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ABSTRACT We present a deep learning framework for efficient large-scale 3D point cloud analysis and
classification using the designed feature description matrix (FDM). As the 3D points are unordered in the
large-scale scene, and no topology structure can be employed directly for classification and recognition, it is
difficult to apply deep neural network directly on 3D point clouds as points cannot be arranged in a fixed
order as 2D image pixels. We design a new pipeline for 3D data processing by combining the traditional
features extraction method and deep learning method. Our FDM encapsulates the 3D features of the point
and can be used as the input of the deep neural network for training and testing. The experiments demonstrate
that our method can acquire higher classification accuracy compared with our previous work and other
state-of-art works.

INDEX TERMS CNN, feature description matrix, geometric features, point cloud.

I. INTRODUCTION
3D Point cloud classification plays an important role in lots of
applications such as remote sensing and scene reconstruction.
As obtaining 3D point clouds from the real scene becomes
cheap, convenient and fast, point clouds are ubiquitous and
the automatic classification of them will save a lot of time
and cost. In the point cloud, points are independent with
each other and no connections information can be employed,
making the semantic classification information difficult to be
inferred directly. A lot of traditional point cloud classification
methods have been proposed to extract the geometric features
of each point based on their local neighborhood. The geo-
metric properties of natural surfaces may span over a wide
range of scales (from cm to km), and lots of works have
been done on the natural scenes understanding such as dune
fields [1] and on the urban scenes [2]. These methods achieve
good classification results, but the precisions still need further
improvement.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sandra Biedron.

In recent years, deep learning gains a lot of attentions
because of its excellent performance, especially on image
recognition and understanding. It can construct complex con-
nections between input images and corresponding labels by
neural networks in turn to recognize testing images superior
to humans. Deep learning cannot be directly applied to 3D
information classification, because the order of point in the
point cloud is unrelated to the structure of the scene, mak-
ing most neural networks failed on feature extraction and
point classification. If some features that unrelated to the
point orders and point translations can be extracted explic-
itly for neural networks, a better classification result may
be obtained. Based on this idea, we propose a new point
cloud classification framework which combines traditional
feature-based methods with deep learning methods. We first
extracted a series of features for each point based on their
optimal neighborhood, and construct the Feature Description
Matrix (FDM). FDMs are further input to convolution neural
network to obtain invincible classification results. The key
point is that geometric features can be extracted in advance
which convolution neural network cannot learn directly, and
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FIGURE 1. Processing comparison.

then deep learning network can be trained better based on
these features than just from the original information. This
work is extended from our work [3], and we give more deep
learning methods on our framework to validate our method.
Two more features including the local point density and the
nearest neighbor quadrihedron volume are encapsulated in
the FDM. Guidelines for the training are also be proposed
to improve the final classification accuracy. Figure 1 shows
our learning process compared with previous methods, and
Figure 2 shows the architecture of our algorithm, in which
CNN are used as the representative deep learning method.

The contributions are listed as follows:

• A new pipeline for 3D data processing by combining the
traditional feature extraction methods and deep learning
methods. We first extract the features from the 3D points
explicitly which are usually cannot be ’seen’ directly by
neural networks, and classify the points based on these
features based on deep learning methods.

• A series of guidelines on different parameters on deep
learning networks for FDMs training and test. We use
different settings to train and test FDMs including the
sample enhancement, the loss function, the optimizer,
the feature arrangement, and the learning rate.

Our algorithm can effectively classify the point cloud into
different categories with higher accuracies after the training
process(see Table 5). Based on our work, more deep learning
networks can be applied based on our guidelines.

II. RELATED WORKS
In order to classify a point cloud, traditional classifi-
cation methods use hand-crafted features [4], [5], contex-
tual features [6], and specific color, shape or geometry
features [7] as the basis. Chehata et al. [8] classified
point clouds by using random forests with 21 features.
Guo et al. [9] utilized JointBoost with 26 features to clas-
sify point clouds into five classes. Kragh et al. [10]
used the SVM classifier with 13 features to classify
point clouds. Brodu and Lague [11] extracted multiscale
features from different neighborhoods for classification.
Weinmann et al. [12] divided machine learning methods
of point cloud classification into 6 categories including
instance-based learning [13], rule-based learning [14], prob-
abilistic learning [15], Max-margin learning [16], ensemble
learning [17] and deep learning [18], while they presented a
new, fully automated and versatile framework composed of

four components, and demonstrated that the selection of opti-
mal neighborhood for the 3D point can significantly improve
the results of 3D scene analysis.

