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ABSTRACT Diffusion least-mean-square (LMS) is an adaptive algorithm that estimates an unknown global
vector from its linear measurements obtained at all nodes in a distributed manner when each node in the
network needs to track the unknown vector in real-time. The algorithm uses the conventional average
consensus protocol in order to combine neighbors’ estimates at each node, while another protocol, consensus
propagation (CP), is known to achieve faster and exact average consensus when the network has a tree
structure. This paper proposes a novel diffusion LMS algorithm using CP, which can be applied for any
network by extracting a spanning tree from the original network and can achieve the same solution as the
centralized LMS in a fully distributed manner. This paper also proposes an algorithm by using the idea of
loopy CP, so that it can be directly applied even when the network is not a tree and shows that its special case
results in the diffusion LMS using a novel combination rule. Moreover, we optimize the constants involved
in the proposed combination rule in terms of the steady-state mean-square-deviation of the diffusion LMS
and show an adaptive implementation of the proposed algorithm. The simulation results demonstrate that the
proposed algorithm using CP is beneficial for large-scale networks, and the diffusion LMSwith the proposed
combination rule achieves better convergence performance than that with the conventional combination rules
when the measurement noise power depends on nodes.

INDEX TERMS Average consensus, consensus propagation, diffusion LMS, in-network signal processing.

I. INTRODUCTION
Large-scale communication networks composed of a number
of small nodes having abilities of wireless communication,
computation, and sensing, such as sensor networks and M2M
(machine-to-machine), are gathering much attention in var-
ious fields recently. There are two major approaches for
collecting and processing measurements in such networks,
namely, a centralized fusion-based solution and a distributed
in-network signal processing solution. In the centralized
approach, local measurements from all nodes are collected
at a special node called fusion node or fusion center, and
processed at the node in a centralized manner. This approach
usually achieves better performance because it can use all
measurements in the network at hand. It suffers however
from problems that the nodes around the fusion node tend
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to consume much energy for the relaying and also that the
network is vulnerable to the failure of the fusion node. In
order to collect and process measurements efficiently and
reliably, distributed in-network signal processing has been
proposed [1]. In this approach, each node updates the estimate
of an unknown parameter using not only its local measure-
ments but also its neighbors’ estimates instead of gathering
all measurements at a special node.

For the distributed in-network estimation problem, least-
mean-square (LMS) based strategies [2]–[5] are effective
when each node in the network needs to track an unknown
global vector in real-time. In these algorithms, each node iter-
atively updates its estimate by the LMS algorithm using local
measurements and by averaging the estimates of its neighbors
obtained via wireless communications, and finally all nodes
in the network achieve a common estimate. The incremental
LMS [2] is applicable for any connected networks but it suf-
fers from slow convergence because it assumes that each node
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communicates only with a specific node among its neighbors.
In order to achieve faster convergence, the Combine-then-
Adapt (CTA) diffusion LMS [3] is derived by modifying the
updating rules of [2] so that it allows each node to utilize
the estimates at all neighbors. Moreover, the distributed LMS
in [4] achieves faster convergence than the CTA diffusion
LMS [3] while it requires some special nodes having dif-
ferent capabilities from other nodes, and a special network
structure to use the node hierarchy. Furthermore, a modified
diffusion LMS named Adapt-then-Combine (ATC) diffusion
LMS, which is obtained by just exchanging the order of the
updating rules of CTA diffusion [3], has been proposed in [5].
The ATC diffusion LMS can outperform not only the original
version [3] but also the distributed LMS [4] in terms of con-
vergence rate.Moreover, the convergence performance of this
algorithm approximately agrees with the centralized solution
if noise statistics of all nodes are known and sufficiently small
step-size parameters are employed [6]–[8]. More recently,
some improvements have been proposed such as a doubly-
compressed diffusion LMS [9] for communication reduction
and an Adapt-Multi-Combine (AMC) diffusion LMS [10] for
better convergence performance at the cost of frequent com-
munications. The diffusion LMS for more specific settings
has been attracted recently in the context of the multitask
learning where each node in the network estimates its own
target vector and the neighbor nodes have related targets [11].

The diffusion LMS algorithms employ the conventional
average consensus protocol [12] to combine neighbors’ esti-
mates at each node, which requires a large number of iter-
ations especially in large-scale networks. It is also known
that, even in small-scale networks, the choice of combination
weights used in the averaging step has a great impact on
the convergence performance of the diffusion LMS. Thus,
several combination rules have been proposed in the litera-
ture, such as uniform rule [13], maximum degree rule [14],
Metropolis rule [15], and relative degree rule [5]. More
sophisticated static rules are considered in [5], [16]–[18],
which are derived by solving some optimization problems. In
particular, a closed-form solution that minimizes the steady-
state error has been derived in [16] and [17], which is referred
to as a relative-variance rule. Since the relative-variance rule
requires network statistics such as noise variance at all nodes,
which are not locally available at each node in general, adap-
tive estimation methods of the parameters have been also
proposed in [16] and [17].

