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ABSTRACT Nowadays, deep learning has been increasingly applied in real-world scenarios involving the
collection and analysis of sensitive data, which often causes privacy leakage. Differential privacy is widely
recognized in the majority of traditional scenarios for its rigorous mathematical guarantee. However, it is
uncertain to work effectively in the deep learning model. In this paper, we introduce the privacy attacks facing
the deep learning model and present them from three aspects: membership inference, training data extraction,
and model extracting. Then we recall some basic theory about differential privacy and its extended concepts
in deep learning scenarios. Second, in order to analyze the existing works that combine differential privacy
and deep learning, we classify them by the layers differential privacy mechanism deployed, such as input
layer, hidden layer, and output layer, and discuss their advantages and disadvantages. Finally, we point out
several key issues to be solved and provide a broader outlook of this research direction.

INDEX TERMS Deep learning, differential privacy, privacy attacks.

I. INTRODUCTION

In the era of big data, the explosive growth of data volume
has accelerated the development of deep learning. Recently,
as a state-of-the-art field of machine learning research, deep
learning has achieved remarkable success. Relying on its
capabilities of multi-level representation and abstraction,
deep learning can understand data, such as images, sounds,
texts and others [1], and its applications are being expanded
into various areas, such as social network analysis [2], inter-
net of things [3], [4], bioinformatics [5], wireless commu-
nications [6], [7], medicine and healthcare [8], malware
detection [9] and so on.

The issue of privacy protection attracts increasing atten-
tion with the accelerated integration of the big data indus-
try and people’s daily life. In terms of policy, the General
Data Protection Regulation (GDPR) [10] came into force
on May 25th, 2018 in all EU member states to harmonize
data privacy laws across Europe, which essentially set a new
global standard for data protection. The GDPR aims primarily
to give individuals more control over their personal data
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and to simplify the regulatory environment for international
business by unifying the regulation within the EU. Moreover,
from a technical aspect, privacy protection research has never
stopped. Dalenius [11] proposed the concept of private disclo-
sure control, and the k-anonymity algorithm [12] lays a foun-
dation for the anonymous privacy protection algorithm based
on equivalence class grouping, followed by I-diversity [13],
t-closeness [14], (¢, k)-anonymity [15] and so on. These mod-
els improve the anonymity protection theory against attackers
with different background knowledge. Nevertheless, all of
them have some common defects, which need to update
design to catch the fast-evolving attacks, and cannot provide
strict proof to quantify the privacy protection effect.

The differential privacy (DP) proposed by Dwork ez al. [16]
in 2006 has shown provable privacy guarantees for database
record releasing without significant query accuracy loss, even
if the adversary possesses all the remaining tuples of the
sensitive data. Several attempts have been taken to apply
differential privacy into deep learning, in order to guarantee
the privacy of samples in training datasets, by combining
its strict mathematical proof with flexible composition theo-
rems. Recently, differential privacy has been applied to real-
world products. For example, it can be used in user data

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 48901

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-1658-0236

IEEE Access

J. Zhao et al.: DP Preservation in Deep Learning: Challenges, Opportunities, and Solutions

collection and analysis such as Spotlight and Notes in input
method and search function of Apple’s iOS10 [17], [18];
Google’s Chrome [19], [20], Samsung’s smartphone [21]
want to use it to protect user’s personal information and
data details, while extracting the user’s general information
needed for machine learning. The differential privacy method
to protect user private data has been gradually recognized in
the industry as a practical standard for privacy protection.

When individual data (e.g. clinical records, user habits,
photos, etc.) are used to train deep learning model, some
sensitive features will be ‘remembered’. Deep learning algo-
rithms typically use regularization techniques (e.g. [ regu-
larization, dropout, etc.) to prevent model over-fitting, which
is helpful to protect the privacy of training data. However,
it is insufficient for the deep models with excellent learning
ability to prevent them from remembering the privacy details.
Recently, attacks using implicit memory in machine learning
have shown that sensitive training data can be recovered from
the model. This type of attack can be performed directly by
analyzing internal model parameters, or indirectly by query-
ing in black-box setting repeatedly. In order to improve the
security of deep learning model by deploying the differential
privacy mechanism, how much to add and where to add noise
to the deep learning network requires careful consideration,
because any subtle changes will make the prediction very
different under the network layer-by-layer abstraction. Fur-
thermore, because differential privacy needs to be irrelevant
to background knowledge, it is difficult to control the privacy
budget within a reasonable range in reality. For example,
there are reports showing that a large privacy budget is actu-
ally used in Apple [22]. Therefore, how much protection that
differential privacy can provide for deep learning is worthy
of further discussion.