Recently, the deep-learning technique can automatically
and jointly learn the features and classifiers from the multiple
types of data [19]–[26] including images, videos, speeches,
and audios. It has a wide range of applications, such as
hyperspectral image classification, handwritten digit recog-
nition, underwater images enhance and face detection etc.
Deep learning as one of artificial intelligence technique [27]
has a great success in image classification and recognition,
some people try to apply it to 3D data. Many research
works in remote-sensing scene understanding has focused on
learning feature representations using deep learning frame
network. Chen et al. [28] proposed a 3DCNN based feature
extraction model with combined regularization to extract
effective spectral-spatial features of hyperspectral imagery.
Zhang et al. [29] provided a general framework of Deep
Learning for RS data combined with various deep networks
and tuning tricks.

Meanwhile, a series of neural network methods for 3D
shapes are proposed. Koppula et al. [30] used depth images
with different perspectives of 3D objects as the input, and
utilized auto-encoder with pre-training DBN to extract fea-
tures. Wu et al. [31] designed a volumetric CNN architecture
on 3D voxel grids to represent a geometric 3D shape for
object classification and retrieval. For point clouds, Huang
and You [32] turned the point cloud into 3D voxels and
use occupied voxels to feed the 3D convolutional layer for
training. Engelcke et al. [33] discretized the point cloud
into a sparse 3D grid, extracted the statistics number of
the cells, and performed a sparse convolution by voting
without considering the more low-level input representa-
tions. Liu et al. [34] provided a 3DCNN-DQN-RNN method
which combines the 3D convolutional neural network (CNN),
Deep Q-Network(DQN) and Residual recurrent neural net-
work (RNN) together for an efficient semantic parsing of
large-scale 3D point clouds. Alexandre et al. [35] trans-
formed the point cloud into RGB and depth image views
for CNN training. Qi et al. [36] gave the ’PointNet’ for
object classification and scene semantic parsing, in which
point coordinates are input to the neural network directly.
However, as the local structures of the metric space cannot be
captured, it is difficult to recognize fine-grained patterns on
complex scenes. The PointNet++ [37] used hierarchical (or
multiscale) neural network to solve this problem, but applying
it on the large-scale 3D point clouds is unfeasible as the
scene usually includes the solid points as well as the surface
points. Other deep learning methods are developed for shape
segmentation. Guo et al. [38] proposed a novel approach for
labeling on 3D meshes by using Deep Convolutional Neural
Networks, while Luciano and Hamza [39] gave an integrated
framework for 3D shape classification using deep learning
with geodesic moments.

These methods mainly for shape classification and
segmentation but not for the large scene point cloud
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FIGURE 2. The architecture of our algorithm. After constructing the FDM, here we use a ’5c-2s-10c-1s’ CNN for training and testing. Note that we use
sigmoid function but not the tanh function as it works better in our experiments, although tanh function is better than sigmoid usually in image
classification field.

classification, as most methods need the topology informa-
tion for the calculation. However, the potential application of
point-cloud classification is still relatively unexplored based
on deep learning. The main difficulty in classifying points by
deep learning stems from the unorganized point clouds. There
is an obvious gap between deep learning and large-scale 3D
point clouds.

III. ALGORITHM
The architecture of our algorithm is given in Figure 2. Note
that coordinates x, y, z are not the decisive factors for the
classification. Specifically, if we move or rotate an object to a
new position, the coordinates are changed but it still belongs
to the same class. The other difficulty for deep learning on
3D points is the irregular arrangement in the point cloud,
meaning that different order of the points doesn’t change the
point cloud while this may disturb the deep learning process.
Besides, the classification of each point in the point cloud
is mainly determined by its local neighborhood features,
while these features cannot be learned directly by the deep
learning methods. Here we provide an available algorithm for
classification of point cloud based on 3D features and deep
learning network. In order to identify the class of each point in
the large-scale scene point cloud, we first extract the features
from the point cloud explicitly, then we train a neural network
for classification. Our work is different from the work [38],
as the method of [38] can only deal with meshes but not the
point cloud.