In this paper, we propose a novel distributed LMS algo-
rithm [19] by applying consensus propagation (CP) [20],
which is an average consensus algorithm based on belief
propagation [21]–[24], in order to further improve the con-
vergence rate of the diffusion LMS in [5]. For networks with
the tree structure, CP is known to achieve exact average con-
sensus with the minimum number of iterations required for
message propagation through the network, i.e., the diameter
of the tree. Since networks for in-network signal processing
do not necessarily have the tree structure in general, the
proposed diffusion LMS algorithm is applied for the spanning

tree extracted from the original network using some spanning
tree protocols [25], [26]. This paper also proposes a novel
combination rule [27] of the diffusion LMS, which is directly
applicable to the original networks having cycles. The pro-
posed combination rule uses the idea of loopy CP, which has
been also proposed in [20] and can achieve average consensus
approximately on the network with some cycles. Loopy CP
involves some constants that control the convergence prop-
erty but they are known to be difficult to optimize in gen-
eral. We thus select the constants by minimizing steady-state
mean-squared-deviation (MSD) of the diffusion LMS as in
[16], [17]. We further extend the proposed combination rule
to an adaptive version, which can be implemented in a fully
distributedmanner. Simulation results show that the proposed
diffusion LMS using CP can achieve faster convergence than
the conventional ATC diffusion LMS for large-scale networks
and that the proposed combination rule inspired by loopy CP
achieves better convergence performance than the conven-
tional combination rules when the measurement noise power
depends on the nodes.

A. NOTATIONS
In the rest of the paper, we use the following notations. Let
C be the set of complex numbers. Superscripts (·)T and (·)H

denote the transpose and the Hermitian transpose, respec-
tively. IM is the identity matrix with sizeM ×M . 0M and 1M
represent the M × 1 vectors whose elements are all 0 and 1,
respectively. E[·] and Tr(·) stand for the expectation and the
trace operators. vec(·) and vec−1(·) denote the vectorization
and the inverse vectorization operators. ⊗, (·)p, and λmax(·)
denote Kronecker product, the p-th element of the vector,
and the maximum eigenvalue of the matrix, respectively.
diag{· · · }means the diagonal or block diagonal matrix, where
its diagonal elements or matrices are composed of the ele-
ments or matrices in the braces.

II. PRELIMINARIES
A. DIFFUSION LMS ALGORITHM
Consider a network withN nodes. Each node k in the network
can perform single-hop communications with its neighbors
and obtains linearmeasurements of an unknown deterministic
vector of interest wo

∈ CM×1 as [7], [8]:

d (i)k = u(i)Hk wo
+ v(i)k . (1)

Here, i (≥ 0) is a time index, d (i)k ∈ C is a scalar measurement
at node k at time i, u(i)k ∈ CM×1 is a random measurement
vector with a correlation matrix of Ruk = E[u(i)k u

(i)H
k ], and

v(i)k ∈ C is a zero-mean additive complex white Gaussian
noise with variance of σ 2

k . Fig. 1 shows an example of the
network with N = 10. The stochastic processes {d (i)k ,u

(i)
k }

are assumed to be jointly wide-sense stationary and zero-
mean. For simplicity, we assume that all communications
between neighbor nodes are perfect, i.e., we do not consider
any communication error, while the proposed methods in this
paper are applicable to the networks with noisy links [16].
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FIGURE 1. An example of a network with 10 nodes. The nodes that are
directly connected by edges can communicate and share information with
each other. Nk is the set of neighbors of node k (including node k itself).
Each node k obtains the measurement d (i )

k by using the measurement

vector u(i )
k at time i .

All nodes in the network estimate wo by solving the fol-
lowing optimization problem [7], [8]:

ŵo
= argmin

w

N∑
k=1

E[|d (i)k − u
(i)H
k w|2]. (2)

The diffusion LMS algorithm [3]–[5] is the iterative method
to solve this global problem in a distributed manner. Specif-
ically, the update rule of the diffusion LMS uses locally
available information at each node only, such as its own mea-
surements and its neighbors’ estimates, while the direct cal-
culation of (2) requires all nodes’ measurements at hand. The
ATC version of the diffusion LMS update can be described
as [5]

ψ
(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k ), (3)

φ
(i)
k =

∑
l∈Nk

alkψ
(i)
l , (4)

whereψ (i)
k is an immediate estimate obtained by LMS update

at node k and time i, φ(i)k is a subsequent estimate obtained by
the weighted average of its neighbors’ immediate estimates
with φ(−1)k = 0, µk is the step-size parameter, alk is a
nonnegative combination weight, which is the (l, k) element
of an N ×N matrix A that satisfies 1TA = 1T, andNk is the
set of neighbors of node k including k itself (see Fig. 1). Note
that an alternative algorithm obtained by replacing the order
of the updates (3) and (4) is referred to as the CTA version of
the diffusion LMS. In this paper, we focus on ATC because
it outperforms CTA under realistic conditions [6], though the
following discussion can hold in both versions. Note also that
ourmethods are applicable tomore general LMS update in [5]
that uses the measurements and the measurement vectors at
neighbors without loss of generality.

Equation (4) is related to the conventional consensus pro-
tocol using a weighted average of neighbors’ values in multi-
agent networked systems [12]. In the protocol, all nodes in the
network update their state values by exchanging the current
values with their neighbors and finally obtain the average of

all initial state values, which is called average consensus. An
iterative update equation of the conventional discrete time
consensus protocol is given by

x(i
′
+1)

k = x(i
′)

k + ε
∑

l∈Nk\k

a′lk (x
(i′)
l − x

(i′)
k ), (5)

where x(i
′)

k is a state value at node k and time i′, ε is a
positive small number, a′lk is the (l, k) element of theweighted
adjacency matrix of the network, and Nk \ k is the set Nk
but without node k . In order to relate the update equation (4)
with (5), we substitute φ(i)k to x(i

′
+1)

k and ψ (i)
k to x(i

′)
k . Then,

we have

φ
(i)
k = ψ

(i)
k + ε

∑
l∈Nk\k

a′lk (ψ
(i)
l − ψ

(i)
k )

= (1−
∑

l∈Nk\k

alk )ψ
(i)
k +

∑
l∈Nk\k

alkψ
(i)
l

=

∑
l∈Nk

alkψ
(i)
l ,

where we set alk = εa′lk . Therefore, the update rule of (4) can
be regarded as the conventional average consensus protocol.

