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ABSTRACT Cloud computing is increasing rapidly as a successful paradigm presenting on-demand
infrastructure, platform, and software services to clients. Load balancing is one of the important issues
in cloud computing to distribute the dynamic workload equally among all the nodes to avoid the status
that some nodes are overloaded while others are underloaded. Many algorithms have been suggested to
perform this task. Recently, worldview is turning into a new paradigm for optimization search by applying
the osmosis theory from chemistry science to form osmotic computing. Osmotic computing is aimed to
achieve balance in highly distributed environments. The main goal of this paper is to propose a hybrid
metaheuristics technique which combines the osmotic behavior with bio-inspired load balancing algorithms.
The osmotic behavior enables the automatic deployment of virtual machines (VMs) that aremigrated through
cloud infrastructures. Since the hybrid artificial bee colony and ant colony optimization proved its efficiency
in the dynamic environment in cloud computing, the paper then exploits the advantages of these bio-inspired
algorithms to form an osmotic hybrid artificial bee and ant colony (OH_BAC) optimization load balancing
algorithm. It overcomes the drawbacks of the existing bio-inspired algorithms in achieving load balancing
between physical machines. The simulation results show that OH_BAC decreases energy consumption, the
number of VMs migrations and the number of shutdown hosts compared to existing algorithms. In addition,
it enhances the quality of services (QoSs) which is measured by service level agreement violation (SLAV)
and performance degradation due to migrations (PDMs).

INDEX TERMS Ant colony optimization, artificial bee colony, bio-inspired systems, cloud computing, load
balancing, metaheuristics, osmotic computing.

I. INTRODUCTION
According to the National Institute of Standards and Tech-
nology (NIST), cloud computing is defined as ‘‘pay-per-
use model for enabling available, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications, ser-
vices) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction’’ [1].
A developing number of organizations are transform to cloud
computing to meet its requests as consumers and business can
use applications without installation and access their personal
files at any computer with Internet access.

Cloud computing has three services: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software
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as a Service (SaaS). In IaaS, fundamental resources can be
accessed. PaaS provides the runtime environment for appli-
cations, development and deployment tools. SaaS allows pro-
viding software application as a service to the end users. All
hardware infrastructure elements are virtualized into virtual
entities. Virtualization is a technique that allows running
different operating systems (OSs) together on one physical
machine (PM). These OSs are separated from each other and
from the underlying physical infrastructure by means of a
special middleware abstraction called virtual machine (VM).
The software that is responsible for managing these multiple
VMs on PM is called VM kernel [2].

Cloud computing meets numerous challenges at increasing
number of users because the demand of resources shar-
ing and usage are increased rapidly. Therefore, load bal-
ancing between resources is an important challenge [3].
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Recently, worldview is turning into a new paradigm at
area of computing called osmotic computing following the
chemical osmotic behavior theory. Osmotic computing pur-
posed to achieve balanced deployment in highly distributed
environments [4], [5]. In cloud computing environment,
osmosis computing can be exploited to develop balanced
VMs that are migrated through cloud infrastructures.

Many bio-inspired algorithms prove their efficiency in
load balancing systems such as ant colony and honey bee.
However, most of them lack in achieving good results in
all aspects. Therefore, hybrid algorithms are presented to
exploits the advantages of each algorithm. In this paper,
an Osmotic Hybrid artificial Bee and Ant Colony opti-
mization (OH_BAC) load balancing algorithm is proposed.
It will open a new trend to apply osmosis technique in load
balancing.

The planning of this paper further is as follows: Section II
presents a definition of osmosis technique. Section III
presents an overview of related work in load balancing in
cloud environments. In Section IV, the proposed OH_BAC
algorithm is presented. The function of the proposed algo-
rithm is tested with CloudSim environment in Section V. The
results are presented in Section VI. The paper is concluded in
Section VII.

II. OSMOSIS TECHNIQUE
In chemistry, ‘‘osmosis’’ represents the unrestrained net
movement of molecules from a higher (low solute con-
centration) to a lower water concentration (high solute
concentration) [4]. As shown in Figure 1(a), when pure liq-
uid water and glucose are separated by a semi permeable
membrane, water moves from high to low water activity as
shown in Figure 1(b). So, osmotic pressure is important to be
applied to a solution to stop the flow of water across a semi
permeable membrane as shown in Figure 1(c). It is presented
in Equation (1) [4].

