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ABSTRACT High accuracy vehicle localization information is critical for intelligent transportation systems
and future autonomous vehicles. It is challenging to achieve the required centimeter-level localization
accuracy, especially in urban or global navigation satellite system denied environments. Here we propose
a vehicle-to-infrastructure (V2I)-based vehicle localization algorithm. First, it is low-cost and hardware
requirements are simplified, the minimum requirement is a single roadside unit and single on-board
receiver. Second, it is computationally efficient, the available V2I information is formulated as an
over-determined system. Then, the vehicle position is estimated in a closed-form manner via the widely
used weighted linear least squares (WLLS) method and meter level accuracy is achievable. Furthermore,
the numerical performance of WLLS is consistent with the theoretical results in larger signal-to-noise ratio
region.

INDEX TERMS Vehicle localization, vehicle-to-everything (V2X), vehicle-to-infrastructure (V2I), roadside
unit (RSU), linear least squares.

I. INTRODUCTION
As sub-classes of Vehicular ad hoc networks (VANET),
intelligent transport systems and connected vehicles require
precise and real time vehicle positions, which creates the
requirements for efficient and accurate vehicle localiza-
tion [1]. Global navigation satellite system (GNSS) is one
of the most commonly used vehicle localization techniques.
However, it suffers from poor reliability, especially in urban
environments [2]. Although real-time kinematic method can
achieve centimeter level accuracy, the signal availability
remains a problem. On the other hand, signal availability
could be improved by combiningmultiple satellite navigation
systems to increase the number of available satellites [3].
Furthermore, GNSS is often integrated with inertial mea-
surement unit (IMU) to design a hybrid localization sys-
tem. This IMU information can be used for moving vehicle
self-localization. The vehicle position relative to its initial
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position can be estimated by dead reckoning. However, it suf-
fers from the accumulated errors as the vehicle moves [2].

For the future autonomous driving applications, both
integrity and localization accuracy must be improved [4].
As a key component for the future intelligent connected vehi-
cles, the vehicle-to-everything (V2X) services are standard-
ized by the 3rd generation partnership project (3GPP) [5].
The V2X information from connected vehicles and fixed
roadside infrastructures can be integrated to the existing
localization systems cooperatively to improve both accuracy
and robustness at a relatively low cost, sensing range limita-
tions associated with on-board sensors are also addressed [6].
We first review some of the widely used V2X localiza-
tion techniques: vehicle-to-vehicle (V2V), vehicle-to-feature
(V2F) and vehicle-to-infrastructure (V2I).

The V2V localization techniques integrate information
from adjacent connected vehicles with on-board sensing
capabilities. These vehicles can be considered as virtual
anchor nodes. However, these methods are GNSS dependent
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and inter-vehicle range/angle measurements are required as
well to apply the trilateration or triangulation techniques.
However, the inter-vehicle measurements are sensitive to the
shadowing effects either from other vehicles or from the body
of the car itself.

Recently, V2F based autonomous vehicle’s self-
localization become more popular due to the availability
of locally and globally dynamic high definition (HD) map
and development of light detection and ranging (LiDAR)
technologies [7]. The detected features are used as refer-
ence anchors for localization. While the main challenging
is processing and transmission the high data volume with
low latency [8], [9]. On the other hand, an offline map is
not required if the non-cooperative features can be detected
and jointly localized by the connected vehicles [10]. How-
ever, perfect association between vehicle measurements and
sensed features is required.

Besides HD maps, roadside infrastructures also provide
useful vehicle position information. Base station and roadside
unit (RSU) are widely used facilities for V2I communica-
tions. 5G technology presents a new paradigm to provide
connectivity and high data-rate services to vehicles. Using
the existing communication hardware, it also provides oppor-
tunities for accurate vehicle localization from a single 5G
base station [11]. To achieve this, large bandwidth combined
with large scale antennas are required at both the base station
and vehicle sides [12], [13]. RSU is another GNSS-free and
low-cost infrastructure for localization. Each vehicle esti-
mates its position by extracting the position related informa-
tion from the radio signals transmitted by the nearby RSUs
with known position [14].