The more diverse the application scenarios of deep learning
model, the more serious the privacy security issues will be.
How to integrate differential privacy mechanism and deep
learning effectively becomes a research hotspot. The contri-
bution of our paper can be summarized as the following three

aspects:
1) According to the different effects of privacy attack

on deep learning, we classifies the privacy threats of
deep learning, and clarifies how differential privacy be
applied to the specific scenarios.

2) According to the deep learning network structure,
we divide schemes into three categories. In addition,
we summarize the core idea of every method and its
specific implementation, and point out the advantages
and disadvantages of them.

3) We provide several possible research directions, which
gives a useful reference for researchers to explore the
differentially private deep learning mechanism.

The rest of the paper is organized as follows. Section II
introduces the privacy threats faced by deep learning model.
Section III demonstrates the basic theory of differential pri-
vacy and its extensive concepts. Section IV illustrates several
concrete schemes according to the position of layer in deep
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learning model that differential privacy applied. Section V
puts forward a few issues of privacy protection for deep learn-
ing, and enlightens the future research. Section VI concludes
the paper.

II. PRIVACY ISSUES IN DEEP LEARNING

Deep learning as a state-of-art technology in machine learn-
ing significantly improves the classification accuracy on
highly-structured and large-scale database, because it enables
the deployment of end-to-end learning systems where fea-
tures and classifiers are learned at the same time. Deep learn-
ing uses multiple nonlinear layers transformation to perform
representation learning, and it has powerful capabilities of
data abstraction [23].

Internet giants like Google, Amazon, Microsoft, etc. are
offering ‘ML-as-a-Service’ (MLaaS), a black-box API that
provides deep learning service. By using MLaaS, users can
get predictive results through uploading dataset and possess-
ing clustering or regression tasks. The machine learning API
make prediction by using the features of input samples, which
usually contain sensitive information. The reason for these
privacy leaks is mainly because of over-fitting, that means
the model implicitly memorizes some details about training
data [24], and it is also associated with the structure and
type of the model itself. The privacy threats in deep learning
models can be classified according to training phase and
prediction phase.

During training phase, the privacy threats are closely
related to deep learning deployment structure. In central-
ized learning, model takes a lot of advantage of accuracy
by collecting a large amount of data for training. However,
it also brings high load to centralized server, and once attacks
happens all individual data will be at risk, as shown in the
Fig. 1(a). Moreover, the privacy of the ML model and data
are independent of how the ML model is used, but rather
the extent of the adversary’s access to the system hosting the
model and data, so it can be seen as a traditional access control
problem.

adversary

Sever Sever
User1 ) User N Victim User D , User N
User 2 User 3 User 2 Adversary User
(a) (®)

FIGURE 1. Two different ways of model training. (a) Centralized learning.
(b) Collaborative learning.

Recently, collaborative learning has been proposed,
in which local users and centralized server take part of the
training tasks respectively, and only share a subset of the
parameters. Unfortunately, in case of malicious participants
existing, as shown in Fig. 1(b), they can train the Genera-
tive Adversarial Networks (GAN) [25] for information theft.
Hitaj et al. [27] proposed an attack against the coopera-
tive deep learning, in which the adversary trains a GAN to
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TABLE 1. Privacy attacks.

Knowledee of Privacy threat
wiecs Access to model input and output | Access to training data Membership Training data .
model . . Model extraction
inference extraction
White-box F'ull - No [24]
Through pipeline only No
Yes No [26] [29][30] [31]
Black-box Input only Yes [31]
Through pipeline only No

generate prototypical samples with the same distribution of
the private target training set. During the training phase,
the malicious user is always active, and deceives the victims
to release their private information.

During prediction phase, Doshi-Velez and Kim [28] dis-
cussed the privacy attacks in three aspects: membership infer-
ence, training data extraction and model extracting, as shown
in Table 1.

T
Predict ‘

Target model

prediction

s N
AL | class label j

Attacker

J Attack model

data€ training set?

FIGURE 2. Membership inference attack.

A. MEMBERSHIP INFERENCE ATTACK

Membership inference attack is proposed in [26], which is in
the black-box setting. The adversary infers whether the record
exists in the training dataset or not, giving a machine learning
model and a certain sample record. As shown in Fig. 2, the
attacker queries the target model with a data record to obtain
a prediction on this record, which is a vector of confidence.
Then the vector along with the label of the target record is
passed to construct the attack model. Because of the different
results of the target model processing training sample and
unseen sample, the attack model can identify the difference
and know whether the record was ‘in” or ‘out’ of the target
model’s training set.