π = icsoluteRT (1)

FIGURE 1. Osmosis technique and osmosis pressure. (a) Initial state
(b) Equilibrium (c) External Pressure.

FIGURE 2. The effect of osmosis technique in Load balancing.

where π is the osmosis pressure law, i is a correction factor,
csolute is molar concentration of solution, R is ideal gas con-
stant, and T is temperature in Kelvin.

In cloud environment, this process can be used to represent
how VMs can be migrated across cloud computing as shown
in Figure 2. Figure 2(a) shows over and under loaded PMs as
a two liquids in tube, one is pure water and other is glucose.
Figure 2(b) shows how osmosis technique affects on PMs to
migrate VMs between them in order to achievemore balanced
cloud system.

III. RELATED WORK
Load balancing algorithms are divided into two classes: Static
and dynamic. In static load balancing, the balancing mecha-
nism is done before the execution. It is done based on the
probabilistic nature and no changes can be made during the
execution, so time of execution-period cannot be determined
exactly. In dynamic load balancing, the tasks are executed
dynamically between all resources and it is necessary to
monitor the current load of the system [6], [7].

A large study of different literatures was directed to dif-
ferent algorithms for dynamic load balancing. The most
algorithms that drew attention are bio-inspired algorithms.
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Many researchers looked to study the nature of bio-inspired
to balance load between cloud environments. Bio-inspired
load balancing algorithms are divided into evolutionary algo-
rithms and swarm intelligence algorithms. Both are used for
optimization issues such as load balancing and scheduling in
cloud computing.

Evolutionary algorithms are developed mimicking the nat-
ural behavior for selection and enhancing. This class of
algorithms is divided to two sub-classes genetic algorithms
and genetic programming [8]. Swarm intelligence algorithms
are depending on the behavior of some familiar living crea-
tures, such as ants, bees, birds, and fishes which they have
their own specific ways to discover the search space of the
problems [9].

Fish Swarm Algorithm (FSA) is a swarm intelligent evolu-
tionary technique which is inspired by the natural schooling
behavior of fish [10], [11]. In FSA, there are three typical
behaviors, defined as searching for food, swarming, and
following to increase the chance of achieving a successful
result by finding a greater amount of food. There are some
advantages of FSA such as non-sensitive initial artificial fish
location, flexibility and fault tolerance. Despite these advan-
tages, FSA has also disadvantages such as causing higher
time complexity, lower convergence speed, and it does not
exploit its previous experiences for next moves.

Particle Swarm Optimization (PSO) algorithm is a bio-
inspired algorithmwhich is extended from the social behavior
of bird flocking searching for food [10], [9]. In PSO, each
particle in the swarm acts a solution with four vectors, its
present position, best position found, the best placement
found by other best solution among all particles in the popu-
lation, and its speed. Its position is set in the search area based
on the best position reached by it and the best position reached
by its neighborhood. The drawbacks of PSO algorithms are
suffering from the partial optimism, which causes the less
exact at the regulation of its speed and direction. PSO cannot
solve the problems of the particles in the energy field.

The Firefly Algorithm (FA) produces flash light to attract
the mating partner and potential prey [12]. This natural phe-
nomenon is used to solve a great amount of complex load bal-
ance in cloud computing problem in managing the resources.
However, there are some disadvantageous of FA such as its
parameters are not change with the time and does not save
any history of better case for each firefly.

BAT Algorithm is bio-inspired algorithm which depends
on bats behavior [13]. When bats chase its prey, it flies unpre-
dictably by changing the velocity, and positions based on the
distance between the prey and itself.

Another algorithm is the Cuckoo search [14], [15] inwhich
lay eggs in the nest of host birds. This algorithm helps in
cheating the host cuckoo bird. This phenomenon can be used
to solve a large amount of complex load balancing problems
in managing the resources of cloud computing.

