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ABSTRACT High-throughput genomic technologies are leading to a paradigm shift in research of
computational biology. Computational analysis with high-dimensional data and its interpretation are essen-
tial for the understanding of complex biological systems. Most biological data (e.g., gene expression
and DNA sequence data) are high-dimensional, but consist of much fewer samples than predictors. Such
high-dimension, low sample size (HDLSS) data often cause computational challenges in biological data
analysis. A number of least absolute shrinkage and selection operator (LASSO) methods have been widely
used for identifying biomarkers or prognostic factors in the field of bioinformatics. The LASSO solution
has been improved through the development of the LASSO derivatives, including elastic-net, adaptive
LASSO, relaxed LASSO, VISA, random LASSO, and recursive LASSO. However, there are several known
limitations of the existing LASSO solutions: multicollinearity (particularly with different signs), subset
size limitation, and the lack of the statistical test of significance. We propose a high-dimensional LASSO
(Hi-LASSO) that theoretically improves a LASSO model providing better performance of both prediction
and feature selection on extremely high-dimensional data. The Hi-LASSO alleviates bias introduced from
bootstrapping, refines importance scores, improves the performance taking advantage of global oracle
property, provides a statistical strategy to determine the number of bootstrapping, and allows tests of
significance for feature selection with appropriate distribution. The performance of Hi-LASSOwas assessed
by comparing the existing state-of-the-art LASSO methods in extensive simulation experiments with
multiple data settings. The Hi-LASSO was also applied for survival analysis with GBM gene expression
data.

INDEX TERMS Hi-LASSO, LASSO, random LASSO, high-dimensional data, variable selection.

I. INTRODUCTION
High-throughput genomic technologies are leading to a
paradigm shift in research of computational biology. Com-
plex and diverse collections of high-dimensional genomic
data sets have been generated in various large omics projects,
e.g., The Cancer Genome Atlas (TCGA) and the Cancer
Genome Project in Wellcome Trust Sanger Institute (WTSI).
Specifically, TCGA provides various types of genomic and
sequencing data of more than 33 cancers, including gene
expression, copy number variation, DNA variation, DNA
methylation, and microRNA. Most of such biological data
are high-dimensional. However, there are often less samples
available than predictors in the biological data. For instance,
gene expression data include more than ten thousands of gene
profiles from hundreds of patients. Although much research
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has been conducted with such high-dimensional biological
data, effective and computationally feasible analysis of such
data has still remained challenging.

Least Absolute Shrinkage and Selection Operator
(LASSO) [1] and its derivatives, such as elastic-net [2] and
adaptive LASSO [3], have been widely considered for the
high-dimensional data analysis. Given a data set that con-
sists of n observations {(xi, yi)|1 ≤ i ≤ n}, where xi =
(xi1, . . . , xip) is a p-dimensional vector of predictors and yi
is a response variable, a linear regression model is written as:

yi = βxi + εi, i = 1, . . . , n, (1)

where β = (β1, . . . , βp) is a p-dimensional vector of regres-
sion coefficients and εi is a random error term which is
assumed to be independently and identically normally dis-
tributed with mean of zero and variance of σ 2. It assumes
that the response is mean-corrected and the predictors are
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standardized, so the intercept term is not included in the
model. The notations in Table 1 are used throughout this
paper.

TABLE 1. Notations.

LASSO is a feature selection approach based on a linear
regression model with L1-norm regularization:

min
β

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

∣∣βj∣∣ , (2)

where λ is a non-negative hyper-parameter. Although LASSO
has been successfully used in high-dimensional data, LASSO
has the two limitations in practice [2]. Firstly, LASSO selects
features at most sample size n when sample size is less than
the feature size, which consequently some critical features
may be excluded in the model. Secondly, LASSO tends to
identify only one or a few features from variables highly
correlated with each other in the model. However, highly
correlated variables are commonly observed in biological
systems. Most biological components involve complex inter-
actions with others. For instance, genes in the same pathway
may be highly correlated.

To tackle the limitations of LASSO, several LASSO
derivatives, such as elastic-net [2], adaptive LASSO [3],
relaxed LASSO [4] and VISA [5], have been proposed.
Elastic-net is a penalized regression with the mixture of the
L1-norm and L2-norm penalties [2]:

min
β

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ1

p∑
j=1

∣∣βj∣∣+ λ2 p∑
j=1

βj
2, (3)

where λ1 and λ2 are non-negative hyper-parameters. Owing
to the nature of the L2-norm regularization, which is a ridge
regression penalty, the number of selected variables is no
longer limited by the sample size. However, the ridge penalty
forces the coefficient estimation of highly correlated vari-
ables with different signs to be close to each other.