RELATED WORK AND CONTRIBUTIONS
Here we focus on vehicle-to-RSU based localization. To
reduce deploying costs, RSUs are often sparsely dis-
tributed and limit the application of the trilateration and
triangulation-based techniques, which requires multiple
RSUs to obtain location estimates. Consequently, single RSU
based localization techniques have been developed recently
in the literature.

An inertial navigation system (INS)-assisted and sin-
gle RSU based vehicle localization framework is proposed
in [15]. While two types of RSU at the entry points and the
middle of the road are needed to determine the vehicle driving
direction. Recently, a single RSU based localization approach
using angle-of-arrival and range information between vehicle
and RSU is proposed in [16]. However, multiple calibrated
receivers either from the RSU or vehicle side are required
to obtain an accurate angle information. Other positioning
techniques are proposed in [17] and [18] by exploiting the
angle information between vehicle and RSU, in conjunction
with velocity vector and the broadcast RSU position. Again
multiple receivers are required to estimate the angle informa-
tion from the received radio signals.

The constraint of using single RSU and single on-board
receiver for vehicle localization poses a significant challenge

TABLE 1. Brief comparison of the existing RSU-based localization
algorithms.

and limits the applications of the existing RSU-based local-
ization techniques. In this paper, an IMU-assisted single RSU
and single on-board receiver-based localization algorithm is
proposed to eliminate this challenge.

Our contributions are summarized as follows:
• Low-Cost and Low Complexity:
Hardware requirements are simplified, the minimum
requirement is a single roadside unit (RSU) and single
on-board receiver.

• Computationally Efficient:
The available vehicle-to-RSU information is reformu-
lated as an over-determined system, which can be solved
in a closed-form manner by the widely used linear least
squares (LLS) or weighted LLS (WLLS) methods.

• Theoretical Analysis:
The theoretical analysis for WLLS are carried out, if the
error of extracted range information is Gaussian dis-
tributed with zero means. Furthermore, the theoretical
root means square position error (RMSE) performance
is provided.

The rest of the paper is organized as follows. In Section II,
the problem is formulated. In Section III, we derive the pro-
posed LLS and WLLS estimators-based vehicle localization
approaches. The RMSE of the proposed algorithm is analyzed
in Section IV. Simulation results are provided in Section V to
evaluate the localization accuracy of the proposed localiza-
tion algorithm. And conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
Localization in wireless sensor networks is the process of
finding a target node’s absolute position using single or mul-
tiple anchor nodes. The positions of the anchor nodes are
known [19]. As shown in Fig. 1, trilateration and triangula-
tion are the widely techniques for radio-based localization by
exploiting range and/or angle information between the anchor
and target nodes [19]. Received signal strength (RSS) time-
of-arrival (TOA), time difference-of-arrival (TDOA) and
angle-of-arrival (AOA) of the emitted signals are commonly
used measurements for radio-based location [20]. Basically,
TDOA requires multiple synchronized anchor nodes and
AOA requires multiple calibrated receivers on the target
nodes [20].

In this paper, we consider the vehicle localization problem
by exploiting V2I information. The vehicle trajectory can be
arbitrary and within the communication range of a RSU with
fixed position p = [x y]T for 2D scenarios. The position
information and ID of RSU are broadcast to the vehicle.
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FIGURE 1. An illustration of 2D localization (a) trilateration,
(b) triangulation, (c) range and angle (hybrid).

FIGURE 2. Single roadside unit and single receiver based GNSS-free
vehicle localization. Legend: Variables in BLUE and RED colors denote the
available noisy measurements and the unknown parameters to be
estimated, respectively.

