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ABSTRACT This paper proposes a combination of phasor particle swarm optimization (PPSO) and a
gravitational search algorithm, namely a hybrid PPSOGSA algorithm, for optimal power flow (OPF) in
power systems with an integrated wind turbine (WT) and solar photovoltaic (PV) generators. The OPF
formulation includes the forecasted active power generation of WT and PV as dependent variables, whereas
the voltage magnitude at WT and PV buses is considered as control (decision) variables. Forecasting the
output power of WT and PV generators is based on the real-time measurements and the probabilistic models
of wind speed and solar irradiance. The proposed OPF approach and the solution method are verified on
the IEEE 30-bus test system. The robustness and efficiency of the proposed PPSOGSA algorithm in solving
the OPF problem are evaluated by comparing with 20 well-established metaheuristic optimization methods
under the same system data, control variables, and constraints. The statistical features of the OPF results are
estimated by using the Monte Carlo method.

INDEX TERMS Heuristic algorithms, load flow, optimization, wind power generation, solar power gener-
ation, power systems.

I. INTRODUCTION
The continuous increase in consumption, the need to reduce
greenhouse gas emissions (COx,NOx and SOx), deregulation
and liberalization of the electricity market, and privileged
prices of green energy, have led to the rapid growth of renew-
able energy sources (RES) in the last two decades. It seems
that the wind and solar energy are the best alternatives to fos-
sil fuels for power generation. The fast-growing RES utiliza-
tion has been enabled by using the enhanced technology of
WT and PV generation systems that results to reduce the cost
of system installations. Furthermore, it may be argued that
the wind turbine and solar photovoltaic generation systems
are proven and standardized technologies. As reported in [1],
electricity from RES such as WT and PV will shortly be low-
priced than from fossil fuels.

Depending on size, locations and technical characteristics
of WT and solar PV generators they may have a signifi-
cant impact on performances of power system operation in
terms of economic indicators such as fuel cost in thermal
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power plants, power quality indicators and power losses.
The optimal power flow (OPF) means an economical and
stable operation of the power system, which is achieved by
appropriate settings of the system’s control variables. In the
mathematical formulation, this is a large-scale, nonlinear,
nonconvex, static, constrained problem with both continuous
and discrete control variables. The integration ofmultipleWT
and PV arrays into power system escalates the complexity
of the OPF problem due to its intermittent power generation
characteristics [2], [3].

The general framework for defining and solving the OPF
considering WT and PV generation must include the follow-
ing aspects: (i) the significance and context of this issue;
(ii) modeling WT and PV output powers due to uncertain
characteristics of wind speed and solar irradiation; (iii) choice
of objective functions; (iv) defining technical constraints,
control variables and dependent variables, and (v) OPF prob-
lem solution methodology. Recently, several researchers have
dealt with the OPF problem focusing on some of the above
tasks.

To model the stochastic behavior of wind speed at
a specific location most authors [3]–[10] use Weibull
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probability distribution functions (PDFs), whereas the
stochastic nature of solar irradiance can be described by
lognormal PDF [3], [11] or Beta PDF [12] .

Different solution techniques towards OPF problem have
been presented in the literature, as well as various ways
of inclusion of WT and PV generation in the OPF model.
In recent research works, most of the researchers considered
metaheuristic population-based methodology for the OPF
problem solution.