Adaptive LASSO with weighted L1-norm penalization is
proposed [3]:

min
β

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

wj
∣∣βj∣∣ , (4)

where wj is the weight for the predictor j. Adaptive LASSO
enjoys the oracle properties by utilizing the adaptively

weighted L1 penalty. The weight computed by 1/|β̂|r , where
r is a positive number and β̂ can be estimated by ordinary
least squares (OLS) estimator, ridge regression estimator,
or univariate estimator. Adaptive LASSO shrinkage leads to a
near-minimax optimal estimator. However, adaptive LASSO
also suffers from the multicollinearity problem, when the
weights are estimated based on OLS estimators.

Relaxed LASSO performs model selection and coefficient
shrinkage with the two hyper-parameters of λ and φ [4]:

min
β

n∑
i=1

yi − p∑
j=1

xij
{
βj ×Mj

}2

+ φλ

p∑
j=1

∣∣βj∣∣ , (5)

where Mj indicates that the predictor j was estimated as
non-zero or zero by LASSO. The hyper-parameter λ con-
trols the number of predictors of non-zero coefficients in the
model, whereas the hyper-parameter φ determines a level
of shrinkage on the selected predictors. Relaxed LASSO
produces a sparse model avoiding overshrinkage on non-zero
coefficients and outperforms LASSO when the number of
predictors is large relative to the sample size.

Variable Inclusion and Shrinkage Algorithms (VISA)
improves overshrinkage problems of LASSO using a path
algorithm [5]. VISA adapts two tuning parameters for vari-
able selection and coefficient shrinkage as well as relaxed
LASSO. A parameter divides variables into two groups. The
first group has higher preference than the second for model
inclusion, but variables in the second group may still have a
chance to be selected if significant.

Recently, LASSO solutions based on bootstrapping, such
as random LASSO and recursive random LASSO, have
been proposed for extremely high-dimensional data analysis
where the number of predictors are much greater than the
number of samples [6], [7]. Random LASSO implements the
solution based on a bootstrapping regression modeling [6].
Random LASSO consists of two procedures: (a) approximat-
ing weights of variables by drawing bootstrap samples and
randomly selecting subset of variables and then (b) estimat-
ing the coefficients by weighted bootstrapping techniques.
Random LASSO deals with multicollinearity of different
signs and is able to select more variables than the sample
size. On the other hand, random LASSO has an extremely
high-computational cost due to the intensive bootstrapping
procedures and lack of solid statistics to determine the opti-
mal threshold for feature selection.

Recursive random LASSO is implemented based on recur-
sive bootstrapping, where it simultaneously generates the
importance scores and performs regression modeling [7].
It also proposed a parametric statistical test to statistically
select predictor variables in bootstrap regression modeling.
However, the first random bootstrapping tends to introduce
extreme bias for feature selection, which makes it often fail
to identify significant features. Moreover, the probability that
predictors are non-zero is underestimated in the significance
test, due to setting the unselected predictors to zero.
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In this paper, we develop a novel LASSO method, named
Hi-LASSO, to improve the LASSO solutions for extremely
high-dimensional data. The main contributions of Hi-LASSO
are as following:
• Rectifying systematic bias introduced by bootstrapping,
• Refining the computation for importance scores,
• Providing a statistical strategy to determine the number
of bootstrapping,

• Taking advantage of global oracle property, and
• Allowing tests of significance for feature selection with
appropriate distribution.

The manuscript is organized as follows. In Section II,
we propose our method Hi-LASSO comparing with random
LASSO. In Section III, we present the experimental results
with simulation data and compare the performance with state-
of-the-art LASSO methods. We demonstrate our biological
findings analyzed with gene expression data in Glioblastoma
Multiforme (GBM) by Hi-LASSO in Section IV.

II. METHODS
In this section, we first describe random LASSO that our
proposed method is based on in detail and then elucidate our
proposed method, High-dimensional LASSO (Hi-LASSO),
comparing with random LASSO.

A. RANDOM LASSO
The two-step bootstrap procedures of random LASSO are
described in Algorithm 1. The importance scores of predic-
tors are computed by bootstrapping in the Procedure I. Then,
Procedure II estimates coefficients of a linear model using
weighted bootstrapping with the importance scores, where
predictors having higher importance scores have higher
chances to be selected than lower ones. The final estimation
of the coefficients is computed by taking the averages of
multiple estimates from bootstrapping.

