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ABSTRACT Memory-based collaborative filtering (i.e., MCF) is regarded as an effective technique to
recommend appropriate services to target users. However, if recommendation data are very sparse in the edge
environment, traditional MCF-based recommendation methods probably cannot output any recommended
item (or service), i.e., a cold-start recommendation problem occurs. To cope with this cold-start problem,
we propose an intelligent recommendation method named Inverse_CF_Rec. Concretely, for a target user,
we first search for his/her opposite users (together referred to as ‘‘enemy’’ hereafter); afterward, we infer the
possible friends of the target user indirectly according to Social Balance Theory; finally, optimal services are
recommended to the target user based on the derived possible friends of the target user. The experiments are
conducted on a real-world dataset WS-DREAM to validate the effectiveness and efficiency of our proposal.
The experiment results show the advantages of our recommendation method in terms of recommendation
accuracy and efficiency.

INDEX TERMS Service recommendation, cold-start, edge, inverse collaborative filtering, social balance
theory.

I. INTRODUCTION
Recently, people have witnessed the great success of services
computing technology in various intelligent and smart busi-
ness applications [1]–[6]. With the continuous increment of
available web services in existing communities (e.g., pro-
grammableweb.com) distributed across different edge plat-
forms, it becomes a necessity to help a target user to find out
his/her interested web services. Under this circumstance, var-
ious recommendation techniques, e.g., Memory-based Col-
laborative Filtering (i.e., MCF) [7] are recruited to mine
the potential preferences of the target user and then make
appropriate recommendation decisions. Typically, according
to the traditional MCF technique, a recommender system
should first search for the similar users (together referred to as
‘‘friend’’ hereafter) of the target user, and then predictmissing
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service quality data and make recommendation decisions
based on the derived friends of the target user. Generally,
the abovementioned MCF-based service recommendation
methods can perform very well when the historical service
usage data utilized to make recommendation decisions are
sufficient enough [8]–[11].

However, due to the lack of feedback incentive mechanism
in edge environment, the data (e.g., historical service quality
experienced by users) used to make service recommendations
is often not dense enough, but very sparse [12]–[15]. In this
situation, it is probable that the recommender system cannot
find the similar friends of the target user as well as the similar
services of the target services (i.e., services preferred by the
target user).While disappointedly, existingMCFmethods fail
to deal with this kind of cold-start problem effectively

Considering this drawback, we propose an intelligent
recommendation method based on inverse CF, named
Inverse_CF_Rec, to smooth the cold-start recommendation
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FIGURE 1. A cold-start service recommendation scenario where traditional CF approaches fail.

process in edge environment. More concretely, for a target
user, we first search for his/her opposite users (together
referred to as ‘‘enemy’’ hereafter i.e., the users who hold
completely opposite preferences with the target user. This is
what ‘‘inverse’’ means in our proposal); then we infer the tar-
get user’s friends indirectly (referred to as ‘‘indirect friends’’
hereafter) based on the inference rules of Social Balance
Theory (SBT)[16]. Finally, we predict the missing quality
data of candidate services based on the derived ‘‘indirect
friends’’ of the target user and then recommend the quality-
optimal services to the target user. This is the main idea of
our proposal.

The remainder of paper is structured as below. Section 2
first formulates the traditional MCF-based recommendation
problems and then provides an intuitive scenario to moti-
vate our paper. Section 3 specifies the proposed recom-
mendation method, i.e., Inverse_CF_Rec. Experiments are
conducted in Section 4 based on a real-world dataset, i.e.,
WS-DREAM, to validate the effectiveness and efficiency of
our proposal. Related work and further discussions are pre-
sented in Section 5. Section 6 concludes the paper.

II. PROBLEM FORMULATION AND MOTIVATION
Next, we first formulate the MCF-based service recommen-
dation problems; then we provide a motivating example to
ease the understanding of readers.

A. PROBLEM FORMULATION
In this paper, a MCFbased service recommendation problem
is formulated byMCF_SerRec(User_set, WS_set, Rating_set,
usertarget ), where

(1) User_set = {user1, . . . , userm}: the set of users where
m is the cardinality of User_set
(2)WS_set= {ws1, . . . ,wsn}: the set of web services where

n is the cardinality of WS_set

(3) Rating_set = {ri−j| 1 ≤ i ≤ m, 1 ≤ j ≤ n }:
historical user-service quality matrix, where ri−j means useri
(∈User_set)’s rating on wsj(∈WS_set). Concretely, we adopt
the well-known 1∗ ∼ 5∗ rating scale.
(4) usertarget : the target user to whom a recommender

system intends to recommend services. In this paper,
usertarget ∈User_set

Thus MCF recommendation problems is clarified as
below: through analyzing the user-service rating data in
Rating_set, the recommender system selects appropriate ser-
vices from the candidates inWS_set and recommend them to
usertarget (∈User_set).

