1) .
∂E
∂wij

(t) > 0

η−1ij (t − 1) , if
δE
δwij

(t − 1) .
∂E
∂wij

(t) < 0

1wij (t − 1) , otherwise.
(9)

The component 1ij is decreased by a factor of η− when the
partial derivative ∂E/∂wij changes its sign from one iteration
to the next consecutive one. The component 1ij is increased
by a factor of η+ when the element of ∂E/∂wij maintains
its sign from one iteration to the next consecutive iteration.
In this study, the η+ value is 1.2 while the η− value is 0.5 as
described in [46]. The weight will update its direction based
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TABLE 2. The algorithm of ArSSAE model bearing specification.

on Eq. (10):

1wij (t) =


−1ij, if δE

δwij
> 0

+1ij, if δE
δwij

< 0

0, otherwise.

(10)

The details of the mathematical and algorithm explanation
can be found in [46].

FIGURE 2. Flowchart of the adaptive SSAE model for bearing fault
diagnosis.

IV. PRELIMINARY ANALYSIS OF PROPOSED MODEL
USING BEARING ONLINE DATABASE (CWRU)
The proposed model was initially tested with a standard bear-
ing database from CaseWestern Reserve University (CWRU)
[47]. This data has been used by many researchers to test
their proposed models of bearing fault diagnosis systems.
Three types of datasets statistical features, time domains and
kurtogram images were created from the vibration signal. The
experimental setup is shown in Figure 3, and the data used in
this study was recorded at a sampling rate of 48 kHz.We used
the 1770–1800 rpm dataset with 10 different types of bear-
ing conditions that contained three different fault severities
(0.007-inch, 0.014-inch and 0.021-inch). The time domain
was segmented using a length of 1600 data points for time
domain data preparation. Ten statistical features—amplitude,
root mean square, standard deviation, energy, kurtosis, skew-
ness, crest factor, impulse factor, margin factor and shape
factor—were extracted from the segmented time domain.
For the third types of input data, the segmented signal was
transformed into a kurtogram. Each of the bearing conditions
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FIGURE 3. CWRU bearing testing platform.

TABLE 3. Optimization results of the proposed model based on the
CWRU database.

was sampled 100 times for training samples and 50 times for
testing samples.

The analysis results are shown in Table 3. According to
the results, the model achieved satisfactory performance on
all types of datasets. The analysis proved that kurtograms can
be used for bearing fault diagnosis. Typically, the analysis
of time-frequency transformation relies on human interpre-
tation to examine the fault characteristics. In this study, the
kurtogram pattern was recognized based on the ArSSAE
model. The ArSSAE demonstrated its effectiveness in mining
the important features from the datasets. The number of
SAE layers was initially calculated based on the feature
boundary set in the algorithm. The model initially used four
layers of SAE networks for time domain data. However,
the model obtained the best classification prediction using
two SAE layers. According to the results, the model achieved
an accurate classification of statistical features and kurtogram
images based on the initial hidden layer configuration. The
classification result indicates that fault diagnosis using the
proposed model is highly accurate.

V. EXPERIMENTAL SETUP
This section covers the experimental setup of the machin-
ery fault simulator by Spectraquest. As illustrated in Fig. 4,
the main components of the experimental rig include a 1

2
horsepower (hp) motor, a motor controller and a rotor located
on the middle of the shaft. A Rexnord link-belt ball bearing
with Centric-LokCL and Shurlokmounting collars were used
for the duration of the experiment. The machine was operated
at a range of low-speed operating conditions from 48 rpm
(0.8 Hz) to 480 rpm (8 Hz). The AE sensor was placed near

FIGURE 4. Experimental configurations.

the bearing housing and the accelerometer was located radi-
ally at the bearing housing. The AE instrumentation involved
an AE sensor (PKWDI model) with an operating frequency
range of 200–850 kHz, a single channel USB AE node and
AEwin software. The AE system used in this research pro-
duced an AE burst waveform when the energy exceeded the
threshold level. The setup of AE software acquisition was
based on [48]. The AE hit bursts were obtained for a duration
of 30 seconds.