Although random LASSO advances the LASSO solution
for extremely high-dimensional data, there are still several
issues in question. Firstly, random LASSO sets the coeffi-
cients of unselected predictors to zero, while bootstrapping
at 1.c and 2.c in Algorithm 1. The unselected predictors can
be possibly estimated as non-zero coefficients if they are
selected in the bootstrapping. Therefore, it would introduce
systematic bias regardless its importance of the predictors.
Moreover, the lower bootstrapping number of q1 or q2 would
generate the more systematic bias. Note that q1 and q2
directly affect computational costs in random LASSO.

Secondly, random LASSO does not take advantage of
global oracle property. Although random LASSO uses boot-
strapping with weights being proportional to importance
scores of predictors in 2.b, the final coefficients are estimated
without the weights (i.e. oracle property). Random LASSO
may be able to adopt adaptive LASSO to fully get oracle
property. However, adaptive LASSO takes local weights of
each bootstrapping sample in random LASSO, where the
local oracle property may vary depending on what other
predictors are considered together in the model.

Algorithm 1 Random LASSO
Procedure I:Computing importance scores for predictors.

1.a: Draw B numbers of bootstrap samples of size n(1) by
sampling with replacement, i.e., n(1) ≤ n.
1.b: Randomly select q1 predictors on each bootstrap
sample.
1.c: Apply LASSO to estimate the optimal coefficients
{b̂(1)ij |i = 1, . . . ,B, j = 1, ..., p}, where the coefficients of
(p − q1) numbers of unselected predictors are considered
as zeros.
1.d: Compute the importance of the predictors by Ij =
|
∑B

i=1 b̂
(1)
ij |/B.

Procedure II: Selecting variables.
2.a: Draw another set of B bootstrap samples with size
n(2) ≤ n by sampling with replacement.
2.b: Randomly select q2 predictors with the probability
which is proportional to its importance scores Ij and
2.c: Apply LASSO (or Adaptive LASSO) to estimate the
optimal coefficients {b̂(2)ij |i = 1, . . . ,B, j = 1, ..., p},
where the coefficients of (p − q2) numbers of unselected
predictors are considered as zeros.
2.d: Finally, compute the estimate of the coefficients by
β̂j =

∑B
i=1 b̂

(2)
ij /B.

2.e: Select non-zero coefficient predictors such that
|β̂j| > t for some threshold t .

Finally, random LASSO does not provide a statisti-
cal approach to select statistically significant predictors.
Random LASSO considers a heuristic threshold without sta-
tistical test, although the results of the feature selection sub-
stantially depend on the threshold.

B. HIGH-DIMENSIONAL LASSO
We develop Hi-LASSO that tackles the aforementioned lim-
itations of random LASSO and improves the LASSO model.
We elucidate the contributions of Hi-LASSO comparing to
random LASSO in this section.

1) IMPORTANCE SCORES AND COEFFICIENT ESTIMATES
Hi-LASSO rectifies the systematic bias that random LASSO
presents, while refining the computation of the importance
scores. Random LASSO forces the coefficient estimates of
unselected predictors to zeros at 1.c in Algorithm 1, which
introduces systematic bias to compute the importance scores
at 1.d. To prevent the systematic bias, Hi-LASSO considers
the coefficient estimates of the unselected predictors as miss-
ing values on each bootstrap sample in the Procedure I.

Furthermore, Hi-LASSO amplifies importance scores of
significant variables by averaging absolute coefficients,
so that the variables can fully enjoy the global oracle property.
The coefficient estimation of a predictor varies depending on
what other predictors are considered together in the model,
because a regression coefficient describes the effect of a
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predictor with other predictors in the model. Thus, the coef-
ficient of a predictor may have a different value or opposite
sign with its estimate in different linear models with other
predictors. Specifically, multicollinearity with different signs
may often cause coefficient estimates of different signs over
bootstrap samples. For instance, suppose that a linear model
contains three variables x1, x2, and x3, and x1 and x2 are
highly correlated but with opposite signs. When q1 = 2,
suppose the first bootstrap sample includes the two variables
of x1 and x2, and the second bootstrap sample includes
x2 and x3. Then, regression models for the bootstrap samples
can be written as:

y = β0 + β1x1 + β2x2 + ε, (6)

y = β0 + β2x2 + β3x3 + ε. (7)

Although both bootstrap samples share the variable of x2,
the estimate of the coefficient of β2 would be different in the
two models. Strictly speaking, the above models should be
written as:

y = β0 + β1x1 + β2x2 + ε, (8)

y = β0 + β ′2x2 + β
′

3x3 + ε, (9)

where β2 6= β ′2 or sign(β2) 6= sign(β ′2). Moreover, elastic-net
estimates the highly correlated variables with the same sign,
and LASSO picks only one dominant variable while making
the another one zero. Therefore, taking the absolute value of
the sum of the coefficient estimates of bootstrap samples may
reduce the importance score.