Note that the choice of the combination rule has a great
impact on the convergence performance of the diffusion
LMS [18]. Possible choices of the combination weights alk
in (4) will be uniform rule [13], Metropolis rule [15]

amet
lk =


1

max{|Nk |, |Nl |}
if l ∈ Nk

0 otherwise,
(6)

relative degree rule [5], and so on.
The estimation error at node k and time i is given by

w̃(i)
k = wo

− φ
(i)
k , (7)

and the steady-state MSD at each node k and the steady-state
network MSD are expressed as

MSDk = lim
i→∞

E[‖w̃(i)
k ‖

2], (8)

MSDnw
=

1
N

N∑
k=1

MSDk , (9)

respectively.
AMC diffusion LMS algorithm [10] has been proposed

recently and is constructed based on the diffusion LMS. The
update rules are described as

ψ
(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k ), (10)

φ
(i)[1]
k =

∑
l∈Nk

a[1]lk ψ
(i)
l , (11)

φ
(i)[2]
k =

∑
l∈Nk

a[2]lk φ
(i)[1]
l , (12)

...

φ
(i)
k =

∑
l∈Nk

a[J
′]

lk φ
(i)[J ′−1]
l , (13)
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where J ′ denotes the number of iterations of the weighted
average, ψ (i)[·]

k is the immediate estimate, and a[·]lk is a com-
bination weight. The LMS update of AMC (10) is the same
as that of the diffusion LMS (3), but the AMC diffusion LMS
communicates J ′ times for (11)–(13) to collect immediate
estimates of the nodes within J ′-hop.

B. CONSENSUS PROPAGATION
CP [20] is the algorithm to achieve the average consensus in
the network with a tree structure by using the idea of message
passing algorithm [21]–[24]. Assume that each node k has an
initial state value xk ∈ C in a network composed of N nodes
with a tree structure, the goal of CP is that each node obtains
the average of the initial state values x̄ = 1

N

∑N
k=1 xk .

CP consists of two types of updates, namely, message
update between neighbor nodes and state update at each node,
to calculate the average using locally available information
only. The updates of CP at the j-th iteration are given as
follows:

K [j]
(k→l) = 1+

∑
u∈Nk\l,k

K [j−1]
(u→k), (14)

θ
[j]
(k→l) =

xk +
∑

u∈Nk\l,k K
[j−1]
(u→k)θ

[j−1]
(u→k)

1+
∑

u∈Nk\l,k K
[j−1]
(u→k)

, (15)

x[j]k =
xk +

∑
u∈Nk\k K

[j]
(u→k)θ

[j]
(u→k)

1+
∑

u∈Nk\k K
[j]
(u→k)

, (16)

where K [0]
(k→l) = 0, K [j]

(k→l) and θ [j](k→l) are the messages

sent from node k to l, and x[j]k is the state value at node k .
Figs. 2 and 3 show the updates at node k and its neighbors.
By iterating (14) and (15) between all neighbor nodes with
the same number as the diameter of the tree, x[j]k converges
to x̄ meaning that all nodes obtain x̄. Since the diameter is
the minimum number of iterations required for the message
propagation through the entire network, CP is the fast and
efficient algorithm to achieve average consensus.

FIGURE 2. Update of message from node k to node l in the j-th iteration.
The message is generated from the messages received in the (j − 1)-th
iteration from its neighbors except for node l , and its initial value xk .

Although the algorithm (14)–(16) usually diverges when
the network involves cycles, CP can achieve average

FIGURE 3. State update at node k in the j-th iteration. Node k calculates
the current value x [j ]

k using the messages received in the j-th iteration
from its all neighbors.

consensus approximately even in such networks, if the update
of the message K [j]

(u→k) is replaced with

K [j]
(u→k) =

1+
∑

m∈Nu\k,u K
[j−1]
(m→u)

1+ 1
βk
(1+

∑
m∈Nu\k,u K

[j−1]
(m→u))

, (17)

where βk is a positive constant. It is notable that βk in (17)
can be also set as βk,u so that it depends not only on k but
also on u. However, the convergence behavior has not been
fully understood yet because of the complicated message
propagation due to cycles. It is known that βk in (17) plays
an important role to ensure the convergence, but, to the best
of our knowledge, the optimal value of βk has not been
derived. We call the algorithm using (17), (15), and (16) for
the updates as loopy CP.

III. DIFFUSION LMS USING CONSENSUS PROPAGATION
A. PROPOSED ALGORITHM
In the first approach, we firstly extract a spanning tree from
the original network which possibly has some cycles using
some centralized or distributed spanning tree protocol such
as [25] and [26]. For example, we can use the algorithm
in [26] to find aminimumdiameter spanning tree of any graph
G = {V ,E} with O(|V |) time complexity and O(|V ||E|)
message complexity. We then apply CP in the averaging step
of the diffusion LMS on the extracted tree network. Every
time each node obtains a linear measurement, the estimate
ψ

(i)
k at node k is updated by LMS (3) as in the case with

the conventional method. The subsequent estimate φ(i)k is
obtained as the consensus value achieved by CP on each ele-
ment of the vectorψ (i)

k , i.e., the average of all nodes’ estimates
at time i. After each node performs the same number of CP
updates as the diameter J of the spanning tree, the average is
substituted to the new estimate φ(i)k , and then the algorithm
proceeds to the next step.

