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ABSTRACT In this paper, the integration design of a millimeter-wave filtering patch antenna array
fed by a substrate integrated waveguide (SIW) four-way anti-phase filtering power divider is proposed.
The multilayer four-way anti-phase filtering power divider handily implemented using the intrinsic field
distribution of TE20-mode in SIW is proposed forminiaturization. The signal of the lower substrate integrated
waveguide cavity (SIWC) bandpass filter is directly coupled to the upper TE20-mode SIW through a coupling
slot. The intrinsic field distribution of TE20-mode SIW is used to generate anti-phase signals. This filtering
power divider can be utilized as the feeding structure of a millimeter-wave filtering antenna array. To verify
the design concept, a 28-GHz SIW-fed 1 × 4 filtering patch antenna array with three-layer substrates
is designed and fabricated. The measured results show a fractional bandwidth of 5.03% ranging from
27.15 to 28.55 GHz, a peak gain of 11.1 dBi, cross-polarization levels lower than -20 dB, symmetric radiation
patterns in both E-plane and H -plane, and high selectivity.

INDEX TERMS Dual-slot-fed patch, filtering antenna array, millimeter-wave antenna array, substrate
integrated waveguide (SIW), TE 20-mode.

I. INTRODUCTION
The rapid development of modern wireless and mobile com-
munication industries proposes stringent requirements on the
RF front-end systems with compact size, high-efficiency and
good stability. Multifunctional components such as balun
bandpass filter [1], filtering power dividers [2], and filter-
ing antennas [3], [4], have received increasing attentions
due to their advantages of compact size and low insertion
loss. Traditionally, the bandpass filter and antenna, which
are two key components in the RF-front ends, are designed
individually and then combined by matching networks. This
design is not appropriate to circuit miniaturization and will
add extra insertion losses. Filtering antennas, which combine
the separated antenna and filter into one, can perform filtering
response in both the reflection coefficient and realized gain,
for size and loss reduction.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojie Su.

There have been extensive investigations on filtering anten-
nas [3]–[7]. In [3], one filtering antenna, also called as ‘‘fil-
tenna’’, is constructed by a horn antenna and an X-band
bandpass frequency selective surface. A high-gain filter-
ing patch antenna operating at the band of LTE (Long
term evolution) without extra filtering circuits was pre-
sented in [4]. In [5], one X-band filtering aperture antenna
array was designed using rectangular waveguide structures.
Three-dimensional filtering slot antenna realized at Ka-band
using substrate-integrated waveguide (SIW) technique was
proposed in [6]. In [7], an SIW-based circularly-polarized
filtering patch antenna array was proposed around X-band.
Although the above filtering antennas achieve good filtering
response, few of them operate at millimeter-wave (MMW)
band.

Power dividers, especially multi-way power dividers, are
indispensable parts to the design of antenna arrays. Vari-
ous multi-way power dividers were presented in [8]–[10].
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Bandpass filter is another important device in RF systems to
reject unwanted signals. These two devices are generally cas-
caded in the feed networks of antenna arrays. This is the sim-
plest method to construct a filtering power divider, but often
at the cost of increasing the size and degrading the in-band
performance of antennas. To overcome such shortcomings,
the designs of filtering power dividers with low insertion
loss, compact size, and low cost were developed [11]–[13].
However, most of the previous works are based on microstrip
structures, which may suffer from high insertion loss in
MMW systems. SIW structures featuring low insertion losses
and high power handling capacities have been widely used
in various MMW circuits [14]–[16]. However, SIW power
dividers with multi-ways have the disadvantages of large size
due to an increased number of ports, and may suffer with
poor impedance matching at all ports [9]. The development of
MMW SIW multi-way filtering power divider and its appli-
cation are rarely reported. Because of the influence of small
size and serious parasitic effects on MMW antenna designs,
how to combine the filtering, power-dividing, and radiating
structures into antennas for achieving multifunction is chal-
lenging. At present, the frequency bands of the published
filtering antenna designs were mostly below 6 GHz. Very few
MMW-band antenna arrays with the differential feed network
were developed for filtering response, high gain, low cross
polarization, and symmetric radiation patterns, which are the
focus of this work.

FIGURE 1. 3-D view of the proposed millimeter-wave filtering patch
antenna array.

In this paper, the integration design of a MMW filtering
patch antenna array is proposed, as shown in Fig. 1. It consists
of a novel compact SIW four-way anti-phase filtering power
divider and two series-fed 1 × 2 patch antenna sub-arrays.
The proposed SIW filtering power divider is handily imple-
mented using the opposite current directions along a coupling
slot and the intrinsic field distribution of TE20 mode SIW
to achieve compact size. It also achieves excellent filtering
characteristic, impedance matching at all ports, and ampli-
tude balance at the output ports by integrating a SIWC (SIW
cavity) bandpass filter and TE20-mode SIW feed lines. This
power divider can directly connect the sub-arrays through
TE20-mode SIW without any impedance matching networks.