The VA analysis involved two accelerometers, OROS data
acquisition and NVgate software. The data was recorded
in 30-second increments with a 25.6 kHz sampling rate.
To simulate the bearing defect conditions, nine types of
defects were introduced on the Rexnord bearing as shown
in Fig. 5. Figs. 5(a), 5(b) and 5(c) represent the defects located
on the outer race, inner race and ball bearing respectively.
In addition, three types of combination defects were intro-
duced on the bearing component: an outer racewith inner race
defect, an outer race with ball bearing defect and an inner race
with ball bearing defect. For these, a defect size of 0.06 inches
was used. The details of the bearing condition are illustrated
in Table 4.

A. BEARING DEFECT FREQUENCY ANALYSIS
In order to validate the bearing conditions, the frequency
spectrum of the defect was studied, and the result is shown
in Fig. 6. The analysis of the frequency spectrum involves
a rotation speed of 480 rpm and bearings with 0.06-inch
defects. The calculation of bearing component defect fre-
quency can be seen in Table 4. The defect frequency of
inner race, outer race and ball are 39.6 Hz, 24.384 Hz
and 30.384 Hz respectively. As can be seen in Fig. 6, the
defect frequency of every bearing component is similar to
the calculated frequency from the bearing defect equation.
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FIGURE 5. Bearing samples used in the experiment: a) outer race defect,
b) inner race defect, and c) ball defect.

TABLE 4. Bearing specifications.

Figs. 6(d), 6(e) and 6(f) show a spectrum of combination
defect frequencies of inner with outer race, ball with inner
race and ball with outer race respectively. Both amplitudes of
the defect frequencies can be seen clearly on the spectrum.
In summary, the analysis further proved that the defect was
located at the right bearing component.

FIGURE 6. Bearing defect frequency.

B. DATA PREPARATION
In this study, six types of datasets were used to validate
the proposed model: AE statistical features, AE kurtogram,
AE burst waveforms (AE time domain), VA statisti-
cal features, VA kurtogram and VA segmented signals
(VA time domain). The data preparation details are summa-
rized in Table 5. For the first type of input data, the length
of the AE and VA time domain represents the number
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TABLE 5. Details of data preparation.

of features. As mentioned in the preceding section, the
AE system provided a burst signal with a length of 1024 data
points. Meanwhile, the continuous VA signal was segmented
into lengths of 2025 data points. Ten statistical features were
extracted from the sliced VA signals including kurtosis, skew-
ness, margin factor, impulse factor, crest factor and shape fac-
tor. Meanwhile, eleven statistical features were obtained from
the AE system: amplitude, counts, duration, energy, absolute
energy, signal strength, average signal level, rise time, root
mean square, average frequency and counts to peak. Then,
the AE burst and the segmented VA signal were transformed
into kurtogram. The training dataset was sampled 100 times
for each bearing condition, and the testing dataset was sam-
pled 50 times for each bearing condition. Thus, 1000 and
1300 data samples represent the 10 and 13 classes training
sets respectively, whereas 500 and 650 data samples represent
the 10 and 13 classes testing sets.

VI. RESULTS AND DISCUSSION
The results of the experiments are presented in this section.
In the first subsection, the comparative study of AE and
VA signal features based on SVM model performance is
discussed. The second subsection discusses the performance
of the proposed model, the ArSSAE. In the last subsection,
the comparative study between the proposed model and the
SVM model is discussed.

A. COMPARATIVE STUDY OF AE AND VA STATISTICAL
FEATURES BASED ON SVM MODEL PERFORMANCE
The initial analysis involved a comparative study between AE
and VA statistical features using SVMmodels. Instead of per-
forming a manual analysis of the statistical features, we used
the SVM model to compare which signals provided more
significant features. At first, the SVM model was analyzed
with three dataset conditions: one set of 0.03-inch data (four
classes), one set of 0.06-inch data (four classes) and one set
of 0.09-inch data (four classes). For a four classes dataset,
the SVM model is needed to diagnose the defect accord-
ing to the location of the defect in the bearing component.
Figs. 7 and 8 show the SVM classification accuracy for AE
and VA statistical features respectively. The SVM model
reached approximately 60 to 100% classification accuracy
for 0.03-inch, 0.06-inch and 0.09-inch defects on AE signals.

FIGURE 7. SVM result on AE statistical features.

FIGURE 8. SVM result on VA statistical features.