The proposed updating rules are summarized in
Algorithm 1. K (i)[j]

p,(k→l) and θ
(i)[j]
p,(k→l) are the p-th elements of

the messages transmitted from node k to node l at the j-th
iteration of CP at time i. x(i)[J ]p,k is the p-th element of the
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Algorithm 1 CP-LMS

1: Initialization: φ(−1)k = 0
2: for each time i ≥ 0, each node k , and each element p do
3: ψ

(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k )

4: Substitute x(i)[0]p,k = (ψ (i)
k )p,

5: θ
(i)[0]
p,(k→l) = 0, K (i)[0]

p,(k→l) = 0
6: for j = 1 to J do
7: K (i)[j]

p,(k→l) = 1+
∑

u∈Nk\l,k K
(i)[j−1]
p,(u→k)

8: θ
(i)[j]
p,(k→l) =

x(i)[0]p,k +
∑

u∈Nk \l,k
K (i)[j−1]
p,(u→k)θ

(i)[j−1]
p,(u→k)

1+
∑

u∈Nk \l,k
K (i)[j−1]
p,(u→k)

9: end for

10: x(i)[J ]p,k =
x(i)[0]p,k +

∑
u∈Nk \k

K (i)[J ]
p,(u→k)θ

(i)[J ]
p,(u→k)

1+
∑

u∈Nk \k
K (i)[J ]
p,(u→k)

11: Substitute (φ(i)k )p = x(i)[J ]p,k
12: end for

average of all nodes’ estimates at time i. We call this novel
diffusion LMS algorithm CP-LMS.

B. PERFORMANCE ANALYSIS
In this section, we analyze themean stability, themean-square
stability, and the transient behavior of the proposed CP-LMS.
In order to make the analysis tractable, we introduce the
following assumptions as in [5]:

• The noise process {v(i)k } is temporally white and spatially
independent.

• The measurement vector process {u(i)k } is temporally
white and spatially independent.

• v(i)k is independent of u(j)l for all l 6= k and j 6= i.
• The step-sizes {µk} are sufficiently small.
It should be noted here that the proposed CP-LMS realizes

the centralized fusion-based solution (block LMS [6], [28]) in
a fully distributed manner if we introduce further assumption:
• All nodes have the same step-size parameter, i.e.,
µk = µ for all k ,

because all nodes can collect all nodes’ estimates at each
iteration after J times updates of CP. To be more specific,
the CP-LMS update equations can be summarized asψ

(i)
k = φ

(i−1)
k + µu(i)k

(
d (i)k − u

(i)H
k φ

(i−1)
k

)
,

φ
(i)
k =

1
N

∑N
l=1 ψ

(i)
l .

Since φ(i)k does not depend on k , we replace φ(i)k with w(i),
then the whole update is given by

w(i)
=

1
N

N∑
k=1

[
w(i−1)

+ µu(i)k
(
d (i)k − u

(i)H
k w(i−1))]

= w(i−1)
+
µ

N

N∑
k=1

u(i)k
(
d (i)k − u

(i)H
k w(i−1)), (18)

which corresponds to the centralized block LMS algo-
rithm [6], [28]. This means that the conventional performance

analysis for the block LMS is directly applicable to the pro-
posed CP-LMS.

For example, the condition that the estimate error
w̃(i)
k = w̃(i) converges to 0M as i→∞ in the mean and mean-

square sense is given by [28]

0 < µ <
2

λmax(R)
, (19)

where R =
∑N

k=1 Ruk .
Moreover, the transient behavior of the CP-LMS can be

also represented by the same expression as the conventional
block LMS [28]. Now let ruk = vec(Ruk ) and

F = IM2 − µ
′(IM ⊗ R)− µ′(RT

⊗ IM )

+µ′2(RT
⊗ R)+ µ′2

N∑
k=1

ruk r
H
uk ,

whereµ′ = µ/N , then the theoretical networkMSD learning
curve of the CP-LMS algorithm is given by

η(i) = η(i−1) + µ′2
N∑
k=1

σ 2
k r

H
ukF

iq

−woT
[
vec−1

(
Fi
[
IM2 − F

]
q
)]
wo, (20)

where η(i) is the network MSD at time i and q = vec(IM ). It
is clear that MSDk = MSDnw holds in the case of CP-LMS
because all nodes obtain the same estimate w(i) at each step i.
Thus, the steady-state MSD is given by

MSDk = MSDnw
= µ′2

N∑
l=1

σ 2
l r

H
ul (IM2 − F)−1q. (21)

Note that it is one of the important merits of the
CP-LMS scheme that the transient behavior can be described
by the same expression as that of the centralized solution.
Unlike the conventional diffusion LMS, the calculation of
the theoretical transient behavior of the centralized solution
requires much smaller computational complexity than that of
the conventional diffusion LMS.