Hence, Hi-LASSO computes the importance score by tak-
ing the sum of absolute coefficient estimates of bootstrap
samples. Suppose that κ (`)j denote a set of indices of bootstrap
samples that include the j-th predictor in the `-th procedure
(` = 1 or 2), and |κ (`)j | be the size of κ

(`)
j . Then, the impor-

tance score of a variable in Hi-LASSO is computed by the
average of absolute coefficients avoiding systematic bias:

Ij =
∑
i∈κ (1)j

∣∣∣b̂(1)ij ∣∣∣ / ∣∣∣κ (1)j

∣∣∣ . (10)

Then, the final estimate of coefficients is finally computed by:

β̂j =
∑
i∈κ (2)j

b̂(2)ij /
∣∣∣κ (2)j

∣∣∣ . (11)

Note that the final estimate of the coefficient does not take
the absolute coefficient values of the bootstrapping.

2) GLOBAL ORACLE PROPERTY
Hi-LASSO adopts adaptive LASSO in Procedure II to take
advantage of global oracle property obtained from the impor-
tance score in Procedure I. Adaptive LASSO [3] optimizes
with the weights of the coefficients as:

min
β1,...,βp

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

wj
∣∣βj∣∣ , (12)

where wj = 1/
∣∣∣β̂(OLS)j

∣∣∣γ and β̂(OLS)j is the ordinary least
squares estimate of the j-th predictor. Adaptive LASSO tends
to exclude insignificant predictors of low weights from the
model.

Random LASSO selects q2 predictors with weights of Ij at
2.b in Algorithm 1, so the predictors of the higher importance
scores would have a higher chance to be selected in the
bootstrap samples. Hi-LASSO also randomly selects q2 pre-
dictors with selection probabilities proportional to the impor-
tance scores, but Hi-LASSO takes the importance scores into
consideration for the final coefficient estimates. The impor-
tance scores, which measure the global importances of the
variables, provide global oracle property to adaptive LASSO
in Procedure II. In Hi-LASSO, the weights of the adaptive
LASSO are introduced as wj = 1/Ij.

3) THE NUMBER OF BOOTSTRAP SAMPLE (B)
The determination of the number of bootstrap samples (B)
is crucial to ensure the performance, specifically for
high-dimensional data. However, there has been no statistical
guideline suggested yet. For instance, some predictors may
never be considered due to the nature of random sampling,
no matter how important they are in the model. Therefore,
B should be large enough so that all predictors are considered
at least sufficient times (L).

The probability that a predictor is included in the bootstrap
sample of q predictors is:(p−1

q−1

)(p
q

) = q
p
. (13)

Then, the expected value how many times a variable is
selected with B is:

E
[ ∣∣∣κ (`)j

∣∣∣] = B×
q
p
, for all j. (14)

In order to make a predictor selected at least L times on
average (E

[ ∣∣∣κ (`)j

∣∣∣] ≥ L), B ≥ Lp
q .

Moreover,
∣∣∣κ (`)j

∣∣∣ /B can be considered as an estimate of
q/p from Eq. (14). Then, it is equivalent to decide sampling
size of population proportion. Hence, we can obtain B with
a confidence level (1− α) given an estimate error d so that∣∣∣∣∣
∣∣∣κ (`)j

∣∣∣
B −

q
p

∣∣∣∣∣ ≤ d as:

B ≥
z2α/2

q
p

(
1− q

p

)
d2

, (15)

where zα/2 is the (1− α/2) 100% percentile of the standard
normal distribution.

4) TESTS OF STATISTICAL SIGNIFICANCE
FOR FEATURE SELECTION
Tests of significance are essential for identifying statistically
significant factors. However, conventional statistics typically
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does not provide a solution for high-dimensional data, specif-
ically when the number of samples is much less than the
number of predictors.

Recursive random LASSO has suggested a parametric sta-
tistical test for gene selection based on the results of bootstrap
regressions [7]. Let D = {dij|1 ≤ i ≤ B, 1 ≤ j ≤ p} be a
B × p binary matrix obtained from bootstrap samples, each
of which is one if coefficient estimate is non-zero and zero
otherwise:

dij =

{
1, b̂ij 6= 0
0, otherwise.