The features of each point in the point cloud are extracted
from its optimal neighborhood, then Feature Description
Matrix (FDM) for the point can be constructed to input
the neural network. The following denotations are used for
clear description. Given a point cloud with N points, the
i-th point Pi has the coordinates (xi, yi, zi). The features of
Pi are extracted from its optimal neighborhood containing
Pi and its k nearest neighbors, where k ∈ R is an integer
that can minimize the eigenentropy of Pi’s neighborhood.

The coordinates of all points in the optimal neighborhood are
denoted as a (k + 1) ∗ 3 matrix M , and the corresponding
covariance matrix is denoted as C with size 3 ∗ 3. C is a
symmetric positive-definite matrix, and its three eigenvalues
are larger than 0, denoted as λ1, λ2, and λ3 ∈ R respectively
where λ1 ≥ λ2 ≥ λ3 ≥ 0. The eigenvectors of C are V1,V2,
and V3, corresponding to λ1, λ2, and λ3 respectively. The
normalized eigenvalues are ei = λi/6λi for i ∈ {1, 2, 3}.

A. OPTIMAL NEIGHBORHOOD SELECTION
The optimal neighborhood should be the ’best’ neighborhood
of the point which can reflect the local geometry features cen-
tered on this point. In order to search the most representative
neighborhood, we employ the method [40] to minimize the
eigenentropy of Eq 1 for the optimal neighborhood selection,
as the eigenentropy provides a measure of the order of 3D
points within the covariance ellipsoid. We choose all the
integer values in [kmin, kmax] with kmin = 10 and kmax = 100,
and get the optimal neighborhood with minimum Eλ. Note
that each point may have different point number in its optimal
neighborhood.

Eλ = −e1ln(e1)− e2ln(e2)− e3ln(e3) (1)

B. 3D FEATURES EXTRACTION
After obtaining optimal neighborhood for each point,
we extract 3D features which should be invariant from trans-
lation. We divided these features into eigenvalue-based fea-
tures and geometric features. Here we give more details on
these features.

1) EIGENVALUE-BASED FEATURES
The eigenvalue-based 3D features are calculated from the
corresponding eigenvalues ofM as follows:
• Linearity: Lλ =

λ1−λ2
λ1
=

e1−e2
e1

• Planarity: Pλ =
λ2−λ3
λ1
=

e2−e3
e1

• Scattering: Sλ =
λ3
λ1
=

e3
e1
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• Omnivariance: Oλ = 3 3
√
e1e2e3

• Anisotropy: Aλ =
λ1−λ3
λ1
=

e1−e3
e1

• Eigenentropy: Eλ = −
∑3

i=1 eiln(ei)
• Trace: Tλ = 2

π
arctan(λ1 + λ2 + λ3)

• Change of curvature: Cλ =
3λ3

λ1+λ2+λ3
= 3e3

Almost all these features are in [0, 1] except Eλ, and most
of the features can be found in [40]. As Eλ is used for the
optimal neighborhood selection, it is important and use the
original value will be superior to its normalized value for
the classification, which is validated by our experiments.
If we increase the weight of Eλ properly, the classification
accuracy is also be improved, but if the weight is too large,
the classification accuracy will degrade.

Compared to [40], we also add the coefficient 3.0 on Oλ
in the Omnivariance and Change of Curvature features for
normalization, which can improve the classification accuracy.
Besides, [40] use the sum of eigenvalues, while in our case
we use Trace. As e1 + e2 + e3 = 1.0 after the normalization
which is not significant for the classification, and λ1 + λ2 +
λ3 ∈ (0,∞) in theoretical, we design the Trace feature by
normalizing λ1 + λ2 + λ3 into (0, 1) in turn to promote the
classification accuracy.