IV. DIFFUSION LMS BASED ON LOOPY
CONSENSUS PROPAGATION
The extraction of the spanning tree in the algorithm in
Sect. III-A can ensure the perfect consensus at each itera-
tion of LMS. However, the extraction may also deteriorate
the convergence performance because some communication
links available in the original network are ignored in the
extracted spanning tree. In this section, we consider to apply
loopy CP to the diffusion LMS without extracting any span-
ning tree. We firstly show the general algorithm, and then
consider a special case, where the number of iterations of
loopy CP updates is limited to one. The special case enables
us to select optimal constants βk in terms of the performance
of the diffusion LMS and to analyze the convergence perfor-
mance of the algorithm.
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Algorithm 2 LCP-LMS

1: Initialization: φ(−1)k = 0
2: for each time i ≥ 0, each node k , and each element p do
3: ψ

(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k )

4: Substitute x(i)[0]p,k = (ψ (i)
k )p,

5: θ
(i)[0]
p,(k→l) = 0, K (i)[0]

p,(k→l) = 0
6: for t = 1 to T do

7: K (i)[t]
p,(k→l) =

1+
∑

u∈Nk \l,k
K (i)[t−1]
p,(u→k)

1+ 1
βl
(1+

∑
u∈Nk \l,k

K (i)[t−1]
p,(u→k))

8: θ
(i)[t]
p,(k→l) =

x(i)[0]p,k +
∑

u∈Nk \l,k
K (i)[t−1]
p,(u→k)θ

(i)[t−1]
p,(u→k)

1+
∑

u∈Nk \l,k
K (i)[t−1]
p,(u→k)

9: end for

10: x(i)[T ]p,k =
x(i)[0]p,k +

∑
u∈Nk \k

K (i)[T ]
p,(u→k)θ

(i)[T ]
p,(u→k)

1+
∑

u∈Nk \k
K (i)[T ]
p,(u→k)

11: Substitute (φ(i)k )p = x(i)[T ]p,k
12: end for

A. PROPOSED ALGORITHM – GENERAL CASE
Here, we describe the modified CP-LMS that can be directly
applicable to networks with some cycles. Every time each
node obtains a linear measurement, the estimate ψ (i)

k at node
k is updated by LMS (3) as in the case with the conventional
method. Since it is difficult to know the required number of
updates of CP for the case of loopy CP, we set a fixed number
of updates. After each node performs CP updates T times,
x(i)[T ]p,k is assigned to the p-th element of the new estimate φ(i)k ,
and then the algorithm proceeds to the next step. Note that
x(i)[T ]p,k will not be exactly the same as the average of the p-th

elements of ψ (i)
k in general for any T .

The proposed updating rules are summarized in Algo-
rithm 2. We call this algorithm LCP-LMS.

B. PROPOSED ALGORITHM – SPECIAL CASE
LCP-LMS in Sect. IV-A has difficulties in analyzing the
performance and determining the constants βk because the
behavior of loopy CP has not been fully understood. How-
ever, we can analytically evaluate the convergence perfor-
mance and determine the constants if we consider a special
case of T = 1.

1) ALGORITHM
First, we describe the algorithm for the special case that
employs only the first update of loopy CP. As a result, this
method turns out to be the diffusion LMS using a novel
combination rule as shown in what follows.

By substituting (ψ (i)
k )p into x

(i)[0]
p,k in Algorithm 2, we have

K (i)[1]
p,(u→k) =

βk

1+ βk
, (22)

θ
(i)[1]
p,(u→k) = x(i)[0]p,u = (ψ (i)

u )p. (23)

We omit the subscript p in K (i)[1]
p,(u→k) as K (i)[1]

(u→k) because

K (i)[1]
p,(u→k) does not depend on p, and thus the element-wise

update rule in Algorithm 2 can be rewritten as a vector-wise

update as

K (i)[1]
(u→k) =

βk

1+ βk
, (24)

θ
(i)[1]
(u→k) = ψ

(i)
u . (25)

Moreover, deriving x(i)[1]k , namely, φ(i)k by using (24) and (25)
gives

φ
(i)
k =

1+ βk
1+ |Nk |βk

ψ
(i)
k +

βk

1+ |Nk |βk

∑
u∈Nk\k

ψ (i)
u . (26)

This can be regarded as a novel combination rule summarized
as

alk =


βk

1+ |Nk |βk
if l ∈ Nk and l 6= k

1+ βk
1+ |Nk |βk

if k = l

0 otherwise,

(27)

which satisfies 1TA = 1T.

2) OPTIMAL CONSTANT
As mentioned in Sect. II-B, how to select βk has been an
open issue [20]. In this section, we choose βk that minimizes
the steady-state network MSD of the diffusion LMS algo-
rithm (9).We introduce the following reasonable assumptions
in all subsequent discussions as in the case in Sect. III-B.

• The noise process {v(i)k } is temporally white and spatially
independent.

• The measurement vector process {u(i)k } is temporally
white and spatially independent.

• v(i)k is independent of u(j)l for all l 6= k and j 6= i.
• The step-sizes {µk} are sufficiently small.

It can be shown that the upper bound of the MSDnw is
proportional to [8], [16], [17]

N∑
k=1

N∑
l=1

γ 2
l a

2
lk , (28)

where γ 2
l = µ2

l σ
2
l Tr(Rul ). For the proposed combination

rule (27), the optimization problem to determine {βk} is
written as

{β
opt
k }

N
k=1 = argmin

{βk }
N
k=1

N∑
k=1

N∑
l=1

γ 2
l a

2
lk , s.t. (27). (29)

This optimization problem can be separated into independent
N subproblems as

β
opt
k = argmin

βk

f (βk ), (30)

where

f (βk ) = γ 2
k

(
1+ βk

1+ |Nk |βk

)2

+

∑
l∈Nk\k

γ 2
l

(
βk

1+ |Nk |βk

)2

,
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and βk is positive. The above function f (βk ) is differentiable
and we have

∂f
∂βk
=

2
(1+ |Nk |βk )4

{(∑
l∈Nk

γ 2
l − |Nk |γ

2
k

)
|Nk |β

2
k

+

(∑
l∈Nk

γ 2
l − |Nk |

2γ 2
k

)
βk +

(
1− |Nk |

)
γ 2
k

}
. (31)