The authors in [3] used an adaptive differential evolution
(SHADE) technique to minimize total generation cost which
includes over and underestimation of stochastic sources -
WT and PV taking into account as a reserve and penalty
costs. A self-adaptive evolutionary programming (SAEP)
method is proposed for solving OPF problem in power sys-
tems with integrated WT farms, where the main objective
function includes the shortage and surplus power of WT
with associated opportunity costs. A modified version of the
bacteria foraging algorithm (BFA) is employed in [5] and [6]
to solve the OPF problem the considered objective func-
tion includes the cost of thermal generation and the cost
of purchase from wind power generation, the penalty costs
corresponding to surplus and deficit of wind generation,
and the cost corresponding to reactive power management
of DFIG in WT. Chang et al. [7] proposed an evolution-
ary particle swarm optimization (EPSO) technique to solve
the OPF in a wind-thermal generation system, considering
up-spinning reserves, down-spinning reserves and the oper-
ational constraints of the generators. Roy and Jadhov [8]
implemented the Gbest guided artificial bee colony (ABC)
algorithm for OPF problem with multiple cost components
including thermal generators fuel cost, probable cost of WT
power to be purchased, expected penalty cost while none
utilization of available WT power due to network conges-
tion, expected reserve cost due the deficiency of WT power,
and emission cost. Biogeography-based optimization (BBO)
algorithm is used in [9] to solve probabilistic multi-objective
OPF problem in a power system with WT generation taking
into account the relationship in wind speed and the load.
The hybridization of genetic algorithm and teaching-learning
optimization (G-TLBO) technique is proposed in [10] to
simultaneous minimization of the fuel cost for thermal units
and the penalty costs for not using available power and
required reserve of wind generation. The authors in [13]
applied an improved differential evolution algorithm indi-
cated as DEa-AR for solving the OPF problem considering
RES i.e. WT, PV and mini-hydro generator units. Kotur and
Stefanov [14] proposed the OPF methodology using optimal
control of power converters for the minimization of power
losses in the system with offshore wind power plants. For
real time OPF in every 5-15 min intervals, the authors [15]
proposed the valuation ‘best-fit’ involvement factors by con-
sidering the minute-to-minute variability of WT and PV
generation.

In this paper, a novel hybrid PPSOGSA algorithm is
proposed to solve the OPF problem in power systems with

integrated WT and solar PV generators. The main contribu-
tions of this work are:
• Application of a novel hybrid PPSOGSA algorithm to
solve the OPF problem

• The OPF formulation includes the forecasted active
power generation of WT and PV as dependent variables;
whereas the voltage magnitude at WT and PV buses are
considered as control (decision) variables

• Forecasting the output power of WT and PV generators
based on real time measurements and probabilistic mod-
els of wind speed and solar irradiance.

The rest of this paper is organized as follows: Section II
presents the OPF problem formulation. The probabilistic
models of WT and PV generation and calculation of their
forecasted output powers are explained in Section III. The
proposed hybrid PPSOGSA algorithm and its application on
the OPF problem are explained in Section IV. The simulation
results are presented in Section V, and the conclusions are
listed in Section VI.

II. PROBLEM FORMULATION
The integration of WT and PV makes the OPF problem more
complex due to their uncertain power generation characteris-
tics. The OPF problem incorporating the uncertainties of WT
and PV generation is formulated in this paper under several
practical assumptions, as follows.
• The active power generations of WT and PV are non-
dispatchable, and accounts in the OPF problem as fore-
casted values.

• The OPF is performed sequentially in predefined time
intervals t of 10min [15]. Considering the sampling time
in wind speed and solar irradiance measurements of 1
min, there are ten readings at the time interval t . Based
on the measurement data, probabilistic models of wind
speed and solar irradiance, and technical characteristics
of WT and PV units the forecasted active power gener-
ation of WT and PV can be calculated.

• The WT and PV units are capable to produce reactive
power in the range of -0.4 p.u. to 0.5 p.u. of their
active power [3], [5], [11], [16]. Therefore, WT and PV
buses voltage magnitudes can be considered as control
variables in the OPF problem.

Mathematically, the OPF problem can be expressed as
follows [17].

min F(x, y) (1)

Subject to : g(x, y) = 0 (2)

h(x, y) ≤ 0 (3)

x εX (4)

where: F is the objective function to be minimized;x
shows vector of control variables, active power outputs of
thermal units (PG) excluding at the slack bus (assumed
bus 1), generator voltages including WT and PV (VG),
tap settings of transformer (T ), and (QC ) is the shunt
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VAR compensations:

x = [PG2. . .PGNG,VG2. . .VGNG,VWT ,VPV ,T1. . . TNT ,

QC1. . .QCNC ] (5)

NG, NT and NC indicate the number of thermal power plants,
regulating transformer and VAR compensators, respectively.
y is the vector of dependent variables consisting of slack bus
power (PG1), voltages at load bus (VL), reactive power outputs
of the generator(QG), and loads of transmission line (Sl):

y = [PGsl,VL1. . .V LNL ,QG1. . .QGNG,QWT ,QPV ,

Sl1. . . S lNTL] (6)

NL and NTL represent the number of load buses and
transmission lines.