The implemented filtering antenna array shows superior fil-
tering response, flat in-band gain curve, and high out-of-band
suppression.

II. FOUR-WAY ANTI-PHASE SIW FILTERING
POWER DIVIDER
As it is well known, the differential circuits have the ability
to reject common-mode noise compared to single-ended cir-
cuits. Furthermore, differential-fed antennas can also reduce
cross polarization and improve radiation pattern symme-
try [17]. For the design of differential-fed antenna arrays, the
anti-phase feed network is required.

In conventional SIW-based structures, an anti-phase fil-
tering power divider is composed by cascade connection of
power dividers, bandpass filters, and phase shifters, which
will suffer from high loss, large size, and complexity. A com-
pact multilayer four-way anti-phase power divider handily
implemented a coupling slot and the intrinsic field distribu-
tion of TE20 mode SIW is proposed in this work.

A. ANALYSIS AND DESIGN
Fig. 2 shows the configuration of the proposed SIW four-
way anti-phase filtering power divider. It consists of a cou-
pling slot, a third-order TE110-mode SIWC bandpass filter,
a TE20-mode SIW, and microstrip feed lines. The coupling
slot, SIWC bandpass filter, and TE20-mode SIW are imple-
mented together to obtain filtering response and four-way
anti-phase outputs. Note that the four output ports of Port

FIGURE 2. Configuration of the proposed SIW four-way anti-phase
filtering power divider: (a) 3-D view and (b) Top view.
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2−Port 5 are used only for the performance evaluation, which
can be removed in the final array design. The |S21| 3-dB
bandwidth ranging from 27.22 to 29.15 GHz is designed
in this work for 5G wireless applications, which requires a
fractional bandwidth of 6.8%. When selecting a third-order
maximally flat response and fractional bandwidth of 6.8%,
the corresponding coupling coefficients and external quality
factor for the SIWC bandpass filter are M12 = M23 =

0.048 andQe = 14.71, respectively, whereMij is the coupling
coefficient between the ith and jth cavities. Fig. 3 shows the
design curve of coupling coefficient of the SIWC bandpass
filter, which can be used to determine the window length L
according to the requiredMij.

FIGURE 3. Coupling coefficient of the SIWC bandpass filter.

The power divider is designed with two-layer substrates
and optimized by the full-wave EM simulator Ansoft HFSS.
The Rogers 4003C (εr = 3.55 and tanδ = 0.0029 at 10 GHz)
with a thickness of 0.5 mmwas used for the upper TE20-mode
SIW, while the Rogers RT/Duroid 5880 (εr = 2.22 and
tanδ = 0.0009 at 10 GHz) with a thickness of 0.254 mm was
used for the lower SIWC bandpass filter. A common ground
plane with a coupling slot was inserted between the two
substrates. The input signal from Port 1 propagates along the
third-order SIWC bandpass filter, and then is directly coupled
to the upper TE20-mode SIW from the third resonant cavity
without any additional structures and equally divided into
two TE20-mode signals. The coupling slot located along the
longitudinal center of the TE20-mode SIW line is in charge to
generate the TE20-mode field distribution. The intrinsic field
distribution of TE20-mode in SIW can be used to construct
four-way anti-phase signals.

The SIWC bandpass filter is constructed by three SIW cav-
ities operating at the TE110 dominant mode, whose resonant
frequency can be determined by [18]:

f110 =
c

2π
√
µrεr

√(
π

Weff

)2

+

(
π

Leff

)2

(1)

Weff = a−
d2v

0.95pv
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d2v
0.95pv

(2)

where f110 denotes the eigenmode frequency, εr and µr are
the relative permittivity and permeability of the substrate,

respectively, c is the light velocity of free space, a and b are
the width and length of the SIW cavity, respectively, and dv
and pv are the diameter of metalized via holes and center-
to-center pitch between two adjacent via holes, respectively.
The final dimensions of the SIWC are determined by the
optimized S-parameter responses, which give a = 6.15 mm
and b = 4.4 mm.

FIGURE 4. (a) The electric field amplitude distribution and (b) the current
distribution of TE20-mode SIW and the microstrip lines.

The electric field and current distributions of the
TE20-mode SIW and the microstrip lines are shown in
Figs. 4(a) and 4(b), respectively. As indicated in Fig. 4,
the amplitude distribution of the electric field is symmetric
with respect to the AA’ line, whereas the current distribution
shows odd symmetric with respect to the AA’ line. Therefore,
the TE20 mode on each side of the SIW can support differen-
tial signals with same amplitude and opposite phase.