In line with this equation, the shape of the cost function f (βk )
largely depends on Ak =

∑
l∈Nk

γ 2
l − |Nk |γ

2
k 6= 0 in the

first term of the right side of (31). When Ak > 0, the function
f (βk ) has a global minimum in βk > 0 and the optimal value
is obtained as

βmin
k =

(|Nk | − 1)γ 2
k

Ak
. (32)

On the other hand, it becomes monotonically decreasing
function of βk > 0 when Ak < 0. Thus, in summary, the
optimum βk is given by

β
opt
k =

{
βmin
k if Ak > 0
+∞ otherwise,

(33)

and the corresponding combination weights are given by

acplk =



β
opt
k

1+ |Nk |β
opt
k

if l ∈ Nk and l 6= k

1+ βoptk

1+ |Nk |β
opt
k

if k = l

0 otherwise.

(34)

We name this combination rule as CP rule.
In the existing works [8], [16], [17], the upper bound of the

MSDnw in (28) has been used to determine {alk} in (4) as

{aoptlk }
N
k=1 = argmin

{alk }Nk=1

N∑
l=1

γ 2
l a

2
lk ,

s.t.
N∑
l=1

alk = 1, alk = 0 if l /∈ Nk . (35)

The solution results in the relative-variance rule [17] given by

arvlk =


[γ 2
l ]
−1∑

m∈Nk
[γ 2
m]−1

if l ∈ Nk

0 otherwise.
(36)

3) ADAPTIVE COMBINER
The CP rule (34) and the conventional relative-variance
rule (36) require the knowledge of γ 2

l , which depends on
locally unavailable network statistics such as the correlation
matrices of the measurement vectors and the measurement
noise profile. Thus, in [8], [16], and [17], the estimation
method of γ 2

l at each node is proposed as

γ
2,(i)
lk = (1− νk )γ

2,(i−1)
lk + νk‖ψ

(i)
l − φ

(i−1)
k ‖

2, (37)

Algorithm 3 Diffusion LMS With Adaptive Relative-
Variance Rule [16]

1: Initialization: φ(−1)k = 0
2: for each time i ≥ 0, each node k , and each neighbor l do
3: ψ

(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k )

4: γ
2,(i)
lk = (1− νk )γ

2,(i−1)
lk + νk‖ψ

(i)
l − φ

(i−1)
k ‖

2

5: a(i)lk =
[γ 2,(i)lk ]−1∑

m∈Nk
[γ 2,(i)mk ]−1

6: φ
(i)
k =

∑
l∈Nk

a(i)lk ψ
(i)
l

7: end for

where νk is a forgetting factor (0 < νk < 1) and γ 2,(i)
lk is the

estimate of γ 2
l at node k and time i. By using this estimate,

the adaptive version of (36) is proposed in [16] as

arv(i)lk =


[γ 2,(i)
lk ]−1∑

m∈Nk
[γ 2,(i)
mk ]−1

if l ∈ Nk

0 otherwise.

(38)

In the same manner, the adaptive version of the CP rule is
given by

β
(i)
k =


(|Nk | − 1)γ 2,(i)

kk

A(i)k
if A(i)k > 0

+∞ otherwise,

(39)

acp(i)lk =



β
(i)
k

1+ |Nk |β
(i)
k

if l ∈ Nk and l 6= k

1+ β(i)k
1+ |Nk |β

(i)
k

if k = l

0 otherwise,

(40)

where A(i)k =
∑

l∈Nk
γ
2,(i)
lk − |Nk |γ

2,(i)
kk .

The algorithms of the diffusion LMS using the conven-
tional adaptive combination rule in (38) and this combina-
tion rule as in (40) are summarized in Algorithm 3 and
Algorithm 4, respectively. The computational complexity of
Algorithm 3 and Algorithm 4 are almost the same because the
complexity of the proposed rule (40) becomes comparable
to that of the conventional rule (38) by substituting (39)
into (40).

4) CONVERGENCE ANALYSIS
In this section, we analyze themean stability, themean-square
stability, and the transient behavior of the diffusion LMS
using the proposed CP rules. Note that the transient behavior
of the diffusion LMS using the adaptive combination rules
(not only CP rule but also relative-variance rule) remains an
open issue. So, the theoretical network MSD learning curve
below will not be valid for the adaptive CP rule, while other
theoretical results are applicable to the adaptive CP rule as
well because it is identical to the static one at the steady-
state. Note also that the conventional performance analy-
sis framework for the diffusion LMS is applicable for the
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Algorithm 4 Diffusion LMS With Proposed Adaptive CP
Rule

1: Initialization: φ(−1)k = 0
2: for each time i ≥ 0, each node k , and each neighbor l do
3: ψ

(i)
k = φ

(i−1)
k + µku

(i)
k (d (i)k − u

(i)H
k φ

(i−1)
k )

4: γ
2,(i)
lk = (1− νk )γ

2,(i−1)
lk + νk‖ψ

(i)
l − φ

(i−1)
k ‖

2

5: if
∑

l∈Nk
γ
2,(i)
lk − γ

2,(i)
kk |Nk | > 0 then

6: β
(i)
k =

(|Nk |−1)γ
2,(i)
kk∑

l∈Nk
γ
2,(i)
lk −γ

2,(i)
kk |Nk |

7: else
8: β

(i)
k = +∞ (large positive constant)

9: end if
10: a(i)lk =

β
(i)
k

1+|Nk |β
(i)
k

(l ∈ Nk \ k),
1+β(i)k

1+|Nk |β
(i)
k

(l = k)

11: φ
(i)
k =

∑
l∈Nk

a(i)lk ψ
(i)
l

12: end for

proposed diffusion LMS using CP rule because CP rule can
be regarded as one of the combination rules.