Meanwhile, the model reached around 40 to 95% accu-
racy for VA signals. Next, the SVM was tested with the
0.06-inch combined dataset (seven classes), and the result is
shown in Figs. 7–8 for both signals. The seven classes con-
tained one normal bearing, three single defects and three com-
binations of defects. Classification accuracywas significantly
greater using AE features than VA features when the rota-
tional speed was less than 360 rpm. The SVMmodel was also
evaluated on datasets representing 10 and 13 bearing fault
conditions, and the result is shown in Fig. 9. The 10 classes
dataset contained all defect conditions except combinations
of defects. Meanwhile, the 13 classes dataset contained
all available bearing conditions, as listed in Table 4. The
SVM model produced higher classification accuracy on the
AE signal’s features compared to VA signal’s features. It is
worth mentioning that the performance of the SVM model
increased when the rotational speed increased. Moreover, the
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FIGURE 9. SVM classification on 10 and 13 classes.

FIGURE 10. ArSSAE result between AE and VA analysis for 10 classes.

accuracy of the SVM model declined with an increase in the
number of classes.

B. CLASSIFICATION PERFORMANCE OF THE PROPOSED
MODEL (ArSSAE) ON AE AND VA SIGNALS FOR 10 and
13 CLASSES DATASETS
As discussed in the preceding analysis, the proposed ArSSAE
model was developed based on multiple fault conditions.
Therefore, the model was directly evaluated with the 10 and
13 classes datasets. It was fed with six types of datasets
as listed in Table 5, and Fig. 10 shows the analysis result.
For 10 classes, the defect location and defect severity can
be simultaneously diagnosed. According to the assessment,
the classification accuracy of the model depends on the type
of input data. The model had higher performance on the

FIGURE 11. ArSSAE training performance on AE kurtogram (10 classes).

AE time domain compared to the VA time domain when
rotational speed was less than 240 rpm, and it started to reach
a satisfactory result on the VA time domain between 240 and
480 rpm. This demonstrates that the model can mine useful
information from the time domain data. The fault diagno-
sis system based on the time domain is useful to eliminate
the dependency on manual feature extraction from the time
domain signal. According to the statistical feature results,
the model had higher performance on AE than VA features
at rotational speeds of 300 rpm and below. As the speed
increased above 300 rpm, the performance using AE features
was competitive with the performance using VA features.
The classification accuracy of the model declined when using
the vibration signal’s kurtogram. The model produced the
best classification accuracy on the AE kurtogram, where
the model achieved 100% accuracy on all rotational speed
datasets, even at the lowest speed. According to the model
performance, the sample size used throughout the analysis
is sufficient to provide the accurate classification prediction.
By comparison, the model was more sensitive when using the
AE signal’s input data. It is believed that the performance
of the model on vibration signals can be improved with the
implementation of advanced signal processing techniques
as discussed in [49]. By observation, the ArSSAE model
produced a satisfactory performance on the AE kurtogram,
AE time domain and VA time domain.

In order to demonstrate the performance of the model on
the AE kurtogram, VA time domain and AE time domain,
the training performance of the model is visualized as shown
in Figs. 11, 12 and 13 respectively. The model has two
major training processes, namely unsupervised pre-training
and fine-tuning. The training plot is based on the best hyper-
parameters selected by the DE algorithm. The analysis of
AE kurtogram shows that the model required fewer than
700 epochs to reach 0% training error, and a consistent trend
can be seen from the training plot. It can be observed that the
model was only able to reach 0% training error at rotational
speeds above 180 rpm when the model was trained using
the VA time domain. The training performance of the model
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FIGURE 12. ArSSAE training performance on VA time domain (10 classes).

FIGURE 13. ArSSAE training performance on AE time domain (10 classes).

on the AE time domain reached 0% training error on all
rotational speeds, which proved that themodel was capable of
reaching a satisfactory performance during the testing phase.
According to the training plot and the test accuracy produced
by the model, the model did not suffer from overfitting prob-
lem during the analysis. The less accurate classification on
several input data can be caused by the quality of the data
where the model did not reach a satisfactory performance.

Subsequently, the ArSSAE model was evaluated with
another bearing dataset that contained an additional set of
three combination defect samples. Only AE kurtogram and
VA and AE time domains were used because with those
datasets, the ArSSAE model was capable of reaching a sat-
isfactory classification prediction with 10 bearing fault con-
ditions. The bearing’s defect location, defect severity and
defect combination can be simultaneously diagnosed using
the 13 classes dataset. The result is shown in Fig. 14. It can be
observed that there was no significant difference between the
10 and 13 classes results. According to the VA time domain
result, the model started to reach a satisfactory performance
at a rotational speed of 240 rpm, which is similar to the trend
seen with the 10 classes dataset. The model’s performance
on both sets of time domain data slightly decreased with

FIGURE 14. Performance of ArSSAE model on 13 classes datasets.