Training the attack model is first to construct a number
of ‘shadow models’, which are similar to the target model.
The author uses supervised training on these shadow models,
explicitly teaching them to tell the corresponding output from
member or non-member in training dataset (with the label
‘in” or ‘out’). In addition, they train these shadow models on
synthesizes data, that have similar statistical features to train-
ing data. Finally, multiple shadow models are cooperatively
trained to construct the attack model.

For example, knowing that a machine learning model is
used to determine the appropriate drug dose or to discover
the genetic basis of a disease [29], it is sufficient to derive
the conclusion that if a patient has the disease. The defense
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principle for membership inference attack and the differential
privacy mechanism are conceptually the most similar, and
they both aim at the protection for the existence of one
sample. Therefore, most of the current differential privacy
protections for deep learning models are used to against
membership inference attack.

B. TRAINING DATA EXTRACTION
In white-box setting, there is privacy threat of training data
extraction. Ateniese et al. [24] defined a meta-classifier
model that can be trained to extract useful information
from the target classifier. The authors successfully complete
several attacks against existing ML classifiers: attacks on
network traffic classifiers that implementing support vector
machines (SVMs), and speech recognition software based on
hidden Markov models (HMM), and they prove that the full
disclosure of the algorithm details will result in privacy risks.
With the extensive application of MLaa$, privacy attacks in
black-box setting will bring significance that is more practi-
cal. Fredrikson et al. [29] constructed model inversion attacks
for deep models, using the output of the model to infer certain
features of the training set. Using patient data as training
set, they pointed out the association between drug dose and
patient gene. However, for the reason of the inherent medical
facts between the two elements, some people hold the opin-
ion that this attack does not cause privacy leakage. In [30],
the confidence score provided by the facial recognition sys-
tem API is used to construct an attack model. The user’s
recognizable image can be obtained by simply accessing the
face recognition system and inquiring with the name of the
user. The attack effect is shown in Fig. 3.

FIGURE 3. An image recovered using a new model inversion attack (left)
and a training set image of the victim (right).

However, the model inversion attack only obtains the fuzzy
features of the same type of input, that is, just the average of
all objects in a given class is generated rather than an explicit
data record. If the training set is replaced with a different type
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of picture, then the result has nearly no effect [26]. As shown
in Fig. 4, the result images in top line are airplane, automo-
bile, bird, cat, deer, and the bottom are dog, frog, horse, ship,
truck. These images cannot correspond to any specific sample
from the training dataset, and even human cannot recognize
its category. Therefore, model inversion attack does not give
a clear and specific description of the training set, nor can it
judge whether a sample is in the training set or not. The attack
effect is very limited, that is not suitable for any tasks except
face recognition and only available for some particular types

of model.

FIGURE 4. Images produced by model inversion on a trained
CIFAR-10 model.

C. MODEL EXTRACTION

The model extraction attack is designed to extract the parame-
ters of the model trained on the private data. The attacker aims
to duplicate the functionality of the model, whose prediction
performance on verification data set is similar to the target
model. Because of the close connection between the model
parameters and the training set, the privacy of the training set
will be further revealed after the leakage of the parameters
of the black-box model. A model f which is similar with
the target model f can be constructed by continuously pro-
viding the sample to the black box model and recording the
prediction vector [31]. Then depending on solving equations
or path-finding algorithm, the decision tree for original data
reconstruction can be obtained. As shown in Fig. 5, model
extraction attacks also can serve as a ‘stepping stone’ for
other privacy attacks to enhance their effects, such as model
inversion.

ML service

Data owner

FIGURE 5. Model extraction attack.

I1l. DIFFERENTIAL PRIVACY PRELIMINARIES

A. DEFINITION

Differential privacy [32] provides a strong privacy guarantees
for algorithms processing aggregate database. It is defined
in the context of adjacent databases, which differ in a single
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data record. In deep neural networks, adjacent databases exist
in training dataset, which is consist of many image-label
pairs [33]. Two of databases are adjacent, if only one image-
label pair is present in one database and absent in the other.

The definition of differential privacy is as follows: A ran-
domized mechanism M : D — R with domain D and range R
satifies (g, §)-differential privacy [34], if for any two adjacent
inputs d, d’ € D and for any subset of outputs S C R it holds
that

PriM(d) € S]1 < e*Pr[M (d') € S|+ (1)

The trade-off between the accuracy and privacy leakage
of the mechanism M is controlled by adjusting the privacy
budget parameter €. A smaller the privacy budget represents
a less privacy leakage and a stronger privacy level. The addi-
tional variant §, introduced in [34], allows for the possibility
that plain e-differential privacy is broken with probability &,
which is preferably smaller than 1/|d|. If § is O, the random-
ized mechanism M gives e-differential privacy by its strictest
definition.