(16)

Recursive random LASSO assumes that dij is a random vari-
able that follows Bernoulli distribution, B(1, π ), where π is
a probability that b̂ij is nonzero. The probability π can be
estimated as follow:

π̂ =
1

p× B

p∑
j=1

B∑
i=1

dij, (17)

which indicates an average of the selection ratio of all pre-
dictor variables in B bootstrap samples. Then, the sum of
dij for the j-th variable, i.e.,

∑B
i=1 dij, may follow binomial

distribution B(B, π̂ ). Finally, p-value can be obtained from
the binomial distribution.

However, binomial distribution assumes that all indepen-
dent trials have an identical probability π . In recursive ran-
dom LASSO, π is a selection probability of the predictor,
which does not follow the assumption. The initial selection
in recursive random LASSO determines the selection proba-
bility in the remaining bootstrap procedures, so the selection
probabilities of initially selected predictors are extremely
higher than others. On the other hand, predictors, which
are not initially selected, may be seldom chosen in the
remaining bootstrapping. Hi-LASSO relieves the problems
when performing the test of statistical significance, although
Hi-LASSO also does not have same selection probabilities
on all predictors due to weighted bootstrapping in Proce-
dure II. The detail procedures of Hi-LASSO is described in
Algorithm 2.

III. SIMULATION STUDIES
We conducted extensive simulation experiments to assess
Hi-LASSO and to compare the performance with several
state-of-the-art LASSO methods. In the simulation studies,
we focused on the two characteristics for the setting of data;
(a) the number of features is much larger than the number of
samples, and (b) features are highly correlated but with identi-
cal or opposite signs.We carried out experiments with various
simulation data with respect to the measurements: Relative
Model Error (RME), Root Mean Square Error (RMSE), and
F1 score. We repeated each simulation experiment ten times
for reproducibility.

We considered the simulation data with four hypothesis
models. The simulated datasets were basically generated

Algorithm 2 Hi-LASSO
Procedure I:Computing importance scores for predictors.

1.a: Draw B bootstrap samples with size n by sampling
with replacement, where B ≥

(
z2α/2

q1
p

(
1− q1

p

))
/d2.

1.b: Randomly select q1 predictors (q1 ≤ n) on each
bootstrap sample.
1.c: Estimate {b̂1ij|i = 1, . . . ,B, j = 1, ..., p}, where
the coefficients of the unselected predictors (p − q1) are
considered as missing.
1.d: Compute the importance scores by Ij =∑

i∈κ1j

∣∣∣b̂1ij∣∣∣ / ∣∣∣κ1j ∣∣∣.
Procedure II: Selecting variables.
2.a: Draw another set of B bootstrap samples with size n
by sampling with replacement.
2.b: Randomly select q2 predictors with a probability pro-
portional to its importance scores Ij on each bootstrap
sample.
2.c: Apply Adaptive LASSO with wj = I−1j to estimate
{b̂2ij|i = 1, . . . ,B, j = 1, ..., p}, where the coefficients
of the unselected predictors (p − q2) are considered as
missing.
2.d: Finally, compute the estimate of the coefficients by
β̂j =

∑
i∈κ2j

b̂2ij/
∣∣∣κ2j ∣∣∣.

2.e: Select significant predictors with the significance level
α (e.g., 0.05 or 0.01).

from the following linear regression model,

y = β1x1 + β2x2 + · · · + βpxp + ε, (18)

where ε ∼ N (0, σ 2) and xi ∼ N (0, 1). Coefficient parame-
ters of ground truth are given in the simulation data, which
makes it possible to evaluate the performance. For the multi-
collinearity, we set a covariance matrix (6) on each simula-
tion data, so the data sets contain a number of variables that
are highly correlated with both identical and opposite sign.

Dataset I consists of 100 variables, where the first ten
coefficients are non-zeros and the remaining coefficients are
all zeros. The regression coefficients of ground truth were
defined as:

β = (3, 3,−3, 2, 2,−2, 1.5, 1.5, 1.5,−1.5, 0, · · · , 0). (19)

The pairwise correlations between the first three variables
were set to be 0.9, and the same correlation structure was
repeatedly set for the next three and four variables. The
remaining 90 variables were designed independent from each
other. Then, the independent variables (x1, . . . , xp) were gen-
erated from the multivariate normal distribution with zero
mean and the covariance matrix of:

63
0.9 0 0 0
0 63

0.9 0 0
0 0 64

0.9 0
0 0 0 I90

 , (20)
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TABLE 2. Description of the simulation data.