Flower pollination is another algorithm used in cloud
environment [16]. On earth, nearly 80 percent of the plants
makes flower pollination procedure. There are two types of

the pollination process; biotic which transfers pollen grain by
pollinators such as insects, birds, and bats and a-biotic polli-
nation which does not require pollinator. This phenomenon
is used to solve many complex computational and distributed
problems of the cloud computing environment.

Ant Colony Optimization (ACO) is a random selecting
algorithm which depends on the ant’s behavior [17], [18].
It depends on searching widely for food by its pheromone
trails for connection and back to their nest via shortest route
by the concentration of pheromone. The concentration of
the pheromone starts evaporating. The power of pheromone
depends on the goodness and distance of the food [19]. ACO
adapt to dynamic environments. It is extremely good in fault
tolerance and scalability which improve the performance of
the system. The downside of ACO is causing overhead due to
utilizing more than one control parameter to find the amount
of pheromone and the attractively of each movement.

Artificial Bee Colony (ABC) is another bio-inspired algo-
rithm based on honey bee’s behavior [20]. It is divided
into three stages: Scout bees, employed bees, and onlooker
bees. Scout bees are responsible for searching food source
randomly, employed bees share information of food to the
onlooker bees, and onlooker bees discover the amount of
nectar and compute the probability. Finally, they come back
to their hive and go to the dance zone to perform waggle
dance. This dance is the best approach to share data about
quality of food source. While sharing data, bees compute
the quality of food and energy waste [21], [22]. After that,
onlooker bees pick the best one and then scout honey bees
back to the chosen food source to get nectar and come back
to the hive. ABC performs well as system diversity growing.
However, various downsides of ABC incorporate lack of use
of secondary information, the possibility of losing important
data, slow down when used in sequential processing, and
the increasing number of solutions raises the computational
cost [23].

At last years, many researches find new mechanism for
load balancing by combining various algorithmic ideas to
realize higher performance. Such approaches are commonly
referred to as hybrid metaheuristics [24]. One of the exam-
ples of metaheuristics is joining ACO and ABC together.
In [25], hybrid algorithm is proposed to combine ACO and
ABC together. However, in the design of this algorithm, load
balancing parameters are not stated and inherit the waggle
dance behavior of ABC only.

In [26], Hybrid artificial Bee and Ant Colony optimization
(H_BAC) algorithm is proposed to perform load balancing
in VMs placement among hosts. It shows the strong points
of both ACO and ABC. The pheromone behavior of ACO
performs well in finding out solutions rapidly at variety
systems, so it is adaptive to dynamic environments. In the
other hand, ABC attains global load balancing its behavior
of sharing data by waggle dancing. H_BAC improves the
results in [25] by taking into consideration the parameter of
monitoring the load of VM and the decision of load balancing
before scheduling tasks in VMs.
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Recently, the scientific researches tend to apply the osmo-
sis theory from the chemistry science to form osmotic com-
puting. The goal of this paper is to propose the osmotic
behavior in order to realize the load balancing. In addition,
it integrates both ACO and ABC with the osmosis technique
in order to exploits their behavior while overcoming their
drawbacks.

IV. THE PROPOSED OH_BAC ALGORITHM
The overview of the proposed OH_BAC algorithm is
described in Figure 3. Figure 3(a) shows the unbalanced sys-
tem which contains active and not active hosts. Active hosts
in the cloud environment are divided into under loaded, over
loaded and balanced hosts. As shown in Figure 3(a), there are
no any balanced hosts in the system. In Figure 3(b) OH_BAC
is applied for monitoring the state of system balance. Then,
VMs are migrated from over to under loaded hosts to achieve
load balanced system as shown in Figure 3(c).

OH_BAC inherits the main behaviors of ACO in discov-
ering solutions rapidly at diversity systems and ABC in its
behavior of sharing information by waggle dancing. Wag-
gle dance is represented in OH_BAC as a knowledge base.
OH_BAC applies knowledge base with osmosis technique
to sort PMs according to energy consumption instead of
selecting PMs randomly by ACO. OH_BAC takes into con-
sideration the dynamic value of threshold according to state
of cloud system.