We assume that the vehicle velocity remains constant during
very short time intervals. Let vk+1 = [vx,k+1 vy,k+1]T be the
vector velocity during t ∈ (tk , tk+1], which can be obtained
from on board sensors at time tk [21]. As shown in Fig. 2,
pk = [xk yk ]T denotes the vehicle position at time tk .
The processing of localization is triggered at time t0 and
p0 = [x0 y0]T .
Remark 1: Even though 2D localization problem is dis-

cussed in detail, extension to 3D scenarios are straightfor-
ward by setting RSU position p = [x y z]T , vehicle velocity
vector vk+1 = [vx,k+1 vy,k+1 vz,k+1]T , and the unknown
vehicle position pk = [xk yk zk ]T .

For the proposed two-step method, we first formulated the
available vehicle-to-RSU information as an over-determined
system. Then the vehicle position is estimated in a
closed-form manner via the widely used linear least squares
method.

III. PROPOSED LOCALIZATION ALGORITHM
Let dk be the range information between the vehicle
and RSU at time tk . After obtaining the vector velocity
vk = [vx,k vy,k ]T , unknown vehicle position pk can be

described as

pk = pk−1 + vkτk ⇒

{
xk = xk−1 + vx,jτk
yk = yk−1 + vy,jτk

, (1)

where the kth time interval τk = tk − tk−1.
It is straightforward to adopt the following kinematic

model from (1),{
xk = x0 +

∑k
j=1 vx,jτj = x0 +1xk

yk = y0 +
∑k

j=1 vy,jτj = y0 +1yk
, (2)

where k is the number of measurements can be used for
vehicle localization, the corresponding accumulated range
information is defined as,

1xk =
k∑
j=1

vx,jτj and 1yk =
k∑
j=1

vy,jτj. (3)

Remark 2: Assuming that from the trigger point, vehicle
velocity vectors vk and τk are known up to k. After obtaining
trigger position, vehicle positions {p1, p2, · · · , pk} can be
inferred from p0 via (2). The unknown parameters to be
estimated is p0 = [x0 y0]T .
The range dk between RSU and vehicle is

(xk − x)2 + (yk − y)2 = d2k . (4)

Substituting (2) into (4) yields

(x0 +1xk − x)2 + (y0 +1yk − y)2 = d2k . (5)

Let

R0 = x20 + y
2
0 and R = x2 + y2, (6)

we expand (5) to obtain

2
(
1xk − x

)
x0 + 2

(
1yk − y

)
y0 + R0

= d2k − (1xk − x)2 − (1yk − y)2. (7)

Equation (7) can be rewritten as

Aθ = b, (8)

where

A =



2(1x1 − x) 2(1y1 − y) 1
...

2(1xj − x) 2(1yj − y) 1
...

...
...

2(1xk − x) 2(1yk − y) 1

 =


a1
...

aj
...

ak

 (9)

θ =
[
x0 y0 R0

]T
=
[
x0 y0 x20 + y

2
0

]T (10)

b =



d21 + Q1−R
...

d2j + Qj − R
...

d2k + Qk − R

 =


b1
...

bj
...

bk

 (11)
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and for j = 1, 2, · · · , k ,

Qj = 1xj
(
2x −1xj

)
+1yj(2y−1yj). (12)

That is, A is known, θ contains the unknown parameters
and b is the observation vector.
Remark 3: Now we extend the localization algorithm to

3D scenarios. Let pk = [xk yk zk ]T be the 3D vehicle position.
The k-th row of amended measurement matrix A (9) and
parameter θ (10) are defined as

ak =
[
2(1xk − x) 2(1yk − y) 2(1zk − z) 1

]
(13)

and

θ =
[
x0 y0 z0 R0

]T (14)

where R0 = x20 + y
2
0 + z

2
0. Meanwhile, R and Qk in (11) are

substituted with

R = x2 + y2 + z2, (15)

and

Qk = 1xk
(
2x −1xk

)
+1yk (2y−1yk )+1zk (2z−1zk ).