First, the condition that the estimate error w̃(i)
k converges to

0M as i → ∞ in the mean and mean-square sense is given
by [5], [7]

0 < µk <
2

λmax(Ruk )
. (41)

Moreover, the transient behavior of the diffusion LMS
using CP rule (34) can be represented by the same expression
as [5]. Now let

F′ = (I (MN )2 − IMN ⊗ (DM)− (DTM)⊗ IMN ) (A⊗A) ,

where A = A ⊗ IM , D = diag
{
Ru1 , . . . ,RuN

}
, and M =

diag {µ1IM , . . . , µN IM }, then the theoretical network MSD
learning curve of the diffusion LMS using CP rule is given by

η′(i) = η′(i−1) +
1
N
r′TF′iq′

−
1
N
wT
[
vec−1

(
F′i
[
I (MN )2 − F

′
]
q′
)]
w, (42)

where η′(i) is the network MSD at time i, r′ =

vec
(
ATMGTMA

)
, G = diag

{
σ 2
1Ru1 , . . . , σ

2
NRuN

}
, w =

1N ⊗wo, and q′ = vec(IMN ). The steady-state network MSD
and the steady-state MSD at each node k are given by

MSDnw
=

1
N
r′T(I (MN )2 − F

′)−1q′, (43)

MSDk = r′T(I (MN )2 − F
′)−1vec(Jk ), (44)

respectively, where Jk is N × N block diagonal matrix with
M ×M blocks having all zero block matrices except for the
identity matrix on the k-th diagonal block.

V. COMPUTATIONAL COMPLEXITY AND
COMMUNICATION COST
We compare the computational complexity and the com-
munication cost of the proposed schemes with those of the
conventional methods in this section. Table 1 shows the

FIGURE 4. Network MSD learning curves of the proposed CP-LMS.

complexity and the cost of the proposed algorithms and
other algorithms in each iteration. Note that, since the LMS
update is common for all algorithms including the proposed
schemes, the complexities only in the averaging step are eval-
uated. Here, the communication cost is defined as the number
of scalar values that node k has to receive.We can find that the
proposed CP-LMS requires higher computational complexity
and communication cost than other algorithms because it
contains exchanges of two types of messages between nodes.
However, the orders are common for all the algorithms with
respect to the communication cost which mainly dominates
the execution time in applications such as wireless sensor
networks.

VI. SIMULATION RESULTS
In this section, we compare the networkMSD learning curves
of the proposed schemes with the theoretical results and those
of the conventional schemes via computer simulations. All
the simulation results have been obtained by usingMATLAB,
andwe have implemented all algorithms by ourselves without
any toolbox. We assume that the measurement vectors {u(i)k }
are zero-mean circular Gaussian random vectors with sizes
M = 5 and have time-correlated shift structures [2]. The
specific structure is given by

u(i)k = [uk (i) uk (i− 1) · · · uk (i−M + 1)]T, (45)

where

uk (i) = αkuk (i− 1)+
√
σ 2
uk (1− α

2
k )zk (i) (i > −∞). (46)

αk ∈ [0, 1) and σ 2
uk ∈ (0, 1] are chosen from uniform

distribution, and zk (i) is a spatially independent white Gaus-
sian process with unit variance. In this case, a trace of the
correlation matrix can be obtained as Tr(Ruk ) = Mσ 2

uk . We
use the common step-size parameters µk = µ, the common
forgetting factors νk = ν, and the common initial values
γ
2,(0)
lk = γ 2,(0), for all k, l. The unknown vector is set to
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TABLE 1. Computational complexity and communication cost for the averaging step of the proposed algorithms and other conventional algorithms.

FIGURE 5. Network MSD learning curves of the diffusion LMS with
proposed CP rule.

FIGURE 6. (a) Original network topology with N = 20. (b) Spanning tree
extracted from original network.

be wo
=

1
√
M
1M . All simulation results are obtained by

averaging over 100 independent trials.

A. COMPARISON WITH THEORETICAL CURVE
In Figs. 4 and 5, we compare the learning curves of the
CP-LMS and the diffusion LMS using the static CP rule
obtained by simulations with the theoretical curves using (20)
and (42), respectively. We use only a small network with
N = 20 in Fig. 6 due to the computational difficulty of
the theoretical values. The simulation of CP-LMS and its
theoretical calculation are performed on the spanning tree
shown in Fig. 6(b), and that of the diffusion LMS using
CP rule and its theoretical calculation are performed on the
original network shown in Fig. 6(a). The step-size parameters
are µ = 0.08 (µ′ = 0.004) in CP-LMS and µ = 0.01 in the

FIGURE 7. (a) Original network topology with N = 200. (b) Spanning tree
extracted from original network.

FIGURE 8. (a) Original network topology with N = 500. (b) Spanning tree
extracted from original network.

FIGURE 9. (a) Original network topology with N = 1000. (b) Spanning
tree extracted from original network.

diffusion LMS with CP rule, respectively. The measurement
noise power is set to be σ 2

k = 10−3 at any node. Fig. 4 shows
that the simulation result agrees well with the theoretical
curve. On the other hand, in Fig. 5, we find a slight dis-
agreement between the simulation and the theoretical results
at the steady-state. This will be due to the assumption of
independence of the measurement vectors in Sect. IV-B2.