Figure 4 shows the flow chart of the proposed OH_BAC
algorithm. In the following, the OH_BAC algorithm is
explained:

• In cloud computing environment each PMhas a different
number of VMs. The set of all PMs in datacenter is
P = {P1,P2, . . . . . . ,Pn} where n is the number of
PMs and the set of all VMs in datacenter is V =

{v1, v2, . . . . . . , vm} where m is the number of VMs.
• In OH_BAC, Scout bee is responsible for calculating
standard deviation (σ ) for each PM to find both under
and over utilized hosts. This need to find the load of each
PM which depends on the load of VMs deployed into it.
The average load of jth VM in ith PM (V̄ij) is calculating
as following:

V̄ij = UCpuj + UMemj + UBwj (2)

whereUCpuj ,UMemj ,UBwj is the CPU utilization, memory uti-
lization, and bandwidth utilization of the jth virtual machine
VMj, respectively.

The average load of PMi (P̄i) and standard deviation for
PMi (σi) can be calculated as following:

P̄i =

∑m
j=1 V̄j
m

∀V1,2,.....m ∈ Pi (3)

σi =

√√√√1
n

n∑
i=1

(P̄T − Pi)
2

(4)

FIGURE 3. System overview (a) Before load balance (b) Applying Load
balance with the proposed OH_BAC technique (c) Load balanced system
(d) The legend of the system.

where n is the number of all PMs and PT is the average load
of all PMs can be calculated as following:

P̄T =
1
n

n∑
i=1

P̄i (5)

• If σi is less than lower threshold, then PMi is under-
utilized host. If σi exceed upper threshold, then PMi is
over utilized host. Threshold is computed as following:
Lower threshold is the minimum P̄i among all PMs and
the upper threshold is equal P̄T .
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FIGURE 4. OH_BAC flowchart.

• After finding under/over utilized hosts, Scout bee makes
its waggle dance in knowledge base to inform all swarms
about its results.

• In this stage at OH_BAC algorithm, knowledge base
performs osmosis technique to arrange hosts by (6) and
takes into considerations power consumptions for each
PM as shown in Figure 4.

πPMn = iPCPMnNPMsLPMn (6)

where πPMn is the osmotic law, i is a correction factor,
PCPMn is a power consumption of PMn, NPMs is a constant
represented the number of PMs in cloud system, and LPMn is
the load of PMn.
• Then send the new hosts’ list to ACO. After that ACO
starts its trip to find the suitable PM among all osmotic
hosts to perform virtual machine migration from it.

• ACO calculates its fitness (Fi) according to PM’s clas-
sification (over/under utilized hosts) refer to (7) and (8),
respectively.

Fi =
(τi)α ∗ (ηi)β∑m
i=1 (τi)

α
∗ (ηi)β

(7)

Fi =
(1/τi)α ∗ (ηi)β∑m
i=1 (1/τi)

α
∗ (ηi)β

(8)

where α and β give relative importance between pheromone
τi, and edge weight ηi. The pheromone parameter τi is repre-
sented by the load of PM i and ηi is the bandwidth.
• Hence, select the most suitable PMi, put it in migration
state and inform all swarm by knowledge base.

• Then, The pheromone is updated as following:

τi = (1− ρ) τi +1τi (9)

In the Equation (9) (0 < ρ < 1) is the evaporation rate and
1τi is defined as follows:

1τi =
1

(ηi)
γ + Pi (10)

where Pi is the load of PM and γ is a parameter to define the
proportional importance of the heuristic value with relation
to the load condition.
• After that, Employed bee performs its calculations to
select suitable VM to be migrated to another host by
the Minimal Migration Time (MMT) policy [20] which
is the amount of RAM utilized by the VM divided by
the spare network bandwidth available for the hosti as
following:

RAM (a)
net i

≤
RAM (u)
net i

∀a, u ∈ Vj (11)

where Vj is set of VMs currently allocated to hosti and net i
is the spare network bandwidth available for the hosti. The
parameters RAM (a) andRAM (u) are the amount of RAM
currently utilized by the VMa,VMu, respectively.
• After this stage, ACO performs fitness function to find
best mapping relationship between selected VMs to be
matched to the most suitable PMwhich compatible with
osmotic list of hosts from Knowledge base 19] as (12).

Fitness
(
VM j,Pmi

)
=
PmCPU i−VMCPU j

VMCPU j

.
Pmmemi−VMmemj

VMmemj
.