B. RESEARCH MOTIVATION
In this subsection, an intuitive scenario (shown in Fig.1) is
presented to motivate this paper. In the figure, User_set =
{Jim, Lucy, Jack} (usertarget is Jim), WS_set = {ws1, . . . ,
ws6}; the historical user-service quality data (denoted by
1∗ ∼ 5∗) are also presented; ws1 and ws2 are referred to as
‘‘target services’’.

Then with the known rating data in Fig.1, we can calculate
the similarity between Jimand useri (i.e., Lucy and Jack),
denoted by Sim(Jim, useri) based on the Pearson Correlation
Coefficient (i.e., domain-independent PCC) [17]. After cal-
culation, we can get Sim(Jim, Lucy) = −0.447 and Sim(Jim,
Jack) = Null. In this situation, no similar friends are present
for the target user Jim and hence, traditional user-based CF
methods cannot generate any recommended result and hence
recommendation is failed.

Likewise, we can calculate the similarity between target
services (i.e., ws1 and ws2) and other services (i.e., ws3, ws4,
ws5, ws6). After calculation, we can get Sim(ws1, ws3)= Sim
(ws1, ws4) = Sim (ws2, ws3) = Sim (ws2, ws4) = 0, while
Sim(ws1,ws5)= Sim (ws1,ws6)= Sim (ws2,ws5)= Sim (ws2,
ws6) = Null. In this situation, no similar services are present
for the target services (i.e.,ws1 andws2); therefore, traditional
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item-based CF methods cannot generate any recommended
result.

In terms of the above calculation, a conclusion can be
drawn that the traditional MCF methods probably cannot
produce a satisfying recommended list, when the avail-
able user-service quality data for recommendation decision-
makings are very sparse (i.e., cold-start recommendation).
Considering this drawback, we propose an intelligent rec-
ommendation method based on the inverse CF technique,
i.e., Inverse_CF_Rec to improve the cold-start recommenda-
tion problems.

III. INVERSE CF-BASED RECOMMENDATION
Next, a novel recommendation method named Inverse_CF_
Rec is suggested to deal with the cold-start problems in
recommendation. Concretely, subsection A details the con-
crete algorithm of Inverse_CF_Recmethod and subsection B
analyzes the time complexity of Inverse_CF_Rec method

A. AN INTELLIGENT SERVICE RECOMMENDATION
METHOD: Inverse_CF_Rec
The basic process of our proposal is: for a target user
usertarget , the recommender system first searches for his/her
opposite users (i.e., ‘‘enemies’’) and then infers the ‘‘indi-
rect friends’’ of usertarget based on the inference rules of
Social Balance Theory (e.g., ‘‘enemy’s enemy is a possible
friend’’ rule, ‘‘enemy’s friend is a possible enemy’’ rule);
afterwards, the services preferred by the ‘‘indirect friends’’
of usertarget are recommended to usertarget . More concretely,
the Inverse_CF_Rec method mainly contains the following
three steps (see Fig.2).

FIGURE 2. Three steps of Inverse_CF_Rec.

Step-1: Creating user-similarity tables offline.
Next, the user similarity values between any two entries in

User_set are calculated. For any useri and userj in User_set
(useri 6=userj), their similarity Sim(useri, userj) could be
calculated by the PCC formula in (1) offline.

In (1), set I denotes the service intersection rated by both
useri and userj; ri−k and rj−k represent useri’s and userj’s
ratings on web service wsk , respectively; ri and rj denote
useri’s and userj’s average rating values, respectively. Specif-
ically, if useri and userj have not invoked any common service
before (i.e., set I = Null), then their similarity Sim(useri,
userj) = Null holds. As equation (1) indicates, Sim(useri,
userj) ∈ [−1, 1]. Furthermore, the larger Sim(useri, userj)
is, the more probable that useri and userj are similar friends;
on the contrary, the smaller Sim(useri, userj) is, the more
probable that useri and userj are opposite users, i.e., enemies.