where 6k
v is a k × k matrix with unit diagonal elements and

off-diagonal elements of value v, and Ik is an identity matrix
of size k . The dependent variable (y) was generated by the
linear combination of the independent variables (x1, . . . , xp)
and the coefficients of ground truth (β) and noise (ε). The
Signal-to-Noise Ratios (SNR) of Dataset I was 2.9, where
SNR is defined as Var(X ′β)/Var(ε).
Dataset II includes 1,000 variables, where the first 50 coef-

ficients of non-zero were drawn from N (0, 4), and the
remaining 950 coefficients were set to zeros. Then, the inde-
pendent variables were generated from a multivariate normal
distribution with zero mean and the covariance matrix of:

615
0.9 0 0 0
0 615

0.9 J0.3 0
0 JT0.3 620

0.9 0
0 0 0 I950

, (21)

where Jv is a matrix with all unit elements of a value v. The
corresponding SNR was 4.2.

Dataset III is comprised of 10,000 variables, where the first
50 non-zero coefficients were drawn from N (0, 4) and the
remaining 9,950 coefficients were sets to zeros. The setting
of Dataset III is identical to Dataset II, but considers much
more variables. The corresponding SNR was 14.4. Dataset
IV considered double samples in the same model of Dataset
III. The corresponding SNR was 9.5.

We compared the performance of Hi-LASSO to state-of-
the-art LASSOmethods by repeating ten times.We generated
n samples and split the data into training, validation, and test
data, where the sizes of the validation (nval) and test (nte)
data were 20% of the training data (ntr ), respectively. All
datasets were normalized and the dependent variables were
centered. The validation data were used to find the optimal
hyper-parameters. The four simulation data sets are briefly
summarized in Table 2.

We considered the benchmark LASSO methods including
LASSO, adaptive LASSO (Adaptive), elastic-net (Elastic),
relaxed LASSO (Relaxed), random LASSO (RandomEE and
RandomEA), and recursive random LASSO (Recursive). The
two letters of the subscript on random LASSO (Random)
indicate regression methods used to estimate coefficients
with bootstrap samples in Procedure I and II respectively,
where we consider elastic-net (E) and adaptive LASSO (A).
For instance, RandomEA denotes random LASSO that uses
elastic-net (E) in Procedure I and adaptive LASSO (A) in
Procedure II. Hi-LASSO considers elastic-net (E) in Pro-
cedure I and adaptive LASSO (A) in Procedure II. Note
that Hi-LASSO uses only adaptive LASSO in the second

procedure to take advantage of the global oracle property. For
adaptive LASSO in RandomEA, we computed the weights by
ridge regression with bootstrap samples, whereas Hi-LASSO
introduced the inverse of the importance scores as weights on
adaptive LASSO.

The optimal hyper-parameter of L1/L2-norm regularization
(λ) was obtained to minimize the prediction error with the
validation data. The number of bootstrapping (B) was set so
that each variable is selected at least twenty times on average
by Eq. (15) where α = 0.05, zα/2 = 1.96 for randomLASSO,
recursive random LASSO, and Hi-LASSO. The statistical
test for significance of feature was not considered in the
simulation studies.

Importance scores on random LASSO, recursive random
LASSO, and Hi-LASSO can be zero for some variables. The
coefficients of zero force the variables not to be selected
in Procedure II in random LASSO and the next iteration in
recursive LASSO. Also, it causes the issue of division by
zero when applying adaptive LASSO in the methods. We
replaced the importance scores of zero by 10−10 to prevent
the problem.

To evaluate the performance, we measured RME, RMSE
and F1 score. RME shows the error between coefficients of
ground truth and estimates of predictors, defined as (β̂ −
β)>6(β̂−β)/σ 2, where β̂ is an estimated coefficient vector,
β is a vector of coefficients of ground truth, 6 is the covari-
ance matrix of the predictors, and σ is the standard deviation
of the error terms in the linear regressionmodel.Wemeasured
RMEAll and RMENonzeros; RMEAll was computed with all
predictors, whereas RMENonzeros was with only variables of
non-zero coefficient in ground truth. LASSO methods with-
out bootstrapping produce the number of non-zero coeffi-
cients less than the sample size, so most coefficient estimates
are zeros in high-dimensional data. RMENonzeros can evaluate
their performance with only the variables of non-zero coef-
ficient in ground truth rather than the overall performance
including all variables in RMEAll . Note that Dataset I contains
the first ten variables of non-zero coefficient and Dataset
II-IV consists of the first fifty variables of non-zero. RMSE
presents prediction errors between the given observation (y)
and the prediction from the linear model. Finally, F1 score
evaluates the performance of variable selection. Confusion
matrices were computed with estimates of coefficients and
their ground truth. The confusion matrix is defined as:

• True Positive (TP): correctly identified non-zero coeffi-
cients as non-zero,

• False Positive (FP): incorrectly identified zero coeffi-
cients as non-zero,
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TABLE 3. Experimental results with simulation data.