B. COMPOSITION THEOREM

Differential privacy is characteristic of two privacy budget
composition theorems: sequential composition [35] and par-
allel composition [36]. In the application of differentially
private deep learning, the sequential composition is widely
used.

1) Sequential Composition

Suppose a set of randomized privacy mechanisms M;(1 <
i < n) sequentially performed on a dataset D and each M;
provides &;-DP, they will provide ¢-DP, in whiche = )", &;.

2) Parallel Composition

Suppose a set of randomized privacy mechanisms M;(1 <
i < n) and a dataset D divided into several disjointed subsets
{D1, Dy, ...Dy}, the privacy mechanism M; provides ¢;-DP
for every D;, and they will provide (max{ey, ..., €,})-DP on
the entire dataset.

C. SENSITIVITY
In [32], for a query f : D — R, and neighboring datasets
D and D/, the sensitivity of f is defined as

Fo -1 (0], @)

Sensitivity considers the maximal difference between the
query results on neighboring datasets, which is the change
of output of query caused by the single sample in worst
case. Sensitivity Af is only related to the query f and the
distribution of the data set, providing a benchmark for the
addition of perturbation.

Af = maxp p

D. PRIVACY LOSS
Privacy loss is a random variable dependent on the random
perturbation added to the algorithm and Dwork et al. [34]
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provided a specific definition of it. For the neighboring
databases d,d’ € D, a differentially private mechanism
M : D — R, auxiliary input aux, and an outcome o € R,
the privacy loss at o is
c(0; M, aux, d,d’) £ log Pr(M (aux, d) = 0) 3)
Pr (M (aux, d’) = o)

Privacy loss is calculated at each step of the algorithm
and is accumulated to bound the overall privacy loss of the
algorithm, which can be performed by the privacy accoun-
tant [36]. The further introduction of privacy accountant will
be given in section I'V.

E. THE DIFFERENTIAL PRIVACY MECHANISMS

There are two basic mechanisms widely used in deep learning
to guarantee differential privacy: the Laplace mechanism [32]
and the Exponential mechanism [35].

1) The Laplace Mechanism [32]
For a function f : D — R over a dataset D, the mechanism
M ensures e-differential privacy, if

M(D) = (D) + Lap (%f) @
2) The Exponential Mechanism [35]
For non-numeric queries, exponential mechanism random-
izes the results, associated with a score function g(D, ¢). The
function ¢q is used to evaluate the quality of the output ¢,
and different applications lead to various score functions. Ag
represents the sensitivity of g. The exponential mechanism M
satisfies e-differential privacy if

M (D) = (return @ X exp (%’;))) @)

In addition, noise adding based on a Gaussian distri-
bution [37] is often used in the functional perturbation
approach [38]. N (0, sz . 02) is the normal (Gaussian) dis-
tribution with mean O and standard deviation Syo. The

M mechanism satisfies (e, §)-differential privacy if § >
4/5exp(—(oe)?/2) and e < 1.

M(D) = Af(D) + N (0, s? . 02) ©6)

F. UTILITY MEASUREMENT OF DIFFERENTIAL PRIVACY
The utility of differential privacy can be measured by the
amount of noise and errors. A smaller amount of noise indi-
cates a higher utility. Errors are often measured by accuracy
index that depend on utility loss evaluated by the difference
between the non-private output and the private output.

IV. DIFFERENTIALLY PRIVATE DEEP

LEARNING MECHANISMS

In this section, we focus on several typical differentially pri-
vate deep learning schemes. Differential privacy guarantees
that the output of deep learning model does not show signif-
icant statistical differences while the model was trained on
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6 = argming L,,(6) Output Layer

perturbing the objective function

FIGURE 6. The three locations of differential privacy deployed in deep
learning model.

adjacent datasets, in which the samples containing individual
privacy. The goal of the mechanism is to provide privacy
protection for training dataset, preventing privacy leakage in
white-box or black-box scenarios. Most of the defense mech-
anisms are against membership inference attacks mentioned
in section II. According to the stage of data processing in deep
learning model, we study the mechanisms by dividing the
locations of differential privacy deployment into three types:
input layer, hidden layer and output layer, as shown in the
Fig. 6. The detailed description of Fig. 6 will be given in next
parts.