These features have obvious geometry meanings, and here
we give some plain explanations. Linearity Lλ reflects the
linearity of the point, and if the neighborhood points are in
a line, Lλ gets close to 1.0, and Anisotropy Aλ is 1 as e1
is 1 and e3 is 0. For the plane case, e1 and e2 are nearly
the same with value 0.5 and e3 is nearly zero, which makes
Planarity Pλ close to 1.0. For the sphere case, e1, e2, and e3
are equal, meaning Scattering Sλ of the points are uniform,
i.e, Sλ = 1.0, OmnivarianceOλ reaches the biggest value 1.0,
and Anisotropy Aλ is 0 as e1 = e2 = e3. If the difference of
e1 and e3 is large, Anisotropy Aλ will be large. The sum of λ1,
λ2, and λ3 is the Trace of C which reflects the invariant point
number based on the eigenvectors of C , and we normalize
it into [0,1] based on arctan function for better classification
validated by our test. The Change of CurvatureCλ introduced
by Pauly et al. [41] describes the variation along the surface
normal of Pi, i.e., it estimates how much the points deviate
from the tangent plane. We add the coefficients 3.0 compared
to [41]. For completely isotropically distributed points such
as planes, Cλ = 0.
Although these features are categorized as eigenvalue-

based features but not geometric features, they have great
relations with the geometric property of the point essentially.
Now we can obtain 8 eigenvalue-based features for each
point, but just using this features for classification cannot
achieve a robust result. We also need to employ other 3D fea-
tures.

2) GEOMETRIC FEATURES
Three eigenvectors of C are geometric 3D features, where
V1 represents the maximum distribution direction of the
points, V3 represents the minimum distribution direction of
the points and V2 represents the distribution direction that is

perpendicular to V1 and V3. If the point Pi’s optimal neigh-
borhood is sampled from a surface, thenV1 andV2 are the two
principle directions on Pi for the surface respectively, while
V3 is the normal direction of the surface on Pi; if Pi’s optimal
neighborhood is sampled from a line,V1 is the direction of the
line; ifPi’s optimal neighborhood is sampled from a plane,V3
is the normal direction of the plane.

Compared to our previous work [3], we also use two new
features as the geometric features: local point density and
nearest neighbor quadrihedron volume. The local point den-
sity D3 of Pi in 3D given by Weinmann et al. [42]:

D3 =
k + 1
4
3πr

3
kNN

(2)

Here rkNN is the maximum distance from the point to its
k-Nearest Neighborhood (kNN ) points in the optimal neigh-
borhood.

The nearest neighbor quadrihedron volume Q of vertex Pi
can be calculated as the mixed product of the three vectors
constructed by three nearest neighbor P1i , P2i , P3i of the
vertex Pi as in [43]:

Q =
1
6
‖(
−−→
PiP1i ×

−−→
PiP2i ) ·

−−→
PiP3i‖ (3)

C. FEATURE DESCRIPTION MATRIX CONSTRUCTION
Usually, the class label of the point usually has some connec-
tions with its features. Not all of the features are necessary
for the classification. The label of the point is usually based
on the geometry related properties, i.e, the points in the line
and the points on the plane should have different class labels.
This is natural, as the 3D objects with the same label usually
have the same shape. However, if we just use the eigenvalues
or eigenvectors for the training, the classification result is
bad. In order to classify the points effectively, we should
organize the extracted features efficaciously to feed the neural
network.

1) FEATURE DESCRIPTION VECTOR
For each point Pi, we construct a Feature Description
Vector (FDV), in which the element should be invari-
ant to translations, as the same as the label of the
point. Many features can be selected as the element of
the FDV, but not all the options are effective. We have
tested many cases, and give a stable option as fvi =
[Lλ,V3,Pλ, Sλ,V1,Oλ,Aλ,Eλ,Tλ,Cλ,D3,Q]. Note that V1
and V3 are vectors with 3 elements, and the length of fvi is 16.
The arrangement order for each element in fvi can be varied
and will have some impacts on the final classification result,
but in general, the overall accuracies are close for different
arrangements. We have tested different orders and current
arrangement can bring up a higher classification accuracy.

2) FEATURE DESCRIPTION MATRIX
The Feature Description Matrix is constructed based on the
above FDV for each point. We choose the 15-nearest neigh-
bors of Pi and itself use the corresponding FDVs with Pi FDV
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FIGURE 3. FDMs of different points in different categories. We randomly
choose 3 points from each category in the training data (Figure 6(a)) and
transform their FDMs to images for better observation. We can see that
the same category points have similar FDMs visually.

to construct the Feature Description Matrix(or FDM) with
size of 16 ∗ 16. We make FDM be a square matrix as this is
more stable. Theoretically, the number of nearest neighbors k
(here is 15) should not be too less or too more, as the values in
each FDV are based on the optimal neighborhood containing
ko points. The ideal state is k = ko. In practice, our option
works well in tests, and Figure 3 shows the FDMs of different
points from different categories, and we can see that the same
category points have the similar FDMs. These similarities can
be captured by CNN for classification.