A. CONSTRAINTS
The equation (2) shows the equality constraints which are the
classical nonlinear power flow equations.

Pi − Vi
NB∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0 (7)

Qi − Vi
NB∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0 (8)

where, i = 1, . . . ,NB;NB represent the number of busses;
Pi active power; Qi reactive power injected at bus i; the
voltage angle between i and j is denoted by θij; Gij is the real
part and Bij is the imaginary part of bus admittance matrix
correlating to ith row and jth column, respectively.
The equation (3) shows the inequality constraints consid-

ering the functional operating factors, i.e. voltage magnitudes
and their limits at load buses, reactive power output limits at
the generator and branch flow limits.

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, . . . ,NL (9)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, . . . ,NG (10)

Sli ≤ Smax
li i = 1, . . . ,NTL (11)

Constraints (4) define the space of possible solutions for
the OPF problem:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, . . . ,N (12)

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, . . . ,NG (13)

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . . ,NT (14)

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i = 1, . . . ,NC (15)

It is pertinent to mention that the control variables i.e.
(x) are self-constrained. Moreover, Inequality constraints of
the dependent variables i.e. (y) are restricted by adding them
as the quadratic penalty terms to the objective function [17].

B. OBJECTIVE FUNCTION
The main objective function F has considered in OPF prob-
lems is the total cost of fuel in thermal generating units
(Fcost). The cost characteristics of a thermal generating unit
can be express as a quadratic function of the output power of
generator PG:

min
x
Fcost (x, y) = min

x

NG∑
i=1

(
ai + biPGi + ciP2Gi

)
(16)

where ai, bi and ci are the cost coefficients of the ith ther-
mal power plant, and PGi is the corresponding active power
output.
The objective function for minimization of active power

loss (Ploss) in the system has expressed as follow:

min
x
Ploss (x, y)

= min
x

NTL∑
L=1

gL,ij
[
V 2
i + V

2
j − 2ViVj cos

(
θi − θj

)]
(17)

where gL,ij is the conductance of transmission line L con-
necting the ith and jth bus; Vi, Vj, θi, and θj are the voltage
magnitudes and voltage angles at bus i and j, respectively.
The bus voltage is one of the most essential and signifi-

cant safety and service quality indices. In this case the main
objective is to minimize the load bus voltage deviations (VD)
is expressed as follow:

min
x
VD (x, y) = min

x

NL∑
i=1

∣∣∣Vi − V ref
i

∣∣∣ (18)

where Vi shows the voltage magnitude of the ith bus, and V ref
i

is the reference value of the voltage magnitude at bus i, which
is generally considered as 1 p.u.
Optimization of different objective functions is performed

to achieve a compromise solution. The multi-objective OF
problem can be solved by using a weighted sum method as
follows:

min
x
MOF (x, y) = min

x
{wF · Fcost(x, y)+ wP · Ploss(x, y)

+wV · VD(x, y)} (19)

where wF , wP, and wV are weighting coefficients.

III. MODELING OF WT AND PV GENERATION
A. WT POWER GENERATION
The output power of a WT, for given wind speed (v) can be
analyzed as follow:

PWT (v) =


0 v ≤ vci
v− vci
vn − vci

· Pwtn vci < v ≤ vn

Pwtn vn < v ≤ vco
0 v ≥ vco

(20)

where Pwtn, is the nominal power; vn is nominal wind speed;
vci is cut-in wind speed; and vco is cut-out wind speed of the
wind turbine.
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The stochastic nature of wind speed in a predefined time
period at a specific locality can be generally defined by
Weibull PDF:

fv(v) =
k
C
·

( v
C

)k−1
· e
−

( v
C

)k
(21)

The cumulative density function (CDF) for the Weibull
distribution is:

Fv(v) = 1− ·e−(
v
C )

k
(22)

The CDF with its inverse has been considered for calculating
the wind speed:

v = C · (− ln (r))
1
k (23)

where fv(v) is Weibull PDF of wind speed; C and k are the
scale and shape parameters of the Weibull distribution; r is a
random number uniformly distributed on [0], [1].