TABLE 4. Statistical assessment by Wilcoxon signed-rank test.

• False Negative (FN): incorrectly identified non-zero
coefficients as zero, and

• True Negative (TN): correctly identified zero coeffi-
cients as zero.

Then, F1 score was calculated by 2(PPV × TPR ) / (PPV +
TPR), where TPR = TP/(TP + FN) and PPV = TP/
(TP+ FP).

The experimental results are shown in Table 3. The aver-
age of the experiments are shown, where bold-face indi-
cates the best performance and parenthesis indicates the

standard error. Overall, Hi-LASSO outperformed others
on most of the datasets. Hi-LASSO produced the lowest
RMEAll of 1.4648±0.4716, RMENonzeros of 1.3381±0.4746,
and RMSE of 4.6026±0.9927 and the highest F1 score
of 0.4576±0.1653 on average in all of the experiments.

The outstanding performance of Hi-LASSO was also
statistically assessed by Wilcoxon signed-rank test which
is a non-parametric paired two sided test. Table 4
shows the p-values of Wilcoxon signed-rank test between
Hi-LASSO and other benchmark methods, where the
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TABLE 5. Estimates of coefficient and coefficient sign in Dataset I.

TABLE 6. Estimates of coefficient and coefficient sign in Dataset II.

statistical significances with a significance level of 0.05
(p-value < 0.05) were proved for most of the tasks.
Hi-LASSO showed statistically significant outperformance

against other benchmark methods on most of the experi-
ments. Although Hi-LASSO was not statistically significant
against relaxed LASSO on RMEAll (p-value = 0.627),
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TABLE 7. Estimates of coefficient and coefficient sign in Dataset III.

RMENonzeros (p-value = 0.0703), and RMSE (p-value =
0.485), Hi-LASSO was statistically significant on F1 score
(p-value = 4.73e-7). In particular, the significance of
Hi-LASSO on RMENonzeros was assessed with a signifi-
cance level of 0.1 (p-value < 0.1). This is because relaxed
LASSO produces less non-zero coefficients than Hi-LASSO
in high-dimensional data.

Furthermore, we examined coefficient estimates and
signs in RandomEE , RandomEA, and Hi-LASSO in detail.
Table 5 – 8 summarizes the estimates of the non-zero

coefficients with Datasets I – IV, respectively. The coeffi-
cients of the first ten variables are non-zeros in ground truth in
Dataset I, and the other datasets contain non-zero coefficients
in the first fifty variables. ‘+’ and ‘−’ in the tables show
how many numbers of positive or negative coefficients were
estimated in the experiments repeated ten times, and the best
coefficient estimates are indicated as a bold-face in the tables.
Dataset I includes three groups of highly correlated variables
(β1 − β3, β4 − β6, and β7 − β10) with different signs. The
ground truth of β3, β6, and β10 are negative, whereas others
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TABLE 8. Estimates of coefficient and coefficient sign in Dataset IV.

are all positive. Similarly, Datasets II – IV consist of three
groups of highly correlated variables (β1 − β15, β16 − β30,
and β31 − β50) with different signs.

RandomEE estimated highly correlated variables with the
same sign simultaneously, although some variables of them
are with opposite signs. For instance, all estimates are all
positive in Table 5, whereas the ground truths of β3, β6,
and β10 are negatives. The coefficient estimates with the
same sign are also shown with other datasets, which is
a well-known limitation of elastic-net. On the other hand,
RandomEA tended to make non-dominant variables with

opposite sign in multicollinearity to shrink toward zero. For
instance, β1 and β2 may dominate the effects with a positive
sign while being also highly correlated to β3, but the ground
truth of β3 is negative in Table 5. Such variables (e.g., β3, β6,
and β10) are easily shrunk toward zeros in adaptive LASSO in
RandomEA, because the coefficient estimates of the variables
are relatively smaller than others in bootstrap samples and
used as weights in adaptive LASSO. Most coefficient esti-
mates of Hi-LASSO appeared to be the closest to the ground
truths among the benchmark methods, which corroborates
the least RME score with Hi-LASSO. Moreover, Hi-LASSO
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accurately estimated the coefficients of different signs in
highly correlated variables, e.g., β3 and β10 in Table 5. The
global oracle property of Hi-LASSOmay relieve the problem
with adaptive LASSO.