B. SIMULATED RESULTS
A millimeter-wave SIW four-way anti-phase filtering power
divider is designed according to the aforementioned method
for operating at 28 GHz. The detailed dimensions are listed
in Table 1. Fig. 5(a) shows the simulated S-parameter mag-
nitudes of the filtering power divider. This divider exhibits
a fractional bandwidth of 4.8% at 28.17 GHz ranging from
27.49 to 28.85 GHz with the reflection coefficient less
than -15 dB. The same S-parameter magnitudes of the four
output ports with maximally flat responses are observed
due to the symmetric structure. Fig. 5(b) shows the phase
responses of the output ports. As indicated, the Port 2 and
Port 4 (Port 3 and Port 5) are in-phase and the Port 2 and Port 3
(Port 4 and Port 5) are 180◦ out of phase. The amplitude and
phase imbalances of the output ports are less than 0.2 dB and
180◦ ±1◦, respectively.
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FIGURE 5. Simulated S parameters of the proposed TE20-mode SIW
four-way anti-phase filtering power divider: (a) Magnitudes and (b) phase
differences between the output ports.

TABLE 1. Dimensions of the filtering power divider (in mm).

III. INTEGRATION DESIGN OF THE MILLIMETER-WAVE
FILTERING PATCH ANTENNA ARRAY
A millimeter-wave 1 × 4 TE20-mode SIW dual-slot-fed
patch antenna array integrated with the proposed filter-
ing power divider is designed to achieve high selectivity.
Two series-fed 1 × 2 sub-arrays are used to construct the
1 × 4 patch antenna array. The filtering power divider is
implemented in the center underneath the two sub-arrays,
as shown in Fig. 1. The TE20-mode SIW dual-slot-fed
patch structure [19], which features wider bandwidth and
higher gain than the conventional TE10 single-slot-fed patch
antennas, is adopted in this work. The detailed designs of
the 1 × 2 sub-arrays and the 1 × 4 filtering patch antenna
array are explained as follows.

A. SERIES-FED 1 × 2 SUB-ARRAY
Figs. 6(a) and 6(b) show the configuration of the pro-
posed 1 × 2 TE20-mode SIW series-fed sub-array, which
is designed with two-layer Rogers 4003C (εr = 3.55 and
tanδ = 0.0029 at 10 GHz) substrates with a thickness
of 0.5 mm. Fig. 6(c) illustrates the current distribution on
the dual-slot-fed patch elements with TM10-mode excitation

FIGURE 6. Configuration of the TE20-mode SIW series-fed 1 × 2 sub-array
with dual-slot-fed patch elements: (a) 3-D view, (b) top view, and
(c) current distribution on the dual-slot-fed patch elements.
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TABLE 2. Dimensions of The Filtering Powered divider (in mm).

FIGURE 7. Simulated results of the proposed TE20-mode SIW series-fed
1 × 2 sub-array: (a) |S11| and (b) radiation patterns at 28 GHz.

at 28 GHz. The detailed dimensions are listed in Table 2.
Fig. 7(a) shows the simulated reflection coefficient |S11| of
the 1 × 2 sub-array, which has an impedance bandwidth of
9.95% (26.25−29 GHz) with the reflection coefficient less
than −10 dB. The simulated gain at 28 GHz is 12.3 dBi.
Fig. 7(b) shows the radiation patterns of the 1 × 2 sub-array
at 28 GHz. The E-plane co-polarization radiation pattern
is symmetric due to the symmetric dual-slot feeding struc-
ture, whereas the peak gain of the H-plane co-polarization
radiation pattern is slightly deviated from 0◦ caused by the
series-fed structure. The cross-polarization levels are lower
than -30 dB in both E-plane and H-plane.

B. 1 × 4 FILTERING PATCH ANTENNA ARRAY
The integrated 1 × 4 parallel-series-fed filtering patch
antenna array is shown in Fig. 1. The overall structure occu-
pies three substrates. The SIW four-way anti-phase filtering
power divider provides two-way TE20-mode signals with
filtering response, which can be used to excite the series-fed

1 × 2 sub-arrays. In order to improve the deterioration of the
H-plane radiation pattern caused by the series-fed structure,
two 1 × 2 sub-arrays are mirror-arranged by using a parallel
feed with the filtering power divider in the middle underneath
them.

FIGURE 8. Simulated |S11| and gain curves of the proposed filtering
1 × 4 antenna array and a reference 1 × 4 antenna array without the
filtering power divider, and the |S11| and |S21| responses of the
proposed filtering power divider.