In practice, parameters C and k can be calculated, approx-
imately, using mean (µtv) and standard deviation (σ

t
v ) of wind

speed at the tth time interval:

k t =
(
σ tv

µtv

)−1.086
(24)

C t
=

µtv

0
(
1+ 1

/
k t
) (25)

where 0 (x) is the gamma function. Note that the µtv and σ
t
v

are calculated from the wind speed measurements in consid-
ered time interval t .
The OPF is performed sequentially in predefined time

intervals of 5 to 15 min [15]. In this work the time interval
t is adapted to be 10 min. Considering the sampling time in
wind speed measurements of 1 min, there are ten readings of
the wind speeds at the time interval t . Therefore, the mean
and standard deviation of wind speed can be calculated from
measured data which correspond to this time interval. Based
on mean and standard deviation of wind speed, the shape
parameter (k) and the scale index (C) of Weibull PDF can be
calculated by using (24) and (25). The measured wind speed
data in the time interval t of 10 min are base for forecasting
the wind speed and consequently output power of WT in the
next time interval of 10 min.

To realize the Weibull PDF in discrete form, the tth time
interval is divided into Nv states, where the corresponding
wind speed and probability for each state (g = 1÷Nv) are cal-
culated by using (21) and (23), respectively. The forecasted
output power of WT is calculated based on the probability of
all possible states for that time interval:

PWT =

Nv∑
g=1

PWTg · fv
(
vtg
)

Nv∑
g=1

fv
(
vtg
) (26)

where vtg is the gth state of wind speed at the tth time interval;
PWTg is the power generation of WT calculated using (20) for

v = vtg; fv
(
vtg
)
is the probability of the wind speed for state

g during the specific interval t .

B. PV POWER GENERATION
The output power generated of a PV unit is dependent on the
solar irradiance [3]:

PPV (S) =


Ppvn

S2

SstcRc
for S < Rc

Ppvn
S
Sstc

for S ≥ Rc

(27)

where Ppvn is the nominal output power of the PV unit; Sis
the solar irradiance on the PV module surface (W/m2); Sstc is
the solar irradiance at standard test conditions; Rc is a certain
irradiance point.

Beta PDF is suitable to model the stochastic nature of solar
irradiance:

fs (S) =


0 (α + β)

0 (α) 0 (β)
· S(α+1) · (1− S)(β−1) ,

for 0 ≤ S ≤ 1, α ≥ 0, β ≥ 0
0, otherwise

(28)

In the above equation the S represents the solar irradiance in
kW/m2; fs(S) is Beta distribution function of S and α, β shows
its shape parameters; and 0 represents Gamma function.

Shape parameters of Beta PDF can be obtained based on
the mean (µs) and standard deviation (σs) of solar irradiance
calculated from measured data in a time interval t:

β t =
(
1− µts

)
·

(
µts
(
1+ µts

)(
σ ts
)2 − 1

)
(29)

αt =
µts · β

t

1− µts
(30)

The solar irradiancemeasurements aremade available with
the sampling time of 1 min. Therefore, the mean and standard
deviation of solar irradiance can be calculated frommeasured
data which correspond to the tth time interval of 10 min.
Based on the mean and standard deviation of solar irradiance,
the shape parameters of Beta PDF (α and β) can be calculated
using (29) and (30).

To realize Beta PDF in discrete form, the tth time interval
is divided into Ns states, where the corresponding solar irra-
diance and probability for each state (g = 1÷Ns) calculated
using equation (28). The forecasted output power of PV is
evaluated considering the probabilities of all solar irradiance
states in the observed time interval.