FIGURE 15. ArSSAE model training performance on AE kurtogram
(13 classes).

the 13 classes dataset. However, 100% classification accu-
racy was only achieved when the model was fed with the
AE kurtogram dataset, even with the additional fault com-
binations. As can be seen, there was no reduction in model
performance on the AE kurtogram, where the classification
accuracy reached 100% for all rotational speeds. The fault
diagnosis system based on image pattern recognition is quite
new and requires further development so that it can be used
for bearing prognosis.

To prove the superiority of the model on the 13 classes
dataset, the training performance of the model on the
AE kurtogram, VA and AE time domains is illustrated
in Figs. 15, 16 and 17 respectively. The performance of the
model at all rotational speeds was more consistent using the
AE kurtogram compared to theAE andVA time domains. The
model was unable to converge to the lowest training error at
rotational speeds of 48 and 60 rpm using the VA time domain.
The trend provides a helpful indicator of the model behavior
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FIGURE 16. ArSSAE training performance on VA time domain (13 classes).

FIGURE 17. ArSSAE model training performance on AE time domain
(13 classes).

FIGURE 18. ArSSAE model configuration.

during the test analysis where the model did not suffer from
overfitting.

Several factors may contribute to the increase in training
time of the model including number of features, size of data
samples, number of SAE layers in the ArSSAE network and
training process of the DE algorithm. The number of SAE
layers during the classification process is shown in Fig. 18,
where it can be observed that the VA time domain data

required the greatest number of SAE layers. In contrast,
the model used only two layers of the SAE network to gen-
eralize the AE time domain, AE and VA features. The AE
and VA kurtogram required three layers of the SAE network.
Training time increases when more hidden layers are used;
this problem has also been discussed by Wang et al. [42].
Instead of performing a manual iteration from a low hidden
layer to a higher hidden layer, the hidden layer is initially
set based on the size of the data feature, reducing the time
required for manual iteration. The model reduces or increases
the number of hidden layers if the initial hidden layer does
not produce satisfactory classification accuracy. In addi-
tion, the optimization process for hyperparameter selection
and hidden node numbers can eliminate the manual tuning
process.

C. COMPARATIVE ANALYSIS BETWEEN ArSSAE MODEL
AND SVM MODEL
Finally, the performance of the SVM and ArSSAE mod-
els was compared based on statistical features using the
10 classes dataset. The results for the ArSSAE and SVM
models using VA statistical features were similar; the clas-
sification accuracy was around 50–75% and 40–75% respec-
tively. Moreover, the classification accuracy of the ArSSAE
was greater than that of the SVM when the models were fed
with AE statistical features. The ArSSAE model was able
to achieve classification accuracy as high as 94% using AE
statistical features. Both models were observed to achieve
greater accuracy on the AE signal’s input data compared to
the VA signal’s input data. According to the analysis, accu-
rate diagnosis on bearing components cannot be achieved by
simply relying on statistical features, as the result produced is
inconsistent and below a satisfactory diagnosis level. There-
fore, the ArSSAE has an advantage over the SVM because
the ArSSAE can be trained using another type of input data.

VII. CONCLUSIONS
In this research work, an intelligent bearing fault diagnosis
system is proposed. The proposed model, called the adaptive
resilient stacked sparse autoencoder (ArSSAE), was devel-
oped based on the flexibility of its architecture to change its
network structure. The ArSSAE model offers several bene-
fits. First, the model is based on a simple sparse autoencoder
model that is easy to implement, and this model can work
on any type of input dataset. Second, the model provides
automated feature extraction and selection, whichmay reduce
human involvement in selecting the best methods for both
processes. Finally, the proposed model is able to deal with
datasets that contain low numbers of features and data sam-
ples. The ArSSAE model works better on the AE kurtogram
compared to other datasets in terms of training error and
testing prediction.

According to the analysis, the ArSSAEmodel achieved the
objective of the study: to develop a robust and flexible deep
learning model that can be used for bearing fault diagnosis
under low-speed operating conditions. The type of input data
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plays an important role in accurate analysis, and input data
types should be taken into consideration when performing
fault diagnosis. The ArSSAE model’s performance proved
that fault diagnosis using vibration signals under low-speed
operating conditions can be performed at speeds greater
than 180 rpm.
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