D. TRAINING AND TESTING
As the FDM is very similar to an image, it can be used to
input a neural network in order to construct the mapping
between the FDM and the corresponding label of a point in
the point cloud. For the training data, we use their FDMs
and labels to train the CNN to get the parameters, then apply
these parameters to classify the testing data based on their
extracted FDMs. The pseudocode of our algorithm is given
in Algorithm 1. The classification goes through two feature
extraction pass essentially. The first pass is to extract FDM
explicitly for every point, and the second pass is done by
neural network implicitly. Our method integrates the previous
classification methods and can achieve a better classification
result.

Our CNN for the point cloud classification is inspired by
LeNet-5 and is shown in Figure 2. We use 5 convolution
kernels and 2 times subsample, then 10 convolution kernels
and no downsampling for the output. The kernels size is
3*3. We use 50 FDMs to construct one batch, and after
30 iterations (pointed out by [3]), the batch errors tend to be
stable, and we set 30 as the default training times.

Our experiments use alternative loss functions, optimizers.
learning rates, shuffle, and random parameter initializations
for the training stage. Figure 4 shows the comparisons of
different settings. Besides, the best way to evaluating lay-
ers of neural networks is using deconvolution to generate
each layer’s image [44] in image classification. In our case,

FIGURE 4. Comparisons of different settings. (a)The convergence curves
of Mean Square Error (MSE) and cross entropy functions. (b)Optimizer
Stochastic Gradient Descent (SGD) is a little better than Adaptive Moment
Estimation(Adam).(c)Shuffle makes the accuracy better. (d)The accuracy
curves for different learning rate on SGD. (e)The accuracy curves for
different initial parameters.(f)The accuracy curves for data augmentation.

Algorithm 1 Our Point Cloud Classification Algorithm
1: Training:
2: Input the training point cloud data, i.e., the position

coordinates of all points Pi, and the corresponding class
labels.

3: Extract the features of each point Pi, including Lλ, V3,
Pλ, Sλ, V1, Oλ, Aλ,Eλ,Tλ,Cλ, D3, and Q.

4: Construct the Feature Description Matrix for each Pi
with 16× 16 size.

5: Train a deep neural network based on all the FDM and
corresponding labels and record the neural network.

6: Testing:
7: Input the testing point cloud data, i.e., the position coor-

dinates of all points Pi
8: Extract the features of each point Pi, including Lλ, V3,
Pλ, Sλ, V1, Oλ, Aλ,Eλ,Tλ,Cλ, D3, and Q.

9: Construct the Feature Description Matrix for each Pi
with 16× 16 size.

10: Label each point according to deep neural network based
on the testing FDMs.

although the same class has a similar FDM arrangement as
shown in Figure 3, the connections between the features are
undefined. This means that we cannot have a definite FDM
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TABLE 1. The statistics of the 3D Oakland 3D Point cloud dataset.

for a special class, and we cannot recognize the class from the
FDM directly. During the convolution process, the meaning
of each layer’s output is also undefined and cannot be evalu-
ated visually. Based on the above analysis and experiments,
we provide some guidelines for our training.
Guidelines for the training:
1) The parameters for the neural networks can be initial-

ized randomly.
2) The loss function should be cross entropy function

better thanMean Square Error (MSE) function, asMSE
has a higher oscillation during the iterations.

3) The optimizer should be Stochastic Gradient Descent
(SGD) better than Adaptive Moment Estimation
(Adam).

4) The learning rate can be 0.01 (our empiric value).
5) The data should not be augmented by noises, even the

quantity variances are great between different classes
for the point cloud.

IV. EXPERIMENT
Our algorithm runs on a PC with Core i7 CPU 920
2.67 GHz/Intel, 3G RAM, and an NVIDIA GeForce GTX
770 video card.