PPV =

Ns∑
g=1

PPVg · fs
(
S tg
)

Ns∑
g=1

fs
(
S tg
) (31)

where S tg is the gth state of solar irradiance at the tth time
interval; PPVg is the power generation of PV calculated using

(27) for S = S tg; fs
(
S tg
)

is the probability of the solar
irradiance for the state g during the specific time interval t .
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IV. SOLUTION METHOD
An improved hybrid PSOGSA [18], namely hybrid
PPSOGSA algorithm, is proposed in this paper to solve the
OPF problem. The hybrid PPSOGSA algorithm is a combina-
tion of phasor particle swarm optimization (PPSO) [19] and
gravitational search algorithm (GSA) [20]. The improvement
of the proposed PPSOGSA algorithm in relation to the orig-
inal PSOGSA algorithm is based on modeling the particle
control parameters with a phase angle (θ ). In the new hybrid
PPSOGSA algorithm the periodic nature of trigonometric
sine and cosine functions is utilized to represent the particle
control parameters (c1 and c2) through phase angles θ .

Our proposed algorithm is a type of hybrid metaheuris-
tic optimization technique applied in optimization problems.
PPSOGSA algorithm involves a stochastic search method
based on population, where the size of the population is
defined by a number of search agents (N). We represent these
agents by a vector (xi) as in (5) whose entries correspond
to the control variables of the specific optimization problem
at hand. The search space dimension (n) is defined by the
number of control variables involved. The techniques essen-
tially generate a new population in an iterative successive
correction mechanism by the application of stochastic search
operators on the current population [17]. Below we expand
upon the general structure of a hybrid PPSOGSA algorithm
in detail.

Initialization
1. The objective function F(xi) and space of possible

solutions X;
2. Generate an initial population size, where the starting

positions of N agents are randomly selected between
the minimum and maximum values of the control vari-
ables. Set the iteration counter: iter=1
Iterative procedure and calculation

3. The fitness value for each agent in the current popula-
tion POP(iter).

4. Generate new population POP(iter+1) by placing
the algorithmic operators on search agents from the
POP(iter). For the proposed PPSOGSA algorithm the
operators for updating the current velocity and the cur-
rent position of agents are as follows:

vi (iter + 1) = r1 · vi (iter)

+ r2 ·|cos θi (iter)|2·sin θi(iter) · ai (iter)

+ r3 · |sin θi (iter)|2·cos θi(iter)

· (gbest (iter)− xi (iter)) (32)

xi (iter + 1) = xi (iter)+ vi (iter + 1) (33)

The phase angle (θ ) is updated using the following
equation:

θi (iter + 1) = θi (iter)+ |cos θi (iter)

+ sin θi (iter)| · 2π (34)

Initial positions of N agents (initial population) are
randomly generated in the search space of the problem

with their own phase angle θi through uniform distribu-
tion U (0, 2π ).

5. Repeat the iterative procedure until the stop criteria is
reached.

6. Report best solution. End.
In (32) gbest denotes the best solution (position) among all

agents best positions achieved so far. The gbest is calculated
in each iteration within the above iterative procedure. The
acceleration of agents, ai, is updated using the equations
given in [20]. r1, r2, and r3 are random numbers in the range
of [0], [1].

A. APPLICATION OF PPSOGSA FOR OPF
The proposed hybrid PPSOGSA approach has been applied
to solve the OPF problem. Application of the proposed
PPSOGSA approach in solving the OPF problem considering
WT and PV generation can be described in the following
steps:
Step 1: Read the input data including the power system

configuration, lines data, transformers data, shunt VAR com-
pensators data, loads data, and generation units data.
Step 2: Specify the control variables and their limits;

Specify the dependent variables and their limits; Specify the
objective function to be optimized.
Step 3: Calculate the forecasted output power of WT and

PV units, as described in Section III.
Step 4: Set the algorithmic parameters, such as the popu-

lation size and the maximum number of iterations; Generate
an initial random population of N search agents.
Step 5: Run the power flow program for each agent from

the current population and calculate the corresponding values
of the objective function (fitness values).
Step 6: Apply the PPSOGSA operators to create a new

population of agents (i.e. improved solutions of the problem).
Step 7: Repeat steps 5-6 until the stop criteria is reached,

i.e. the max number of iterations.
Step 8: Report the optimal results.