(16)

A. LINEAR LEAST SQUARES (LLS)
In practice, dj is substituted by its biased estimate d̂j and is
described as

d̂j = dj + ej, j = 1, 2, · · · , k, (17)

where

ej ∼ N (µj, σ 2
j )+N (0, σ 2), (18)

is the error component. Here, µj and σ 2
j are the mean and

variance of range uncertainty, and σ 2 denotes the variance of
the white noise.

Substitute b in (8) with b̃, we have Aθ ≈ b̃. The LLS
estimate of θ is obtained by minimizing:

J (θ̃ ) =
(
Aθ̃ − b̃

)T (
Aθ̃ − b̃

)
, (19)

where θ̃ is the variable for θ . The closed form solution is
given by

θ̂ =
(
ATA

)−1
AT b̃. (20)

The estimated trigger point is

p̂0 =
[
x̂0 ŷ0

]T
=
[
θ̂1 θ̂2

]T
. (21)

and vehicle positions p̂j, {j = 1, 2, · · · , k} can be inferred
from (2).

The proposed LLS-based vehicle localization algorithm is
summarized in Algorithm 1.

Algorithm 1 LLS-Based Localization
Input: p, tj, dj and vj, for j = 1, 2, · · · , k .
Output: Estimates p̂0 and p̂j, for j = 1, 2, · · · , k .
1: for j = 1 to k do
2: Calculate 1xj and 1yj by (3)
3: end for
4: Construct A by (9)
5: for j = 1 to k do
6: Calculate Qj and R by (12) and (6), respectively.
7: end for
8: Construct b by (11)
9: Estimate θ using LLS (20).
10: Estimate p̂0 by (21) and p̂j, j = 1, 2, · · · , k , by (2).

B. WEIGHTED LLS
Employing the technique proposed in [22], the LLS algo-
rithm can be improved by including a second WLLS step by
exploiting the constraint (6). Assuming that θ̂1 and θ̂2 of (20)
is sufficiently close to x0 and y0, then we have{

θ̂21 − x
2
0 ≈2x0(θ̂1 − x0)

θ̂22 − y
2
0 ≈2y0(θ̂2 − y0)

(22)

Based on (6) and with the use of (22), we construct

η = Dz+ r, (23)

where

D =

1 0
0 1
1 1

 , (24)

z =
[
x20 y20

]T
, (25)

η =
[
θ̂21 θ̂22 θ̂3

]T
, (26)

r =
[
2 x0(θ̂1 − x0) 2 y0(θ̂2 − y0) θ̂3 − R0

]T
(27)

Note that z is the unknown parameter to be estimated and the
covariance of r is

Cr =

2x0 2y0
1

C
θ̂

2x0 2y0
1

 . (28)

where C
θ̂
is given in (42). In practice, since x0 and y0 in (28)

are unknown, they are substituted with θ̂1 and θ̂2, respectively.
The WLLS solution of z is

ẑ =
(
DTC−1r D

)−1
DTC−1r η. (29)

As there is no Since the sign information for x0 and y0 can-
not be recovered from z, the improved position estimate p̂0,
is determined as

p̂0 =
[
sgn(θ̂1)

√
ẑ1 sgn(θ̂2)

√
z2
]T
. (30)

where sgn represents the sign function. Again the vehicle
positions p̂j, {j = 1, 2, · · · , k} can be inferred from (2). The
proposed method is summarized in Algorithm 2.
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Algorithm 2 Weighted LLS-Based Localization
Input: p, tj, dj and vj, for j = 1, 2, · · · , k .
Output: Refined estimates p̂0 and p̂j, for j = 1, 2, · · · , k .
1: Obtain θ̂ from Algorithm 1.
2: Construct h = Gz+ r from (23)-(27).
3: Calculate covariance matrix Cr by (28).
4: Estimate z using WLLS (29).
5: Obtain the refined p̂0 by (30).
6: Estimate the refined p̂j for j = 1, 2, · · · , k , by (2).