A. DIFFERENTIAL PRIVACY DEPLOYED AT

THE INPUT LAYER

Differential privacy deployed at the input layer can be seen
as a preprocessing of training datasets, which is differently
private data synthesis. The data curator firstly generates syn-
thetic data with the same statistical characteristics as the
original training datasets under the differential privacy. Then,
the synthetic data or generative model is published without
privacy leakage, which can be used for various analyses.
It guarantees sample-level participant privacy. The solution
aims at hiding or changing sensitive features of training
datasets, and simultaneously keeping utility for further anal-
ysis in deep learning model.

A common approach of generating synthetic data is to
add noise to the model directly. Acs et al. [39] used a
two-stage process that first performs differentially private
K-Means clustering [40] for data division, and then produces
separately the k models with generative neural model, such
as Restricted Boltzmann Machine(RBM) [41] or Variational
Auto-encoders (VAE) [42], and trains them on individual
group with stochastic gradient descent (SGD) way. The final
model consists of the k sub-models. Compared with single
generative model, the features details will be learned with
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higher efficiency in each sub-model, and the noise addition
will be more refined, so data utility is improved.

Sensitive data

% —_— Real
Discriminator —|:
— Fake

4

ML

¥ Artificial data

Labels —
Generator ”
Noise ————> A-A

FIGURE 7. Private artificial data synthesis based on GAN.

Taking advantage of the GAN, several methods are pro-
posed to generate synthetic data to get better effect [43], [44],
as shown in Fig. 7. The results under method of GAN
demonstrate that it offers better ability to simulate realistic-
looking data that closely matches the distribution of the
source data than RBM and VAE. Beaulieu-Jones et al. [44]
trained the discriminator under differentially private SGD,
which generates plausible individuals of clinical datasets.
Zhang et al. [43] proposed dp-GAN, a general private data
publishing framework for rich semantic data (such as image,
high- dimensional data) without the requirement of tag infor-
mation compared to [44].

In order to evaluate the utility of artificial data, we can
compare the performances between original data and syn-
thetic data on the same deep learning algorithms. To fig-
ure out the potential privacy risks of such technique,
Triastcyn and Faltings [45] designed a framework for ex post
analysis of generated data. The KL (Kullback-Leibler) diver-
gence estimation and Chebyshev’s inequality are used to find
a statistical bound on expected privacy loss.

To address the problem of utility degradation of synthetic
datasets, relaxation in differential privacy is put forward.
A formal privacy guarantee for releasing sensitive datasets
is provided [46] by using a criterion called plausible denia-
bility [47]. For any dataset D with |D| > k, and any record
y generated by a probabilistic generative model M such that
y = M(dy) for di € D, we state that y is releasable with
(k, v) -plausible deniability, if there exist at least k — 1 distinct
records da,...,dry € D\{d;} which meet the inequality
below

-1 prly =M (d))} <y,
pr{y =M (d)}

This mechanism results in input indistinguishability that
means by observing the output set (i.e., synthetics) an adver-
sary cannot make sure whether a particular data record was
in the input set (i.e., real data). The degree of this indistin-
guishability is a parameter, and the process can also satisfy
differential privacy if we randomize the indistinguishability
parameter. The larger privacy parameter k is, the closer to
1 privacy parameter y is, and the larger the indistinguisha-
bility set is for the input data record. Instead of designing
the mechanism directly, it achieves differential private by the

Vi, je{l,2,...,k} (7
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idea of testing privacy, which rejects ‘““bad’’ samples towards
achieving plausible deniability. That is, a synthetic record
provides plausible deniability if there exists a set of real
data records that could have generated the same synthetic
data.

These mechanisms try to generate synthetic datasets with
similar statistical properties to the input data and attempt to
cover up the key sensitive information, which help to show
good illegibility from the original datasets. However, it is a
great challenge to operate on large dataset.

B. DIFFERENTIAL PRIVACY DEPLOYED AT

THE HIDDEN LAYER

By adding noise to the gradient in the hidden layer to achieve
protection for training datasets, it is the most intuitive method
to apply differential privacy to deep learning models. It is
also the earliest attempt to deploy different privacy into
deep from learning model, and its purpose is to prevent the
adversary grasping the accurate personal information of the
training data by output. There are a number of innovative
improvements in these schemes, such as more accurately
noise addition and tighter measurement of privacy loss, which
bring some significance for model optimization.