Sim(user i, user j)

=

∑
wsk∈I

(ri−k − ri) ∗ (rj−k − rj)√ ∑
wsk∈I

(ri−k − ri)2 ∗
√ ∑
wsk∈I

(rj−k − rj)2
(1)

Next, for each useri ∈User_set, we can create a user-
similarity table Tablei based on his/her similarity values
Sim(useri, userj) (obtained offline) with other users userj
in User_set. Furthermore, to ease the subsequent similarity
comparisons, we rank Tablei offline by Sim(useri, userj) in
ascending order.
Step-2: Determining the indirect friends of usertarget

through SBT.
After Step-1, a user-similarity table of usertarget (denoted

by Tabletarget ) is achieved. Next, according to Tabletarget and
a pre-defined similarity threshold P (−1 ≤ P ≤ −0.5),
we determine usertarget ’s enemy set (denoted by Enemy_set
(usertarget )) based on formula in (2). As the similari-
ties Sim(usertarget , userj) have already been calculated
and recorded in Tabletarget offline, the calculation of
Enemy_set(usertarget ) can be finished quickly.

Enemy_set(user target ) = {user j|Sim(user target , user j) ≤ P}

(2)

Likewise, for any userj ∈Enemy_set(usertarget ), we can
determine his/her opposite enemies userk (denoted by set
Enemy_set(userj)) by (2). Next, through the ‘‘enemy’s enemy
is a possible friend’’ rule of SBT, we can guess userk is
probably a friend of usertarget ; furthermore, its credibil-
ity can be calculated by Credibilityfriend (usertarget , userk )
in (3). Furthermore, if condition in (4) holds, userk can
be taken as an ‘‘indirect friend’’ of usertarget and put
into indirect friend set, i.e., Indirect_friend(usertarget ). Here,
−P (−1 ≤ P ≤ −0.5) represents the threshold for friend
similarity.

Credibilityfriend (user target , userk )

= Sim(user target , user j) ∗ Sim(user j, userk ) (3)

Credibilityfriend (user target , userk ) ≥ −P (4)
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FIGURE 3. Relationships between usertarget, userj, userk and userg.

Similarly, for any userj ∈Enemy_set(usertarget ), we can
determine his/her similar friends userg (denoted by set
Friend_set(userj)) by (5). Then through the ‘‘enemy’s friend
is a possible enemy’’ rule of SBT, we can guess userg is an
enemy of usertarget ; furthermore, its credibility can be cal-
culated by Credibilityenemy(usertarget , userg) in (6). Further-
more, if condition in (7) holds, then userg could be regarded
as an ‘‘indirect enemy’’ of usertarget and put into enemy
set, i.e., Enemy_set(usertarget ). More intuitively, the relation-
ships among usertarget , userj, userk and userg are presented
in Fig.3.

Friend_set(user j)

= {userg|Sim(user j, userg) ≥ −P}

Credibilityenemy(user target , userg) (5)

= Sim(user target , user j) ∗ Sim(user j, userg) (6)

Credibilityenemy(user target , userg) ≤ P (7)

Repeat the above inference process of ‘‘indirect friends’’
of the target user at most six times (considering the
‘‘six-degrees separation’’ in social network area), until the
set Indirect_friend(usertarget ) stays stable. Then all the users
in set Indirect_friend(usertarget ) are regarded as the ‘‘indirect
friends’’ of usertarget .
Step-3: Service recommendation
In Step-2, the ‘‘indirect friend’’ set of usertarget , i.e.,

Indirect_friend (usertarget ) has been derived. Next, we rec-
ommend appropriate services to usertarget based on set Indi-
rect_friend (usertarget ). Concretely, we predict the missing
quality data of service ws over dimension q by usertarget ,
denoted by ws.qtarget , by the equation in (8), as shown at
the bottom of this page, where ws.qk denotes the service
quality of ws over q by userk . Finally, the Top-3 services
with the optimal predicted quality values are recommended
to usertarget .

Thus through Step 1 ∼ Step3, a set of optimal services
(at most three services) are selected and recommended to
usertarget , so as to solve the cold-start recommendation prob-
lems. The following pseudocode specifies the details of our
proposal more formally.