IV. PERFORMANCE ANALYSIS
Compared with Qj in (11), the dominant errors are from the
estimated range d̂j. After ignoring the error in Qj, we have

b̃ = b+ w =
[
b̃1, · · · , b̃j, · · · , b̃k

]T
, (31)

where observation error

w = [e21 + 2e1d1, · · · , e2j + 2ejdj, · · · , e2k + 2ekdk ]T . (32)

Lemma 1: The mean of b̃ is

E[b̃] = b+



σ 2
1 + σ

2
+ µ2

1 + 2µ1 d1
...

σ 2
j + σ

2
+ µ2

j + 2µjdj
...

σ 2
k + σ

2
+ µ2

k + 2µkdk

 , (33)

where E[·] is the expectation operator. The covariance matrix
of b̃ is given by

Cb̃ =



c1
. . .

cj
. . .

ck

 , (34)

where

cj = 2
(
σ 4
j + σ

4
)
+ 4d2j

(
σ 2
j + σ

2
)
, j = 1, 2, · · · , k.(35)

Please refer to the proof provided in Appendix for more
details.

A. BIAS AND MEAN SQUARE ERROR ANALYSIS
The WLLS estimate of θ is given by

θ̂ = argmin
θ̃

J (θ̃ ), (36)

where

J (θ̃ ) =
(
Aθ̃ − b̃

)T
C−1
b̃

(
Aθ̃ − b̃

)
, (37)

and weighting matrix C−1
b̃

is given in (34). Equation (36)
implies that

∇
(
J (θ̂ )

)
=
∂J (θ̃ )

∂ θ̃

∣∣∣∣
θ̃=θ̂

= 0, (38)

where ∇
(
J (θ̂ )

)
denotes the gradient vector evaluated at the

estimated value. If the estimation error θ̂ − θ is suffi-
ciently small, take first-order Taylor series expansion of (38)
around θ , we have

∇
(
J (θ̂ )

)
≈ ∇

(
J (θ )

)
+H

(
J (θ )

)(
ˆθ − θ
)
, (39)

where ∇
(
J (θ )

)
and H

(
J (θ )

)
are the Hessian matrix and gra-

dient vector evaluated at θ , respectively. Bias is obtained by
taking the expected value on (39) [23],

bias(θ̂ ) ≈ −
[
E
{
H
(
J (θ )

)}]−1
E
{
∇
(
J (θ )

)}
. (40)

Similarly, the covariance matrix [22] is

C
θ̂
≈

[
E
{
H
(
J (θ )

)}]−1
E
{
∇
(
J (θ )∇T

(
J (θ )

)}[
E
{
H
(
J (θ )

)}]−1
.

(41)

Apply the bias (40) and MSE (41) formulas, we obtain:
E{θ} = θ̂ and

C
θ̂
=

(
ATC−1

b̃
A
)−1

. (42)

For [x0, y0]T the RMSE is given by

RMSE =
√
[C

θ̂
]1,1 + [C

θ̂
]2,2, (43)

where [ ]i,j denotes the (i, j) entry of a matrix.

B. CRAMÉR-RAO LOWER BOUND (CRLB)
The CRLB of p̂0 is analyzed as follows. Implicitly, p̂0 cor-
responds to minimizing (37) subject to (6). Employing (5)
and (34), we can write

p̂0 = argmin
p̃0

J (p̃0), (44)

where

J (p̃0) =
K∑
k=1

[(
x̃0 +1xk − x

)2
+
(
ỹ0 +1yk − y

)2
− d̂2k

]2
2σ 4

k + 4d2k σ
2
k

(45)

The Hessian matrix for J (p̃0) is expressed as

∂2 J (p̃0)

∂ p̃0∂ p̃
T
0

=

 ∂2 J (p̃0)
∂ x̃20

∂2 J (p̃0)
∂ x̃0∂T ỹ0

∂2 J (p̃0)
∂ ỹ0∂T x̃0

ãĂĂ ∂2 J (p̃0)
∂ ỹ20

=[Jxx Jxy
Jxy Jyy

]
. (46)