Pmnet i−VMnet j

VMnet j
.
Pmstoragei−VM storagej

VM storagej

(12)

where VMCPU j ,VMmemj ,VMnet j , and VM storagej represent
the VM’s parameters (CPU utilization, memory, bandwidth,
and the storage size, respectively) which VM needs, and
PmCPU i ,Pmmemi ,Pmnet i , and Pmstoragei represent the PM’s
parameters (CPU utilization, memory, bandwidth, and the
storage size, respectively) which PM has.
• Finally, onlooker bees take its information about
VM which will be migrated from employee bees and
suitable PM to migrate VM to it by knowledge base.
Onlooker bees perform migration by moving the VM to
the suitable PM.

V. SIMULATION ENVIRONMENT
The proposed OH_BAC algorithm has been implemented
using CloudSim API 3.0.3. Table 1 shows the simulation
environment, where there are 50 PMs. There are two types of
PMs, 50% of hosts are HP ProLiant ML110 G4 (Intel Xeon
3040, 1860MHz, 2 cores, 4GB) and the other areHP ProLiant
ML110 G5 (Intel Xeon 3075, 2 cores × 2660 MHz, 4GB).
Each host has 1GB/s network bandwidth. The MIPS rating is
1860 MIPS for each core of HP ProLiant ML110 G4 hosts,
and 2660 MIPS for each core of HP ProLiant ML110 G5
hosts.
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TABLE 1. Parameters setting of cloud simulator.

The type of all VMs which are deployed on the PMs have
a single core, RAM is divided based on number of cores for
each VMs types: High-CPU Medium Instance (2500 MIPS,
0.85 GB); Extra Large Instance (2000 MIPS, 3.75 GB);
Small Instance (1000 MIPS, 1.7 GB); and Micro Instance

TABLE 2. Comparison between host overloading detection algorithms
and bio-inspired algorithms.

(500 MIPS, 613 MB). We considered 50 heterogeneous VMs
in a data center. The other parameters of OH_BAC are shown
in Table 1.

VI. SIMULATION RESULTS
In this section, OH_BAC algorithm is compared with exist-
ing schemes in two experiments. First, OH_BAC algo-
rithm is compared with fixed parameters against ACO [18],
ABC [20], H_BAC [26] and host overloading detection algo-
rithms provided by [27] which are Inter Quartile Range (Iqr),
Median Absolute Deviation (Mad), and Local Regression
(Lr) algorithms with Minimal Migration Time (MMT) pol-
icy. Second, OH_BAC algorithm is compared with variable
loads of tasks against bio-inspired algorithms (ACO [18],
ABC [20], and H_BAC [26]). In addition, the time complex-
ity of OH_BAC algorithm is measured and compared with
bio-inspired algorithms. The fixed parameters of ACO, ABC,
and H_BAC are shown in Table 1.

A. COMPARISON WITH HOST OVERLOADING
DETECTION ALGORITHM
In the first experiment, the comparison between the pro-
posed OH_BAC algorithm with H_BAC [26], ABC [20],
ACO [18], and other algorithms provided by [27] in terms
of energy consumption, the SLA Violation (SLAV), SLA
Violations Time per Active Host (SLATAH), Performance
Degradation due to Migrations (PDM), number of hosts shut-
downs, and number of VMs migrations. This experiment is
applied with fixed parameters. The number of tasks is equal
to 50 tasks and the number of both hosts and VMs are equal
to 50 which are stated in Table 1.

Table 2 shows the simulation results of the comparison
between the proposed OH_BAC algorithm with host over-
loading detection algorithms and bio-inspired algorithms.
It is shown that, H_BAC consumes energy more than ACO
and ABC but OH_BAC decrease energy consumption with
compared by other algorithms. OH_BAC improves H_BAC
by applying osmotic technique as it takes into consideration
the power consumption of each PM to select the lowest power
consumption.

QoS is a necessary matter in cloud computing systems.
QoS is formed in the form of SLAs, which are service-level

42740 VOLUME 7, 2019



M. Gamal et al.: Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing

requirements for data center. SLA is considered whenmaking
a migration decision. When overloading and under loading
cases occur, the PMs are ranked according to their loads.
So that the suitable destination PM for VM migrations is
detected when its capacity is suitable according to SLA [28].
SLAV is a useful metric used to evaluate the SLA delivered
by a VM in an IaaS cloud by the following equation.