Fig. 8 shows the simulated |S11| responses and gain curves
of the proposed filtering 1 × 4 antenna array and a reference
1 × 4 antenna array without the filtering power divider, and
the |S11| and |S21| responses of the proposed filtering power
divider. As indicated, the gain curve of the proposed filtering
antenna array has similar roll-off characteristic to the |S21|
response of the proposed filtering power divider, in which
the difference of in-band levels between the two curves cor-
responds to the directivity of the antenna array. A -10-dB
impedance bandwidth of 5.4% ranging from 27.48 to 29 GHz
is achieved, which is slightly wider than that of the filter-
ing power divider. The peak gain of 13.5 dBi is obtained
at 28 GHz. The flat gain curve is observed and the gain
variation is less than 0.4 dB in the passband. Fig. 9 shows the
simulated radiation patterns at 28 GHz. Due to the symmetric
parallel-series feed structure, the 1 × 4 array can achieve
symmetric radiation patterns and low cross-polarization lev-
els less than -40 dB in both E-plane and H-plane.

IV. EXPERIMENTAL RESULTS
To verify the design, a prototype of filtering 1 × 4 array was
fabricated and measured, as illustrated in Fig. 10. For the
cost issue, the proposed three-layer circuits were fabricated
individually and then assembled together by screws. A steel
support is used to screw the separated circuit boards and the
edge-fed SMA connector. The total size is 33 × 27 mm2.

A. IMPEDANCE BANDWIDTH AND RADIATION GAIN
Fig. 11 shows the simulated and measured broadside
gain curves and |S11| responses of the proposed filtering
1× 4 patch antenna array. The superior reflection coefficient
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FIGURE 9. Simulated radiation patterns of the proposed 1 × 4 filtering
antenna array at 28 GHz.

FIGURE 10. Photograph of the fabricated PCB-based 1 × 4 filtering
antenna array: (a) Expanded view and (b) assembled view.

and high selectivity are achieved around 28 GHz. The mea-
sured impedance bandwidth is 5.03% (27.15−28.55 GHz).
The measured gain is above 10 dBi from 27.2 to 28 GHz with
a peak gain of 11.1 dBi at 27.6 GHz. The in-band gain curve is
flat and degrades rapidly in out-of-band with high selectivity.
The measured center frequency and bandwidth are slightly
decreased from the simulated results due to the possible
small air gaps existing between two substrates and the uncer-
tain permittivity of the substrates in millimeter-wave band,
which can be improved by adopting accurate multi-layer PCB
or LTCC fabrication process with a certain permittivity of
substrates.

B. RADIATION PATTERNS
Fig. 12 shows the simulated and measured radiation patterns
of the proposed filtering 1 × 4 array at 28 GHz. Owing to

FIGURE 11. Comparison of the measured and simulated gain curves and
|S11| responses of the proposed 1 × 4 filtering patch antenna array.

FIGURE 12. Simulated and measured radiation patterns at
28 GHz: (a) E-plane and (b) H-plane.

the symmetric filtering power divider, the radiation patterns
of the array are symmetric in both E-plane and H-plane. The
measured cross-polarization levels are below−20 dB in both
E-plane and H-plane. The deviation in cross-polarization and
side-lobe levels from the simulated results is mainly due to
the unbalanced steel support and SMA connector and the
fabrication tolerance.
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TABLE 3. Comparison with previously reported filtering antenna arrays.

FIGURE 13. Simulated E-plane co-polarization patterns for various hw .

As shown in Fig. 10(b), the steel support includes hori-
zontal and vertical parts. The two vertical parts behave as
two reflected walls lie on the yz-plane, which influence the
E-plane radiation patterns of the complete antenna array. The
height of the vertical parts above the ground is marked as hw.
Fig. 13 shows the impact of hw on the simulated E-plane
co-polarization radiation patterns. As indicated, the side-lobe
level increases as hw increases. When hw = 0 mm, the peak
of radiation patterns is slightly shifted from 0◦ boresight and
results in asymmetric radiation pattern. It is mainly caused
by the SMA connector even the vertical parts of the steel
support are absent. However, all these problems can be further
improved by adopting multi-layer PCB fabrication process
and low-profile connectors.

Table 3 lists the performance comparison among our
work and other published filtering antennas. As indicated,
the proposed millimeter-wave filtering antenna array fea-
tures high gain, differential feed network, low cross polar-
ization, and symmetric radiation patterns in both E-plane and
H-plane.

V. CONCLUSION
In this paper, a novel SIW four-way anti-phase filtering power
divider is firstly presented, which features symmetric struc-
ture, low amplitude and phase imbalances, and high selec-
tivity. Two series-fed 1 × 2 sub-arrays are used to construct
the parallel-series-fed 1 × 4 patch antenna array to achieve
symmetric radiation patterns in both E-plane and H-plane.

The proposed 1 × 4 antenna array can achieve high selectiv-
ity, symmetric radiation patterns, and low cross-polarization
level in millimeter-wave band.
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