B. COMPLEXITY ANALYSES
Next, the time complexity of Inverse_CF_Recmethod is ana-
lyzed Assume the service quality matrix for recommendation
contains m users and n services
Step-1: Creating user-similarity tables offline
As user-similarity tables could be created offline, the

complexity is O(1).
Step2: Determining the indirect friends of usertarget

through SBT
For a target user, he/she owns m-1 enemy users at most;

while for each enemy of the target user, m − 1 enemies or
m− 1 friends are present at most. Therefore, to determine all
the indirect friends of the target user, the time complexity is
O(m2) in the worst case.
Step-3: Service recommendation.
In Step-2, we have obtained m-1 indirect friends of

usertarget at most. While for each service (at most n services)
never invoked by usertarget , its quality should be predicted
according to the obtained m indirect friends of usertarget .
Therefore, the time complexity of this step is O(m∗n).
In terms of the above analyses, a conclusion can be

drawn that the complexity of Inverse_CF_Rec method is
O(m∗n(m+ n)).

IV. EXPERIMENTS
A wide range of experiments are conducted to validate the
feasibility of Inverse_CF_Recmethod in terms of recommen-
dation accuracy, time cost and failure rate

A. EXPERIMENT SETTINGS
The experiments are deployed on the popular dataset
WS-DREAM [7] (including quality values of throughput
dimension over 5825 services by 339 users). Partial quality
entries are randomly removed from the dataset to simulate the
cold-start problems in service recommendation; concretely,
the density of recruited experiment data is denoted by param-
eter r (namely, the rest (1 - r)∗100% data are removed from
WS-DREAM).

Service performances can influence the satisfaction degree
of users significantly [18]–[25]; therefore, we test themethod
performances from three perspectives: MAE (the smaller the
better), time cost and failure rate. Besides, in order to prove
the advantages of our proposal, Inverse_CF_Rec method

ws.qtarget =

∑
userk∈Indirectfriend (usertarget )

Credibilityfriend (usertarget , userk )∗ws.qk∑
userk∈Indirectfriend (usertarget )

Credibilityfriend (usertarget , userk )
(8)
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Algorithm 1 Inverse_CF_Rec
Input:
(1) User_set= {user1, . . . , userm}: user set;
(2) WS_set= {ws1, . . . , wsn}: web service set;
(3)Rating_set= {ri−j| 1≤ i ≤ m, 1≤ j ≤ n }: user-service
rating set;

(4) usertarget : a target user.
Output:
Result_set: web service set recommended to usertarget
1: Set enemy similarity threshold, i.e., P(−1 ≤ P ≤ −0.5)
2: Indirect_friend(usertarget ) = 8

3: Result_set= 8

4: for each useri ∈User_set do // Step-1
5: for each userj ∈User_set do
6: calculate Sim(useri, userj) by (1) offline
7: end for
8: create user-similarity table Tablei offline
9: end for
10: Infer Enemy_set(usertarget ) by Tabletarget and (2) //

Step-2
11: for each userj ∈Enemy_set(usertarget ) do
12: determine his/her enemies userk by (2)
13: calculate Credibilityfriend (usertarget , userk ) by (3)
14: if condition in (4) holds
15: then put userk into set Indirect_friend(usertarget )
16: end if
17: determine his/her friends userg by (5)
18: calculate Credibilityenemy(usertarget , userg) by (6)
19: if condition in (7) holds
20: then put userg into set Enemy_set(usertarget )
21: end if
22: end for
23: repeat lines 10 ∼ 21 at most six times until

Indirect_friend(usertarget ) stays stable
24: for each wsj ∈WS_set do// Step-3
25: if wsj is never invoked by usertarget
26: then calculate wsj.qtarget based on

Indirect_friend(usertarget ) and (8)
27: end if
28: end for
29: put Top-3 services with the highest predicted quality

into
Result_set

30: return Result_set to usertarget

is compared with another three ones, i.e., SBT-SR [26],
WSRec [27] DHRF [28].

The experiment running environment is: 2.40 GHz CPU
and 12.0 GB RAM. Software configurations are Windows
10 + JAVA 8 + MySQL 5.7. Each experiment was carried
out ten times and their average values are reported.