SLAV = SLATAH× PDM (13)

where SLATAH is service level agreement violations time per
active host which formal by (14). SLATAH is a percentage of
time that active host experienced the usage of CPU 100% and
PDM is performance degradation due to migrations as (15).

SLATAH =
1
N

N∑
i=1

Tsi
Tai

(14)

where N is the number of PMs, Tsi is the whole time during
i-th PM is utilized 100%; Tai is the total number of i-th PM
that is in the active state.

PDM =
1
M

M∑
j=1

Cdj
Crj

(15)

whereM represents the number of VMs; Cdj is the evaluation
of the performance degradation of the jth VM caused by
migrations; Crj is the overall CPU capacity demanded by the
jth VM.
In Table 2, SLA Violation and its metrics are presented.

As shown in Table 2, ACO and ABC have more SLAV with
compared to other algorithms while OH_BAC performs high
improvement with compared by all other algorithms. In addi-
tion, OH_BAC enhances the PDM because in OH_BAC algo-
rithm, ACO and ABC cooperate to select the best VM to
migrate to the most suitable PM. However, OH_BAC has
more SLATAH with compared to other algorithms. As from
the result of (14) which dependent on the number of active
hosts, OH_BAC minimizes the number of active hosts with
compared to other algorithms which determines the hosts that
was active and then shutdown.

It is clear from the results that OH_BAC achieves better
results than H_BAC and other algorithms. This is due to
OH_BAC actives the most suitable osmotic host among all
PMs in the system to decrease power consumption. OH_BAC
takes into consideration the power consumption of each PM
between active hosts with refer to (6) to select the lowest
power consumption.

The experiments considered number of VM migrations as
a metric to compare the performance of other algorithms. It is
shown at results in Table 2 that OH_BAC and H_BAC have
the least number of VM migrations among other algorithms.

Although, ABC gets better than ACO and host overloading
detection algorithms provided by [27], OH_BAC gets more
enhancement than H_BAC and ABC. This is due to ACO and
ABC together in OH_BAC select the most suitable VM to
migrate from the most suitable overloaded host.

Finally, OH_BAC improves energy consumption, SLAV,
number of VM migrations, and number of hosts’ shutdowns
with compared to other algorithms. However, it has more
SLATAH with compared to other algorithm but it is not
effected in the performance of the cloud system.

B. COMPARISON WITH BIO-INSPIRED ALGORITHMS
In the second experiment, the loads of tasks are variable as the
number of tasks is gradually increased from 50 to 250 tasks.
All the previous parameters which were measured in the first
experiment were also measured in the second experiment as
shown in Figures 5-10.

FIGURE 5. The comparison of energy consumption in bio-inspired
algorithms.

FIGURE 6. The comparison of SLA Violation in bio-inspired algorithms.

Figure 5 shows the energy consumption of OH_BAC
and the other bio-inspired algorithms. It is shown that
H_BAC consumes more energy than ACO and ABC. How-
ever OH_BAC achieves improvements by about 27% com-
pared with H_BAC, 21% compared with ABC algorithm, and
18% compared with ACO algorithm.

From Figure 6 to Figure 8, SLAV and its metrics; PDM and
ALATAH, respectively are presented. ACO and ABC have

VOLUME 7, 2019 42741



M. Gamal et al.: Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing

FIGURE 7. The comparison of SLA Violation metrics (PDM) in bio-inspired
algorithms.

FIGURE 8. The comparison of SLA Violation metrics (SLATAH) in
bio-inspired algorithms.

FIGURE 9. The comparison of number of hosts’ shutdowns.

more SLAV compared with OH_BAC and H_BAC. However,
OH_BAC is better than H_BAC by 98%, 99% compared with
ACO, and 94% compared with ABC. OH_BAC enhances the
PDM by about 84% compared with H_BAC, 69% compared

FIGURE 10. The comparison of number of VMs migrations in bio-inspired
algorithms.

with ABC algorithm, 92% compared with ACO algorithm.
Figure 7 shows that H_BAC starts with PDM less than ACO
and ABC. However with increasing loads in cloud environ-
ments, H_BAC increases PDM as ACO algorithm due to
random selection feature. However in OH_BAC, ABC and
ACO cooperate to select the best VM to be migrated.