A. DATASET
We test our framework on publicly 3D point cloud dataset
known as Oakland 3D Point Cloud Dataset, which is one of
the most widely used MLS(Mobile Laser Scanning) datasets.
This dataset represents an urban environment and it is cap-
tured by a mobile platform equipped with side-looking SICK
LMS laser scanners. A separation of the dataset into a training
set X, a validation set V and a testing set Y are provided, and
each 3D point is assigned one of the five semantic categories
as Wire, Pole, Facade, Ground, and Vegetation (Figure 6(a)),
with the respective number of samples per class provided
in Table 1. We can extract the subtypes from them for the
training and testing.

B. FDV SELECTION
The features to construct the FDV should be care-
fully chosen, or else the classification result maybe
bad. For example, one straightforward method is to
used eigenvalue-based 3D features only for classification,
i.e., using [λ1,V1, λ2,V2, λ3,V3] as the FDV. In this case,

FIGURE 5. Confuse matrix comparison for the testing data. (a) The result
of [3]. (b) The result of ours. Note that we normalize all the values for
better observation. The point numbers are shown in the testing data
column in Table 1.

for the training data in Figure 6(a) and the testing data
in Figure 7(a), the classification error rates are 7.5084%
and 33.0057% for the training data and testing data respec-
tively, and the ’Pole’ in the testing data cannot be recog-
nized at all. This means that using [λ1,V1, λ2,V2, λ3,V3]
as FDVs can classify the point cloud data to some extent,
but not very practical as the accuracy is too low. If we use
[e1,V1, e2,V2, e3,V3] as the FDV, the classification error
rates are 6.6717% and 30.4033% for the training and test-
ing data respectively, and for the ’Pole’ of the testing data,
the accuracy is still 0. Normalization can improve the accu-
racy, but it ameliorates the final classification result very
limited. If we use [Lλ,Pλ, Sλ,Oλ,Aλ,Eλ,Tλ,Cλ,D3,Q] as
the FDV, the classification error rate of training is 10.4936%,
and the classification error rate of testing is 11.6593%. Using
our FDV, the classification error rate of training becomes
2.946% and the classification error rate of testing is 3.5067%
with noticeably improved accuracy for the 5-categories point
cloud which is reported in [3]. In [3], we use MSE function,
Adam optimizer with learning rate 0.001, no shuffle, and
random parameter initialization for the neural network. Based
on our guideline for training, we use the cross-entropy func-
tion, SGD optimizer with learning rate 0.01 and shuffle, and
also random parameter initialization for the neural network.
Now the classification error rate of training and testing are
decreased to 2.7835% and 3.2793% respectively. Note that
we don’t use the augmented data for training according to our
guideline as it will impair the accuracy( see subsection IV-D).
Figure 7(b) shows our testing result from a subset of the
testing data, and we can see that it is very close to the ground
truth.

C. CLASSIFYING DIFFERENT CATEGORIES DATA
We have tested our algorithm on data with 2 categories,
3 categories, and 4 categories, and training and testing errors
are listed in Table 2, 3 and 4 respectively. In Table 2, we can
see that the training errors and testing errors are quite low in
most cases. Only in the case of ’Wire and Pole’, the testing
error is large. This is because ’Line’ and ’Pole’ has a similar
geometric structure, making their labels cannot be effectively
distinguished from each other. For other cases with more
categories, both training errors and testing errors are low,
which means our algorithm can classify these point clouds
effectively.
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FIGURE 6. The training data and training result. (a) Point cloud with
different colors corresponding different labels for training. Here red
denotes for ’Facade’, blue for ’Wire’, grey for ’Ground’, green for
’Vegetation’, and yellow for ’Pole’. (b) Training result with accuracy 97.23%.
Most points can be classified correctly while some points are wrongly
classified such as those points in black circles. The reason for that is
these points has the similar local features and even cannot be classified
by human directly without the whole scene information.(c)Training result
based on the augmentation data using augmentation method 1 with only
89.24% accuracy;(d)Training result based on the augmentation data using
augmentation method 2 with 90.52% accuracy. This means that augment
the training data will not increase the classification accuracy.

TABLE 2. Classification tests based on 2 categories.

D. DATA AUGMENTATION
As different classes have different point numbers, is it nec-
essary to expand those classes with small point numbers
for training? As shown in Table 1, the numbers for Wire,
Pole and Ground in the training data are too much less
than the numbers of Vegetation and Facade. We can aug-
ment these three classes database on [36] using two methods:
(1) adding the Gaussian white noise with a mean of 0
and a variance of 0.02 to each point’s three-dimensional

TABLE 3. Classification tests based on 3 semantic categories.