Noise adding is performed around the gradient descent pro-
cess, which can be called the differentially private Stochastic
Gradient Descent (dpSGD) algorithm that mainly includes
two steps: sanitizer and privacy accountant. Firstly, the step
of sanitizer is to limits the sensitivity of each sample by
clipping the gradient of the sample, and then to add noise to
the gradient in batches before uploading the parameters. The
step of privacy accountant is to track the privacy consumption
of the entire training.

In the centralized privacy protection model, the confiden-
tial problem of the curator is not considered. The curator
collects and processes data uniformly under privacy protec-
tion mechanism, followed by data release or further analysis.
However, when there are attacks on center server or existing
of dishonest curator, the sensitive information will be at high
risk of leakage. In the local differential privacy (LDP) [20]
which bases on distributed model, the users have more control
on their own data. Before being contributed to curator, indi-
vidual data is disturbed locally that provides protection with-
out relying on third party. After that, the sharing models are
related to specific algorithms, such as data mining or machine
learning algorithms.

Shokri and Shmatikov [48] designed distributed sys-
tem of deep neural network under differential privacy
based on Selective Stochastic Gradient Descent (Selective
SGD or SSGD), which provides a new way for end-to-end
applications of deep learning on mobile devices. Participants
learn neural-network models on their own input data, and
they can benefit from other participants who are concur-
rently learning similar models. Each participant takes turns
to upload and download a percentage of the most recent
gradients to avoid getting stuck into local minima. The system
applies differential privacy to parameter updates by using
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TABLE 2. Privacy budget bound under different composition methods.

Method Naive composition Strong composition Moments accountant
Privacy budget bound (0(qTe),qT8) — DP (0(qe|[Tlog1/6),qT8) — DP (0(qeVT),8) — DP

the sparse vector technique, thus it mitigates privacy loss
related to both parameter selection and shared parameter
values.

The critical problem in such a scheme is that the addition
of noise has more influence on model utility along with the
increment of training iterations [49]. Therefore, the addition
of noise requires accurate weight to keep the balance between
privacy and accuracy. The composition theorem illustrates
how the privacy protection of a differentially private mecha-
nism degrades under composition of interactive queries. The
composition theorem can provide an overall privacy guar-
antee on the union of all the interactive queries. However,
the most of existing composition theorems for DP, including
the strong composition theorem [50], just provide a loose
bound on privacy spending. As aresult, they exhaust a moder-
ate privacy budget very quickly allowing only a few iterations
over the training dataset, thereby resulting in the poor utility
of deep models.

Abadi et al. [33] proposed a state-of-the-art privacy
accounting method called moments accountant based on
composition theorem, which provides a more tighter bound
for privacy loss and can track cumulative privacy loss by
implementing independent differential privacy mechanisms.
The concept of moments accountant is based on R’enyi dif-
ferential privacy [53], which allows combining the intuitive
and appealing concept of a privacy budget with application of
advanced composition theorems. It is a useful analytical tool,
compactly and accurately representing guarantees on the tails
of the privacy loss compared with the exiting methods.

Specifically, moments accountant adds noise in batches of
training data and sets each batch as a lot which size is L.
Then each step should satisfies (O(gT¢), gT §)-DP, where
qg = L/N is the sampling rate of a lot. For T rounds itera-
tions, the privacy budget bound of moments accountant under
different composition theorems is different from that of naive
composition and strong composition, as shown in Table 2.

Obviously, moments accounting get a better result than
the previous methods. In particular, it can be proved that the
mechanism M satisfies (g, §)-DP if § = miny exp(ops(A)—Aeg)
by defining a Moment Generating Function, oy .

1) Moment Generating Function

For a given mechanism M, we define the A" moment
ay (A; aux, d, d’) as the log of the moment generating func-
tion evaluated at the value:

ay (k; aux, d, d’)
= log Eo~m(aux.d) [exp (Ac (0; M, aux,d, d/))] (8)
In the above approaches, there exists the limitation on

training epochs due to the small total privacy budget, which
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leads the limited application on shallow model and small
datasets. For large datasets and complex deep learning net-
works, adding noise to the gradient is tantamount to have a
‘heart surgery’. Therefore, researchers should make efforts
to find out a privacy protection method that is independent of
the number of training epochs.

C. DIFFERENTIAL PRIVACY DEPLOYED AT

THE OUTPUT LAYER

In output layer, the model will provide a prediction value
Y = f(X) on given input in each epoch. The loss function
L(Y, f(X)) is usually used to evaluate the gap between the
predicted value Y = f(X) and the true value Y in deep
learning, which is a nonnegative real function. The smaller
loss function indicates a better prediction performance of the
model on training datasets. Therefore, according to the influ-
ence of the output result on the loss function, the deployment
of differential privacy on the deep learning algorithm can be
considered as an optimization problem.