V. SIMULATION RESULTS
The OPF simulations are performed on the IEEE 30-bus test
system with the total active and reactive loads of 283.4 MW
and 126.2 MVAr, respectively. The basic IEEE 30-bus test
system consists of 41 transmission lines, six thermal gen-
erators at the buses 1, 2, 5, 8, 11 and 13, four transformers
with off-nominal tap ratio at lines 6-9, 6-10, 4-12 and 28-27,
and nine shunt VAR compensators at the buses 10, 12, 15,
17, 20, 21, 23, 24 and 29. The limits of the transformer tap
settings, the shunt VAR compensations, and the generator
voltages are considered to be (0.9, 1.1) p.u., (0, 5) MVAr,
and (0.95, 1.1) p.u., respectively. The voltage magnitude at
the load buses are constrained in the range (0.95÷ 1.05) p.u.
The system branch, bus, and thermal generator data are taken
from reference [17].

A. DETERMINISTIC OPF
In order to prove the efficiency of the proposed hybrid
PPSOGSA algorithm, the deterministic OPF cases for the
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TABLE 1. OPF results obtained by proposed hybrid PPSOGSA algorithm.

original system configuration (without WT and PV) are
considered first. Four cases are considered here, with the
objective functions described in Section II, namely: Case 1 –
minimization of fuel cost; Case 2 – minimization of active
power loss; Case 3 – voltage profile improvement; Case 4
simultaneous minimization of fuel cost, power loss and volt-
age deviation. The optimal results obtained by the proposed
hybrid PPSOGSA algorithm, shown in Table 1, are the best
values obtained over 30 consecutive test runs for each case
examined. These results are in accordance with the consid-
ered objective functions, and all the specified constraints are
met. The optimal settings of control variables highly reduced
the total fuel cost in Case1 compared to the initial (Base)
case. Optimization of the total fuel cost in Case 1 causes
the maximum power loss and voltage deviation in relation to
other optimization cases. In Case 2, the minimum power loss
is achieved, but the total fuel cost is higher even in relation
to the initial (base) case. The constant PQ models of loads
require increasing voltages at load buses to minimize branch
power losses in Case 2. This is the reason for the relatively
high value of voltage deviation in Case 2. As can be seen
in Figure 1, the optimal voltage profile is obtained in Case 3.
However, a compromise solution is obtained in Case 4.
The performance of the system is significantly improved by
simultaneous minimization of total fuel cost, power loss and
voltage deviation.

To achieve a fair comparison with other solution tech-
niques, the OPF for Case 1 is solved by 20 different
population-based metaheuristic algorithms (including pro-
posed PPSOGSA and original PPSO and GSA) under

FIGURE 1. Voltage profiles for deterministic OPF cases.

the same system data, control variables, and constraints.
These algorithms are as follows: particle swarm optimization
(PSO) [21], moth-flame optimization algorithm (MFO) [22],
genetic algorithm (GA) [23], differential evolution (DE) [24],
teaching-learning-based optimization (TLBO) [25], arti-
ficial bee colony (ABC) [26], moth swarm algorithm
(MSA) [27], harmony search (HS) [28], wind-driven opti-
mization (WDO) [29], cuckoo search (CS) [30], back-
tracking search optimization algorithm (BSA) [31], swarm
robotics search & rescue (SRSR) [32], imperialist compet-
itive algorithm (ICA) [33], firefly algorithm (FFA) [34],
biogeography-based optimization (BBO) [35], multi-verse
optimizer (MVO) [36], grey wolf optimizer (GWO) [37], and
ant colony optimization (ACO) [38].

The statistical indicators obtained over 30 runs for each of
optimization methods are shown in Table 2. The parameters
such as population size (50), max iteration number (200), and
a number of runs (30) are the same for each algorithm. Other
algorithmic parameter settings are adopted as default values
proposed by the authors of these algorithms. The results
given in Table 2 clearly shows that the proposed PPSOGSA
provides high quality and stable solutions in comparison with
other metaheuristic methods.

Moreover, the convergence characteristics of these meth-
ods are shown in Figure 2. Clearly, the proposed PPSOGSA
achieves better solutions and converges to the global best
solution with less iterations compared to the other methods.
These facts prove the ability of PPSOGSA to solve the OPF
problems with high level of complexity; taking into account
stochastic variables such as WT and PV generation.