B. EXPERIMENT RESULTS
Concretely, four profiles are tested and compared. Here,
m and n represent the cardinality of User_set and

WS_set, respectively; r denotes the density of recruited qual-
ity matrix; P represents the threshold for enemy similarity.
Profile-1: Recommendation accuracy comparison
In this profile, we compare the recommendation accuracy

values of four approaches throughMAE. Concrete parameters
are set as below: m = 100, 150, 200, 250, 300; n is varied
from 1000 to 3000; P = −0.6; the user-service matrix
density, i.e., r = 5%. The results are presented in Fig.4.

FIGURE 4. Recommendation accuracy w.r.t. m and n. (a) m = 100.
(b) n = 2000.

Fig.4 shows that the recommendation accuracy of WSRec
method is the lowest (i.e.,MAE is the largest); this is because
WSRecmethod only considers usertarget ’s average quality and
the target services’ average quality, while neglecting some
crucial recommendation information that can be extracted
from the quality matrix. The accuracy of DHRF method is
either not high as this method only considers the ‘‘most pop-
ular’’ services. While in SBT-SR method, only the ‘‘enemy’s
enemy is a possible friend’’ rule is employed for service
recommendation; while other valuable social relationship
information is overlooked and hence, the recommendation
accuracy is decreased. In our proposed Inverse_CF_Rec
approach, both the ‘‘enemy’s enemy is a possible friend’’ rule
and the ‘‘enemy’s friend is a possible enemy’’ rule of Social
Balance Theory are considered in recommendation process;
therefore, the accuracy value of the derived recommended
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results is improved significantly and outperforms those of the
rest three methods
Profile- : Recommendation efficiency comparison
Next, we compare the time cost of different recommenda-

tion method. Concrete parameter values are as below: m =
100, 150, 200, 250, 300; n = 1000, 1500, 2000, 2500, 3000;
P = −0.6 and r = 5%. Concrete experiment results are
presented in Fig.5.

FIGURE 5. Recommendation efficiency w.r.t. m and n. (a) m = 100.
(b) n = 2000.

Fig.5 shows that the efficiency of DHRF method is often
low asmuch time is consumed for finding the ‘‘most popular’’
web services. For WSRec approach, much time is taken to
calculate the average quality of services invoked by the target
user and the average quality of the target service invoked by
different users, and hence, the recommendation efficiency is
not high enough. For SBT-SR approach, online calculation
of user similarity is necessary, which brings more time cost.
While in the suggested Inverse_CF_Rec method, most jobs
(e.g., creation of user-similarity tables) is finished offline;
therefore, the time cost is reduced significantly. Besides,
‘‘six-degrees separation’’ in social networks is considered in
our proposal; therefore, the iteration times for inferring the
indirect friends of usertarget are reduced, which also improves
the recommendation efficiency.
Profile-3: Failure rate of Inverse_CF_Rec w.r.t. r
Social Balance Theory is an experienced theory in psycho-

logical domain. Therefore, we cannot always guarantee the

applicability of SBT in service recommendation applications.
In other words, Inverse_CF_Rec method may fail in out-
putting any result if the available user-service quality data are
very sparse. Next, we test the failure rate of Inverse_CF_Rec
with parameter r . Concrete parameter values are as below:
m = 100, n = 1000, P = −0.6; r is varied from 1% to 5%.
Concrete experiment results are presented in Fig.6.

FIGURE 6. Failure rate of Inverse_CF_Rec w.r.t. r (P = X − 0.6).

Fig.6 show that the failure rate of Inverse_CF_Rec
approach is larger than 90% when r is smaller than 1%;
besides, failure rate decreases significantly when r rises. This
is due to the fact that a larger r often indicates a denser user-
service quality matrix as well as more valuable recommen-
dation information. Therefore, when r grows, the failure rate
decreases correspondingly. As can be seen from Fig.6, when
the matrix density, i.e., r reaches 5%, the Inverse_CF_Rec
method seldom fails.
Profile- 4: Failure rate of Inverse_CF_Rec w.r.t. P
The threshold for enemy similarity, i.e., P is crucial for

the success of the Inverse_CF_Rec method. Thus, we inves-
tigate the correlation between the failure rate of our pro-
posal and parameter P. Concrete parameters are set as below:
m = 100, n = 1000, matrix density, i.e., r = 2%,
P = −1,−0.9,−0.8,−0.7,−0.6. Concrete results are
shown in Fig.7.

Fig.7 indicates that the failure rate of Inverse_CF_Rec
method decreases approximately when P grows. The reason
is that when P is larger (for example, P = −0.6), filtering
condition for enemy relationship becomes looser and hence,
more qualified ‘‘enemies’’ of usertarget can be returned and
recruited for recommendation decision-makings. Therefore,
the failure rate is decreased accordingly.