47030 VOLUME 7, 2019



A. Nakai-Kasai, K. Hayashi: Diffusion LMS Based on Message Passing Algorithm

FIGURE 10. Network MSD learning curves of proposed methods and conventional methods versus number of communications. (a) N = 200
(b) N = 500 (c) N = 1000.

B. PROPOSED METHODS V.S. CONVENTIONAL
DIFFUSION SCHEMES
Here, we compare the performance of the proposed
CP-LMS and the diffusion LMS using the proposed adaptive
CP rule with that of the diffusion LMS and theAMCdiffusion
LMS using the conventional Metropolis rule (6). We have
generated random networks with N = 200, 500, and 1000
as shown in Figs. 7(a), 8(a), and 9(a) to compare the perfor-
mance in networks of different sizes. Figs. 7(b), 8(b), and 9(b)
show the spanning trees extracted from the original networks
so that the diameter of the tree becomes the smallest among
all possible choices, i.e., the minimum diameter spanning
trees. The diameters of the trees with N = 200, 500, and
1000 are J = 8, 10, and 10, respectively. Here, we adopt the
diffusion LMS algorithms to the original connected networks
and the CP-LMS to the minimum diameter spanning trees,
because the original networks are preferable for the diffusion
LMS due to their larger degrees. The number of iterations of
the AMC diffusion LMS and the measurement noise power
are set to be J ′ = 2 and σ 2

k = 10−3 at any node, respectively.
Fig. 10 shows the network MSD learning curves for the

proposed and the conventional methods for the networks with
different sizes versus the number of communications. We
have controlled the step-size parameters of the algorithms
so that the steady-state performance becomes comparable
for all algorithms. In the figures, the diffusion LMS using
the proposed adaptive CP rule outperforms the conventional
methods for all cases. As for CP-LMS, though the con-
ventional methods achieve faster convergence in Fig. 10(a),
CP-LMS converges faster as the number of nodes increases
and it outperforms the conventionalmethods and the diffusion
LMS using the proposed adaptive CP rule in Fig. 10(c).
These results are consistent with the expectation that the
proposed CP-LMS would be valid especially for large-scale
networks. This is because the consensus protocol employed in
the conventional LMS generally achieves slower convergence
when the network size is large, while the convergence rate of
CP depends only on the diameter of the graph. Note that the
reason why the AMC diffusion LMS converges slower than
the diffusion LMS is that this paper evaluates the network

FIGURE 11. Network MSD learning curves of proposed CP rule and
conventional static combination rules with N = 20 in Fig. 6(a).

MSD with respect to the number of communications instead
of the number of LMS updates.

C. PROPOSED CP RULE AND ADAPTIVE CP RULE
V.S. CONVENTIONAL RULES
Finally, we compare the performance of the proposed dif-
fusion LMS using the static CP rule (34) and the adaptive
CP rule (40) with that of conventional diffusion LMS using
the static Metropolis rule (6), the static relative-variance
rule (36), and the adaptive relative-variance rule (38). We use
the network with N = 20 shown in Fig. 6(a). The measure-
ment noise power σ 2

k is changed among nodes in order to
confirm the estimation ability of the proposed adaptive CP
rule. We set σ 2

k in proportion to the square of the distance
from the origin. This setting can be understood as a model
that the power of target signal decays with the square of
distance assuming the observation target is located at the
origin, while the measurement noise power is uniform for all
observation nodes. The initial value and the forgetting factor
of the adaptation in Algorithm 3 and 4 are γ 2,(0)

= 4.5×10−2

and ν = 0.07. We have controlled the step-size parameters of
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FIGURE 12. Network MSD learning curves of proposed adaptive CP rule
and conventional combination rules with N = 20 in Fig. 6(a).

the algorithms so that the steady-state performance becomes
comparable for all methods.

Fig. 11 shows the learning curves of the diffusion LMS
using the static CP rule, Metropolis rule, and the static
relative-variance rule in terms of the network MSD assum-
ing that true γ 2

l s are known to each node. In the figure,
we see that the diffusion LMS using the CP rule converges
faster than that using other rules. Fig. 12 shows the learning
curves of the diffusion LMS using the proposed adaptive
CP rule, Metropolis rule, and the adaptive relative-variance
rule in order to verify the influence of weight adaptation.
The adaptive CP rule can achieve comparable performance
as in Fig. 11, while the performance of the adaptive relative-
variance rule is significantly degraded.

VII. CONCLUSION
In this paper, we have proposed novel diffusion LMS algo-
rithms for in-network signal processing based on the idea of
the message passing algorithm of CP. By using CP on the
spanning tree of the original network, CP-LMS can achieve
the same solution as the centralized LMS in a fully distributed
manner. LCP-LMS and its special case of CP rule are based
on loopy CP, and we have optimized the constants involved
in CP rule in terms of the steady-state MSD of the diffu-
sion LMS. Moreover, we have shown that their theoretical
learning curves and steady-state MSDs can be obtained using
existing frameworks. Also, we have extended the CP rule to
an adaptive version. Simulation results show that the pro-
posed CP-LMS can achieve better performance than the con-
ventional diffusion LMS especially in large-scale networks,
and that the diffusion LMS with the static and the adaptive
CP rules can achieve better performance than that with the
conventional combination rules when the measurement noise
power depends on the nodes.

Future work includes the extension of the proposed CP
rule tomore flexible weight control method using asymmetric

updates in loopy CP, i.e., using different constant at each node
depending on the direction of the messages.
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