IV. GLIOBLASTOMA GENE EXPRESSION DATA ANALYSIS
Furthermore, we conducted experiments with gene expres-
sion data in Glioblastoma Multiforme (GBM) for assessing
Hi-LASSO with real-world biological data. GBM is the most
common primary malignant brain tumor in adults and one of
the most lethal of all cancers [8]. We used the gene expres-
sion data of GBM patients at The Cancer Genome Atlas
(http://cancergenome.nih.gov). The gene expression data in
GBMconsist of 447 patients and 12,042 genes excluding cen-
sored patients. The average survival time was 16.8 months.

Hi-LASSO was applied to the GBM data, where q1 and q2
were set to 447 (sample size of GBM) and B was set to
1,400 so that each gene is selected at least fifty on average in
the bootstrap samples. We considered the logarithm of time
to death as a response variable and standardized all of the
variables. For the feature selection, we used a significance
level of α = 0.05 for testing of statistical significance on
Hi-LASSO.

Hi-LASSO identified 139 genes of significance out
of 12,042 genes, and we examined the genes in the
biological literature. According to the biological literature,
a number of genes are shown as significantly associated
to survivals in GBM. Table 9 shows twenty top-ranked
genes in descending order of absolute value of estimated
coefficients. A Single Nucleotide Polymorphism (SNP)
in the gene ZNF208 (rs8105767) was reported associ-
ated with the overall survival rates of low-grade glioma
patients in Kaplan-Meier analysis [9]. PARD6B was identi-
fied as a significant gene by the methylated DNA immuno-
precipitation microarray chip (MeDIP-Chip) analysis in

TABLE 9. Top-20 ranked genes by Hi-LASSO in GBM.

human gliomas [10]. DEC1 appeared as a prognostic factor of
glioma and response especially to temozolomide chemother-
apy in high-grade glioma patients [11]. Overexpressing
VEGFA and PDE4A was suggested to warrant treatment of
GBM [12]. The effect of phosphodiesterase (PDE) inhibitor
on glioblastoma cells was studied, and the transcripts of
PDE4A and PDE4B were detected in A172 and U87MG
human glioblastoma cells [13]. PDE4A was expressed in
medulloblastoma, glioblastoma, oligodendroglioma, ependy-
moma, and meningioma [14]. Moreover, when PDE4A1 was
overexpressed in Daoy medulloblastoma and U87 glioblas-
toma cells, in vivo doubling times were significantly shorter
for PDE4A1-overexpressing xenografts compared with con-
trols. In-vitro data showed that the purified rFGF23 can
induce the phosphorylation of mitogen-activated protein
kinases in the glioma U251 cell [15]. The results of
in-vivo animal experiments also showed that rFGF23 could
decrease the concentration in the plasma of normal rats
fed with a fixed formula diet [15]. MAGEC1 expression
was shown as up-regulated in the TMZ-resistant (TMZ-R)
U87 glioblastoma cell line [16]. Competitive BET bromod-
omain inhibitors (BBIs) targeting BET proteins (BRD2,
BRD3, BRD4, and BRDT) have showed promising preclini-
cal activities against brain cancers [18].

V. CONCLUSION
Weproposed a novel High-dimensional LASSO (Hi-LASSO)
for variable selection in a linear regression model with
extremely high-dimensional data. Hi-LASSO refines the ran-
dom LASSO solution not only to improve the performance
but also to provide a theoretically elaborate LASSO method.
We also suggested a statistical strategy to determine the
optimal number of bootstrapping and to perform tests of
significance for selecting statistically significant features.

Generating an enough number of bootstrap samples is
critical for Hi-LASSO to produce reliable results. In random
LASSO, predictors with higher importance scores are more
often selected in the second procedure, which causes the
variables to have a higher priority to estimate the coeffi-
cients. However, the biased selection distribution causes a
problem of applying for test of significance. On the other
hand, Hi-LASSO may require more bootstrapping numbers
B, specifically in the second procedure. This would add addi-
tional computational costs. The computations with bootstrap
samples are independent, so implementation of Hi-LASSO
using parallel computing systems would provide efficient
solutions for extremely high-dimensional data.

Hi-LASSO outperformed the state-of-the-art LASSO
methods, including adaptive, elastic, relaxed, random, and
recursive LASSO, with respect to relative model error, root
mean square error, and F1 score in the extensive experi-
ments with simulation data and Glioblastoma gene expres-
sion data. Through the experiments, Hi-LASSO showed that
Hi-LASSO not only estimates the true model accurately but
also performs feature selection effectively.
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