C. FURTHER DISCUSSIONS
However, there are still several shortcomings in our proposed
Inverse_CF_Rec method. First, only one quality dimension
is regarded as the recommendation basis, i.e., users’ ratings
on services; while actually, multiple dimensions are more
common in the actual decision-making problems [29]–[35].
In view of this observation, we will improve our method
by introducing multiple decision-making dimensions as
well as the weighting mechanism in multi-dimensional
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FIGURE 7. Failure rate of Inverse_CF_Rec w.r.t. P (r = 2%).

scenarios [36]–[39]. Second, we only consider one data type
of user rating data, without considering the diversity of rating
data types such as discrete data [40]–[45], binary data [46]
and fuzzy data [47]–[49]. Considering this, we will further
modify Inverse_CF_Rec method to make it compatible with
different data types of ratings.

V. RELATED WORK
Due to the easy-to-explain and domain-independent charac-
teristics, CF technique is widely deployed in existing rec-
ommender systems. A dependable recommendation method
is proposed in [50], where the traditional user-based CF
technique is used for recommendation decision-makings.
SD-HCF method is proposed in [51] where user-based and
item-based CF techniques are combined to pursue a high-
quality recommended list. Other similar hybrid recommen-
dation approaches can be found in [50]. While these methods
do not consider other key decision-making information, e.g.,
location data. Considering this drawback, user location and
service location are considered in [52], in which the nearby
services are recommended to the target user first.

The abovementioned recommendation methods often per-
form well when similar friends or similar services are present
in the user-service rating network. However, when neither
similar users nor similar services exist, a cold-start rec-
ommendation problem occurs. To cope with this cold-start
problem, WSRec method is proposed in [27], where both
raverage(usertarget ) (i.e., usertarget ’s average rating value) and
raverage(wsj) (i.e., wsj’s average rating value) are taken as
the recommendation bases. While the accuracy of WSRec
is not high enough due to the adopted simple ‘‘average’’
idea. A popularity-aware recommendation method named
DHRF is proposed in [28]. In DHRF, the ‘‘most popular’’
web services are recruited for service quality prediction and
subsequent service recommendation, so as to cope with the
recommendation cold-start problems. However, as an approx-
imate strategy (i.e., service popularity) is adopted in service
quality prediction, the recommendation accuracy is not as
high as expected. The work [53] proposes to utilize ‘‘belief
propagation’’ to realize more efficient task allocation. Similar
to [53], in our previous work [54], Social Balance Theory is

introduced into service recommendation to remedy the cold-
start problem.

In this paper, we continue to improve the work in [54]
to further enhance the service recommendation perfor-
mance. Concretely, our improvements are three-fold: (1) ‘‘Six
Degrees of Separation’’ in social networks domain is adopted
to reduce the iteration times in finding the ‘‘indirect friends’’
of utarget , through which accuracy and time cost are improved
significantly; (2) we create a set of user-similarity tables
offline to record the similarity values between different users
before a recommendation request arrives, so that the effi-
ciency of online friend search is improved considerably;
(3) we evaluate each recommended service quantitatively
so that only the optimal service with the largest ‘‘recom-
mended degree’’ is returned to the target user; this way,
the recommendation accuracy is improved. Finally, through
a set of experiments conducted on a real-world dataset,
i.e., WS-DREAM, we prove the advantages of proposed
Inverse_CF_Rec method in terms of recommendation accu-
racy and efficiency.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
An intelligent service recommendation method named
Inverse_CF_Rec is proposed in this paper, to cope with
the cold-start recommendation problems in edge environ-
ment with sparse data. First, we search for the opposite
users (i.e., enemies) of usertarget ; second, we search for the
friends of usertarget through the indirect friend inference rule
of Social Balance Theory; third, appropriate services are
recommended to usertarget based on the derived friends of
usertarget . Finally, we demonstrate the advantages of the pro-
posed Inverse_CF_Recmethod by measuring the recommen-
dation accuracy and efficiency through extensive experiments
conducted on the real-world dataset WS-DREAM.

As service performances often vary with service running
context [55], [56], in the future, we will investigate how to
improve our proposed recommendation method by taking
into consideration more context factors (e.g., user location
and service invocation time).
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