OH_BAC has more SLATAH compared with H_BAC,
ABC, and ACO algorithms by 24%, 34%, and 30%, respec-
tively as shown in Figure 8. However, it is not affected in
the performance of the cloud system. As from the result of
Equation (14) which dependent on the number of active hosts,
OH_BAC minimizes the number of active hosts compared
with H_BAC, ABC, and ACO algorithms by 93%, 91%,
94%, respectively as shown in Figure 9 which determine
the hosts that was active and then shutdown. The number of
shutdown hosts is not related to the number of hosts in the
cloud environment. The host is shutdown if this host has not
any tasks and this process may be done after VM migrations.
If all VMs in one host are migrated, then the host will be off
to decrease the power consumption. However, the host may
be return active if there is one VM is migrated to it again.
In OH_BAC algorithm, if there is any migration, OH_BAC
checks first the active hosts. After that, if all active hosts
cannot accept this VM, then it checks the not active hosts and
open one.

Live virtual machine migration is a costly process that
contains some amount of CPU processing on the source
PM. Also, it depends on the bandwidth between the source
and destination PMs. As well as, migrating VM process
affects time as there are the down time of the services on
the migrating VM and the total migration time. So, our goal
is to minimize the number of VM migrations. Number of
VM migrations doesn’t depend on number of tasks. It is
possible that one task is migrated more than 1000 time to
achieve the balanced system. Then, the algorithm becomes
efficient if it achieves balanced system with minimum num-
ber of migrations.
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Hence, number of VMmigrations is considered as a metric
to compare the performance of the proposed algorithm with
other algorithms. It is shown in Figure 10 that, OH_BAC and
H_BAChave the least number of VMmigrations among other
algorithms. Although, ABC gets better than ACO and the
algorithms provided by [27], OH_BAC is better thanH_BAC,
ABC and ACO by about 94%, 95%, and 96%, respectively.
This is due to ACO and ABC perform better together in
OH_BAC in order to select the most suitable VM to migrate
from the most suitable overloaded host.

C. TIME COMPLEXITY
Table 3 shows the time complexity of OH_BAC compared
with other bio-inspired algorithms. It is shown that OH_BAC
has a minimum value of processing time. The time com-
plexity of OH_BAC is calculated as follows: O(2n 2

+ 17n)
due to the consumed time by ABC and ACO in OH_BAC is
O(n) as each of these algorithms has one inner loop to search
suitable food source among whole cloud system. As well as,
the consumed time by knowledge base is O(n2) as knowledge
base has two inner loops to sort under loaded PMs and over
loaded PMs. Hence, time complexity of OH_BAC can be
summarized as O(n2). Note that the time complexity shown
in the table before final abbreviation. Precisely, that leads to
O(n2) which is the result of time complexity of OH_BAC,
H_BAC and ACO, as along with O(n3) of ABC.

TABLE 3. Time complexity of bio-inspired algorithms.

VII. CONCLUSION
In this paper, the osmosis theory from the chemistry science
is proposed to form osmotic computing and find load bal-
ancing for VM placement by OH_BAC algorithm. OH_BAC
applies osmosis technique to provide energy efficient cloud
computing environment. In OH_BAC algorithm, ACO and
ABC cooperate to select the best VM to migrate to the most
suitable PM. In addition, OH_BAC makes activation to the
most suitable osmotic host among all PMs in the system
to decrease power consumption. The proposed algorithm
has been simulated to calculate the performance at various
metrics in two experiments with fixed and variable loads.
OH_BAC algorithm is compared with ACO, ABC, H_BAC
and host overloading detection algorithms. The simulation
results showed that OH_BAC improves energy consumption,
SLAV, number of virtual machine migration, and the number
of hosts’ shutdowns when compared with other algorithms
in fixed and variable loads. However, OH_BAC has more
SLATAH when compared with other algorithms but it is not
affect the performance of the considered cloud system.
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