The Functional Mechanism (FM) [54], as an extension
of the Laplace mechanism, performs differential privacy by
perturbing the objective function of the optimization problem,
rather than its results. The direct perturbation to the results has
several restrictions, and it only performs on standard types
of regression analysis. Deep learning models, such as Deep
auto-Encoder (AE) [55], Deep Belief Network (DBN) [56],
use different objective functions (e.g., cross-entropy error,
energy-based functions) and algorithms (e.g., contrastive
divergence, CD) [57]. Specifically, the FM mechanism injects
Laplacian noise into the coefficients according to the polyno-
mial approximation of the objective function fp(®), and then
releases the model parameter @ that minimizes the objective
function fb(w).

Phan et al. [51] proposed a novel e differential Pri-
vate Auto-encoder(PA) through analyzing and perturbing the
cross-entropy error functions of the data reconstruction and
softmax layer. In particular, they approximates the polyno-
mial forms of cross-entropy error functions by using Taylor
Expansion [58], and then injects noise into these polynomial
forms so that the e-differential privacy is satisfied in the train-
ing phases. Phan et al. [52] applied Chebyshev expansion [59]
to derive the approximate polynomial representation of objec-
tive functions in convolutional deep belief network (CDBN),
and adds noise to these polynomials. The private convolu-
tional deep belief network (pCDBN) is used to implement
human behavior prediction and binary classification tasks.
These schemes bases on FM are compared in Table 3.

To improve model performance after adding noise,
Phan et al. [60] proposed a method of adaptive noise addi-
tion. They perturb affine transformations of neurons and loss
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TABLE 3. Comparison of differential privacy schemes based on function mechanism.

Solution Basic model Objective function Expansion method
dPA [51] Deep Auto-Encoders Cross-entropy error function Taylor Expansion
pCDBN [52] Convolutional Deep Belief Network Energy function Chebyshev Expansion

functions used in deep neural networks and adaptively inject
noise into features based on the contribution of each out-
put to the results. This mechanism intentionally adds ‘more
noise’ into features which are ‘less relevant’ to the model
output, and vice-versa. By adding noise on the feature, affine
transformation layer, and loss function, the overall scheme
satisfies the differential privacy. Moreover, it ensures the
utility of the model to a certain extent with making pri-
vacy budget independent of the number of training epochs,
so the model can be applied to a variety of deep neural
networks.

For this kind of deep private learning mechanisms,
the fundamental theory is ERM (Empirical Risk Minimiza-
tion) [61], [62] and PAC (Probably Approximately Correct)
learning theory [63]. ERM helps to select the best learning
model by transforming the learning process into a convex
minimization problem. PAC learning estimates the relation-
ship between the number of learning samples and the accu-
racy of the model. However, there are some limitations in
deep private learning: ERM requires that the objective func-
tion should be convex and conform to the L-Lipschitz condi-
tion; PAC learning can only be applied while the algorithm
is PAC learnable, which hinders the practical development of
the private learning. Though the theoretical study is active,
it is still not suitable for real-world applications. Different
deep learning models have their own unique deployment
methods, which cannot be easily migrated to other deep learn-
ing models. The key problem to be solved in differentially
private deep learning lies in the applicability in reality. Thus,
it is an urgent need to develop a universal privacy protection
framework with more generalization.

Not accessible by Accessible by

adversary adversary
Data1 —— Teacher 1
- _» Data2 —— Teacher2 —_
Sensitive /- . Adgregate Student <«— Queries
Data Teacher
Data n Teacher n Predicted _ Incomplete

completion public data

‘ ——— Training ———> Prediction ———> Data feeding

FIGURE 8. The framework of PATE mechanism.

In addition to the above schemes, based on the idea of
knowledge aggregation and migration, Papernot et al. [64]
demonstrated a generally applicable approach for protect-
ing the privacy of training data, the Private Aggregation of
Teacher Ensembles (PATE) framework, as shown in Fig. 8.
The approach takes advantage of semi-supervised knowl-
edge migration to guarantee the training data privacy in
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deep learning, and it is applicable to any model, including
non-convex deep learning models. This method has been
extended in [65] to achieve a more advanced privacy (single
digit DP bound) accuracy in the image classification task.
The approach trains a large number of ’teacher’ models by
assembling disjoint datasets from the sensitive training set to
form a ‘teacher ensemble’ that is not published. By adding
noise to each teacher’s prediction results, a unified predictive
output is formed, which is used to train the ’student’ model.
It makes the training on students just relying on the teachers’
predictions without involving their internal parameters.