B. PROBABILISTIC OPF
The IEEE 30-bus test system is modified by introducing two
renewable energy sources, ie. the wind farm (WT) and the
solar PV generator as shown in Figure 3. The WT farm
connected at bus 19 has rated power of 50MW, and consisting
of 25 turbines of 2 MW each with a nominal wind speed
of 10 m/s, cut-in wind speed of 2.7 m/s, and cut-out wind
speed of 25 m/s. The rated power of the solar PV generator
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TABLE 2. Statistical indicators of the OPF results for case 1 obtained with
different methods.

FIGURE 2. Comparison of convergence characteristics.

connected at bus 30 is 25 MW. To calculate the output power
of PV generator using (27), the solar irradiance at standard
test condition (Sstc) is set as 1000W/m2 and certain irradiance
point (Rc) is set as 120 W/m2.

As mentioned above, the OPF is performed sequentially
in predefined time intervals of 10 min. To calculate the
forecasted output power of WT and PV generators the wind
speed and solar irradiance data are adopted from NREL [39].
Figure 4 presents themeasured values of wind speed and solar
irradiance with a sampling time of 1 min for the considered
period of 10 min. Based on these measured data, the mean
values and standard deviations of wind speed and solar irra-
diance are calculated, and appropriate PDFs of wind speed

FIGURE 3. Modified IEEE 30-bus test system.

TABLE 3. OPF results considering WT and PV generation.

and solar irradiance are determined, as illustrated in Figure 4.
Finally the forecasted output powers of WT and PV can be
calculated using (26) and (31), respectively.
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FIGURE 4. Flowchart for calculation of forecasted output powers of WT
and PV.

Estimated OPF results based on the forecasted WT and
PV generation are presented in Table 3. The results obtained
using the proposed hybrid PPSOGSA are in line with the
objectives. Figure 5 presents a comparison of the OPF results
with those obtained for the original system configuration
(Table 1). Obviously, WT and PV generation significantly

FIGURE 5. Comparison of the OPF results.

FIGURE 6. PDF for output power of generators.

FIGURE 7. PDF for voltage magnitudes of generators.

affects on the reduction of the total fuel cost compared to the
original system configuration - without WT and PV.

Note that the output powers of WT (Pwt ) and PV (Ppv)
are not the control (decision) variables in the OPF problem.
The values of Pwt and Ppv are different for different cases
(Case 1-4) because these are considered as stochastic vari-
ables. Therefore, the results in Table 3 can be considered as
expected OPF results.
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FIGURE 8. PDF for transformer tap settings.

FIGURE 9. PDF for reactive power of shunt VAR compensator at bus 10.

FIGURE 10. PDF for total fuel cost of thermal generators in Case 1.

Due to the probabilistic nature of the WT and PV genera-
tion theOPF results should be considered as random variables
also. Monte Carlo simulation (MSC) is used to evaluate the
statistical features of the OPF results in Case 1.

Figure 6-9 shows the PDFs of the optimum control vari-
ables, and Figure 10 presents the PDF for the total fuel cost
obtained with 500 sample MCS.

VI. CONCLUSION
In this paper, a novel hybrid PPSOGSA algorithm has been
applied to solve the OPF problem in power systems with inte-
grated WT and solar PV generators. The proposed approach
has been tested on the IEEE 30-bus test system. The simula-
tion results refer to conclusions which can be summarized as
follows:
• The proposed PPSOGSA approach provides robust and
high-quality OPF solutions both in the case single-
objectives, and in the case multi-objectives, such as
minimization of total fuel costs, minimization of active
power loss, and minimization of voltage deviation.

• The proposed hybrid PPSOGSA achieves better OPF
solutions and converges to global optimum with less
iterations compared to the original PPSO and GSA algo-
rithms, as well as compared to 20 other well-known
metaheuristic techniques reported in the literature.

• The model for forecasting of active power outputs
enables efficient inclusion of WT and PV in the OPF
model, and evaluation of deterministic and probabilistic
OPF results.

• Positive effects of WT and PV on the performance of
the system, such as reducing the fuel costs of thermal
generators, as well as reducing power losses and voltage
deviations in the system are demonstrated.
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