We start with

∂J (p̃0)
∂ x̃0

=

K∑
k=1

2
(
x̃0 +1xk − x

)2(x̃0 +1xk−x)
σ 4
k + 2d2k σ

2
k

+

K∑
k=1

2
(
ỹ0 +1yk − y

)2(x̃0 +1xk−x)
σ 4
k + 2d2k σ

2
k

−

K∑
k=1

2d̂2k (x̃0 +1xk−x)

σ 4
k + 2d2k σ

2
k

. (47)
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Using (47), we obtain

Jxx =
K∑
k=1

2
[
3(x̃0 +1xk−x)2 + (ỹ0 +1yk−y)2 − d̂2k

]
σ 4
k + 2d2k σ

2
k

,

(48)

Jyy =
K∑
k=1

2
[
3(ỹ0 +1yk−y)2 + (x̃0 +1xk−x)2 − d̂2k

]
σ 4
k + 2d2k σ

2
k

(49)

and

Jxy = Jyx =
K∑
k=1

4(x̃0 +1xk − x)(ỹ0 +1yk − y)

σ 4
k + 2d2k σ

2
k

. (50)

Evaluating these partial derivatives at p̃0 = p0 and employ-
ing E{d̂2k } = d2k yields

ηxx = E {Jxx} =
K∑
k=1

4(x0 +1xk − x)2

σ 4
k + 2d2k σ

2
k

, (51)

and

ηyy = E
{
Jyy
}
=

K∑
k=1

4(y0 +1yk − y)2

σ 4
k + 2d2k σ

2
k

. (52)

Similarly, we get

ηxy = ηyx = E
{
Jxy
}
= E

{
Jyx
}

=

K∑
k=1

4(x0 +1xk − x)(y0 +1yk − y)

σ 4
k + 2d2k σ

2
k

. (53)

Using (51), (52) and ((53)), we have

E

{
∂2 J (p̃0)

∂ p̃0∂ p̃
T
0

} ∣∣∣
p̃0=p0

=

[
ηxx ηxy

ηyxãĂĂ ηyy

]
. (54)

V. SIMULATION RESULTS
Simulations are implemented to evaluate the WLLS (30) and
LLS (21) vehicle localization algorithms, as a benchmark
theoretical RMSE (43) and CRLB (54) are also included.
The position of RSU is p = [200 0]T and po = [1 2]T .
Sampling frequencies fs = 10 Hz and observation period 30 s
are considered. The signal-to-noise ratio (SNR) in dB scale is
defined as

SNR = 10 log10
(
d2j /σ

2
)
, (55)

where σ 2 is the variance of the Gaussian noise. Two sce-
narios with accurate and inaccurate range information dj are
considered.
• Accurate range information, the error component in (17)
is described as ej ∼ N (0, σ 2).

• Inaccurate range information, the error component is
ej ∼ N (µj, σ 2

j )+N (0, σ 2).
All the results are obtained by averaging over 1000 inde-

pendent runs.

1) ACCURATE V2I RANGE INFORMATION
In the first test, constant velocity vector is considered and
vk = [vx,k vy,k ]T = [6 4]T . Fig. 3 shows the RMSE of
the LLS and WLLS methods versus SNR. The theoretical
variances of the position estimates of the proposed estima-
tor and CRLB are also included. WLLS-based localization
outperforms LLS-based in terms of RMSE and meter level
accuracy is achievable. Furthermore, the RMSEs of WLLS
agree with (42) and approach the CRLB when SNR is larger
than 20 dB. As shown in Fig. 4, localization accuracy is
further improved by increasing To and fs, while trade-offs
should be considered between computational complexity and
localization accuracy.

FIGURE 3. RMSE versus SNR, observation time To = 30 s and sampling
frequency fs = 10 Hz.

FIGURE 4. RMSE versus observation time To, SNR is 30 dB and different
sampling frequency fs.