There are following advantages in PATE. When there are
some problems in one ‘teacher’, it does not have a severe
impact on the ‘student’; The attacker cannot get the internal
structure of the ‘teacher’ through the ‘student” model; Once
the ‘student’ training is completed, the ‘teacher ensemble’
can be removed, as well as the privacy it carries.

The key assumption of this model is that the student model
can access unmarked, non-sensitive public data, which statis-
tical characteristics are similarly to the training data teachers
used. Nevertheless, we need notice that it is usually difficult
to obtain this kind of data in medicine and other realistic
fields.

V. FUTURE RESEARCH DIRECTIONS

Due to the specific architecture of deep learning models,
differential privacy faces several issues in the case of com-
bining with these models. On the one hand, robust privacy
protection framework is expected to protect all kinds of deep
learning tasks; on the other hand, we hope that the model can
still maintain high performance after perturbation. Consider-
ing the current challenges and existing solutions, the future
research directions in this field may focus on the following
three aspects: the evolution of differential privacy concepts
in deep learning scenarios, the quantification of differential
privacy protection, and the correlation between differential
privacy and model robustness.

A. EVOLUTION OF DIFFERENTIAL PRIVACY RELATED
CONCEPTS IN DEEP LEARNING
From privacy protection for traditional database to training
datasets in deep learning, Differential privacy need to be
developed to match multiple iterations of high-dimensional
data in deep learning. Some practices can be taken include
more precise privacy budget allocation or relaxation methods
to enhance its practicality.

The relaxation of differential privacy has evolved with the
expansion of its application. The most common relaxations,
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the (e, §)-DP, are those algorithms rely on Gaussian noise
mechanisms or the privacy analysis following the composi-
tion theorems. Compared to the standard definition, (e, §)-
DP provides asymptotically smaller privacy losses under
composition and allows for greater flexibility in privacy
protection mechanism choosing. Compared with (¢, §)-DP,
R’enyi differential privacy [53] and Concentrated Differential
Privacy (CDP) [37] intuitively combine privacy budget with
advanced composition theorems. Bun and Steinke [66] also
relaxed the definition of differential privacy by approximat-
ing the linear upper bound of the moment function.

B. QUANTIFICATION OF PROTECTION PROVIDED BY
DIFFERENTIAL PRIVACY

The protection of differential privacy is based on strict math-
ematical proof, but because of lack of intuitionistic inter-
pretability, it is often questioned. In recent years, various
attacks steal the privacy of training samples and against model
robustness. It is challenging to determine the exact risk of an
attacker re-identifying or reconstructing data under differen-
tial privacy. Some methods use the accuracy of membership
inference attack and F1 score [67] as the evaluation indexes.
Reiter et al. [68] assessed the privacy risk of data publishing
by inference on synthetic data sets, but it is infeasible to run
a set of inference attacks to estimate the risk before data
publishing. If a model designer can provide the evidences of
effective protection of differential privacy on both theoretical
proof and experimental results, it will be an attractive security
solution for deep learning applications.

C. RELATIONSHIP BETWEEN ROBUSTNESS OF DEEP
LEARNING AND DIFFERENTIAL PRIVACY

Nowadays, differential privacy is mainly used to solve the
privacy security problem of deep learning training data, and
it only has a certain defense effect against membership infer-
ence attacks. In fact, although the threats that deep learning
faces in practical applications are various and complex, they
have the common feature, aiming at over-fitting of deep
learning.

Over-fitting is an important but not the only reason of
privacy leakage in machine learning models. It is an inherent
problem in machine learning, which limits the prediction
accuracy and generalization ability of the model. There is
evidence that differential privacy in very large data sets can
even prevent over-fitting to reduce prediction errors [69].
It means that machine learning and privacy researches may
not always play a zero-sum game between utility and privacy,
but have similar goals. Lécuyer et al. [70] pointed out that
differential privacy can be used as a good means to against
adversarial examples [71], which also expands the application
area of differential privacy.

VI. CONCLUSION

At present, the research of differential privacy in the field
of deep learning is still in its infancy. We want to figure
out that the application of differential privacy mechanism
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in deep learning is the compromise of reducing availability
or the win-win of availability and security. This paper gives
some inspirations to some extent. We start with the threats
which deep learning faced, demonstrate the related concepts
of differential privacy in deep learning and summarize the
characteristics of various models based on the deployment
location of differential privacy. Finally, we summarize some
key issues in this field, and suggest the direction for further
research.
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