TABLE 4. Classification tests based on 4 semantic categories.

FIGURE 7. The ground truth and the testing result from the testing data.
(a) Groundtruth labels for the subset of the testing data, and the color
meaning is as the same as in Figure 6(a). (b) The classification result
using our FDM and our trained CNN from Figure 6.

coordinates (x, y, z); (2) Only the z-axis coordinate of
each point is added with Gaussian white noise with a
mean of 0 and a variance of 0.02. Specifically, we aug-
ment Wire 6 times, Pole 14 times, and Ground 3 times,
making the number of Vegetation, Wire, Pole, Ground and
Facade be 14441,15426,15206,14139, and 14121 respec-
tively. However, both data augmentation methods impair the
classification accuracies as shown in Figure 6(c), Figure 6(d)
and Figure 4(f). The main reason is that these aug-
mented points can be seen as noise points and will disturb
the feature extraction, making the FDM unable to reflect the
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TABLE 5. The classification accuracy based on different classifiers(%). The bold numbers are the highest accuracies among all the methods.

local features. This means we should use the original data for
feature extraction but not augment the data just for balancing
the number of samples.

E. PERFORMANCE ANALYSIS
The main cost of our algorithm is on the feature extraction.
For a point cloud with N points, we use kd-tree to implement
the KNN algorithm, and the average computation complexity
is O(NlogN ). As we choose constant k-nearest neighbors to
construct FDM for training and testing, the time will also be
O(NlogN ) for testing after the neural network is obtained.
For the training point cloud with 36932 points, the feature
extraction will spend 19.95 seconds, and the whole training
process will spend a few minutes. For the testing stage,
the feature extraction will also spend a few seconds, and
then the prediction will be finished immediately based on our
CNN structure.

F. COMPARISON
Based on the optimal neighborhood, Weinmann et al. [12]
employ different classifiers for the point cloud classification
on the same data set, and we make a comparison between
our methods with them as shown in Table 5. In the table,
NN denotes Nearest Neighbor classifier [13], DT for decision
trees [14], NB for Naive Bayesian [15], LDA for Linear
Discriminant Analysis, QDA for Quadratic Discriminant
Analysis, SVM for Support Vector Machines [16], RF for
Random Forests [45], RFe for Random Fern (RFe)
classifier [17], AB for Adaptive Boosting [46], and MLP
for Multi-Layer Perceptron [18]. From Table 5, we can see
that our method have the best overall accuracy, and the
classification accuracies are also high compared to these
methods based on the optimal neighborhood. In the case of
point cloud data in a large scene with only three-dimensional
coordinate information, we construct the Feature Descrip-
tion Matrix(FDM) of each point by concatenate the Feature
Description Vectors(FDV) composed of the extracted fea-
tures of each point according to the nearest neighbor principle
as the input of the neural networks. The FDM is independent
with the order of points, so that the neural network can
learn the features further. It enhances the 3D point cloud
auto analysis and accuracy classification in the Large-scale
scene. Especially that our method tries to classify each point,
while Pointnet [36] or Pointnet++ [37] method mainly try to

classify a set of points. The point clouds from [36] are mainly
sampled from the surface of the model. These methods
mainly for 3D shape classification but not for the large scene
point cloud classification. Compared to [3], the classification
accuracy is improved from 97.05% to 97.23% for the training
data in Figure 6(a) and from 94.68% to 94.75% for the testing
data.

V. CONCLUSION AND FUTURE WORK
A classification algorithm for large-scale 3D point cloud
scene combined Feature Description Matrices(FDM) is
given. Our method integrates traditional feature extraction
process and the deep learning thereby obtains a higher classi-
fication accuracy. We employ our Feature Description Matrix
that is suitable for convolution neural networks and achieve
a higher classification accuracy. We also give guidelines for
the training stage.

In the future, more different deep learning models should
be tested in our algorithm, and the principle of the arrange-
ment for the FDV should be studied further, with the effec-
tiveness of mesh models should be tested. We should also
accelerate the feature extraction process in order to classify
the point cloud faster.
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