2) INACCURATE V2I RANGE INFORMATION
In the second test, inaccurate V2I range information is con-
sidered and vk = [vx,k vy,k ]T = [6 8]T , observation time
To = 30 s and sampling frequency fs = 10Hz. As shown
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FIGURE 5. RMSE versus SNR for different µj and σj , To = 30 s and
fs = 10Hz.

in Fig. 5, accurate V2I range information is critical for the
proposed algorithm. Larger uncertainty level of the estimated
range information leads to larger RMSEs. Compared with
LLs, better performance is achieved for WLLS and with a
slightly higher computational complexity.

VI. CONCLUSION
We propose a low-cost, single on-board receiver and single
RSU-based vehicle localization algorithm. After formulating
the required V2I information into an over-determined sys-
tem, vehicle positions are estimated efficiently by LLS type
methods in a closed-form manner. WLLS-based localization
algorithm outperforms LLS-based in terms of RMSE and
meter level accuracy is achievable. Furthermore, RMSE per-
formance of WLLS is consistent with (42) and approach the
CRLB in larger SNR region. Validating the performance of
the proposed technique via experimental data is one of our
future works.

APPENDIX A
PROOF OF LEMMA 1

Proof: Let χ2
n denote the Chi-squared distribution with

n degrees of freedom. ej ∼ N (0, σ 2
j ), j = 1, 2, · · · , k , is a

normal random variable with zeromean and variance σ 2
j , then

e2j ∼ σ
2
j χ2

1.
Since themean and variance of χ2

1 are 1 and 2, respectively.
Then we have E[e2j ] = σ 2

j and Var[e2j ] = 2σ 4
j . The mean

of b̃j is

E[b̃j] = bj + σ 2
j . (56)

Equation (33) is obtained by reformulating (56) into matrix
form. Since all odd-order moments of zero-mean Gaussian
variables are zero, then E(ej) = E

(
e3j
)
= 0. The variance of

b̃j is defined as

Var[b̃j] = E
[(
b̃j − E[b̃j]

)2]
= E

[(
e2j + 2djej − σ 2

j

)2]
= E

(
e4j
)
+ 4djE(e3j )+ 2(2d2j − σ

2
j )E(e

2
j )

+4σ 2
j djE(ej)+ σ

4
j

= E
(
e4j
)
+ 2(2d2j − σ

2
j )E(e

2
j )+ σ

4
j . (57)

Substituting

E
(
e4j
)
= Var[e2j ]+

[
E
(
e2j
)]2
= 3σ 4

j , (58)

and E[e2j ] = σ
2
j into (57), we have

Var[b̃j] = 2σ 4
j + 4d2j σ

2
j . (59)

Now we compute the covariance of random variables b̃i
and b̃j,

Cov[b̃i, b̃j] = E
[(
b̃i − E[b̃i]

)(
b̃j − E[b̃j]

)]
= E

[(
r2i + 2diri − σ 2

i

) (
r2j + 2djrj − σ 2

j

)]
= E

[
r2i r

2
j

]
− σ 2

i E
[
r2j
]
− σ 2

j E
[
r2i
]
+ σ 2

i σ
2
j

+ 2djE
[
r2i rj

]
+ 2diE

[
rir2j

]
+ 4didjE

[
rirj
]

− 2diσ 2
j E [ri]− 2djσ 2

i E
[
rj
]

= E
[
r2i r

2
j

]
− σ 2

i σ
2
j . (60)

Based on the Isserlis’s theorem [24], we have

E
[
r2i r

2
j

]
= E[r2i ]E[r

2
j ]+ 2(E[rirj])2 = σ 2

i σ
2
j . (61)

Because ri and rj are zero mean and independent,
then E[rirj] = 0. Substituting (61) into (60) yields
Cov(b̃i, b̃j) = 0, for i 6= j. Diagonal covariance matrix Cb̃
in (34) is obtained. �
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