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ABSTRACT Ternary trellis coded modulation (TTCM) is introduced. This combines triangular signal
constellations with ternary convolutional codes. The performance of TTCM is presented and compared with
binary trellis coded modulation (BTCM) which employs square quadrature amplitude modulation (SQAM)
and binary convolutional coding. Ternary set partitioning (TSP) is used for TTCM, and binary-to-ternary
conversion is determined that is suitable for TTCM. A construction for M -ary triangular QAM (TQAM)
which is compatible with TSP is presented. The performance of BTCM is compared with that of TTCM.
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I. INTRODUCTION
Ungerboeck proposed a technique called trellis coded mod-
ulation (TCM) which can efficiently provide high data
rates over bandwidth limited channels [1]. TCM has been
employed in optical communications [2] and cooperative
communications [3], and is being considered for future
5G wireless systems [4]. To provide the redundancy neces-
sary for coding, the signal constellation is expanded rather
than increasing the bandwidth. TCM combines a trellis code
with modulation so at the receiver decoding and demodula-
tion are combined [1]. The performance of TCM depends
on the minimum distance between constellation symbol
sequences, which is called the free Euclidean distance. For the
same transmit power, the free Euclidean distance with TCM
can be larger than the minimum Euclidean distance between
symbols of the uncoded (smaller) constellation, which results
in a lower bit error rate (BER). Therefore, the goal is to
maximize the free Euclidean distance.

The signal constellation plays an important role in the
power efficiency and BER performance of a communica-
tion system. The power efficiency depends on the distances
between points in the signal constellation and the origin.
Square quadrature amplitude modulation (SQAM) was pro-
posed in [5] and is commonly employed because of its simple
structure [7]. Subsequently, several signal constellations such
as triangular, pentagonal and hexagonal [6] were examined
which have better power efficiency than SQAM. However,
these constellations have higher detection complexity. The
highest power efficiency constellations without a point at the
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origin were presented in [8]. However, the irregularity of
these constellations makes detection very complex [8]. In [9],
triangular QAM (TQAM) was introduced which has signal
points from a triangular lattice. TQAM has a power effi-
ciency which is close to optimum and higher than SQAM, but
SQAM has a lower detection complexity. TQAM provides a
good tradeoff betweenBER and detection complexity [9], and
so is considered here for TCM.

Ungerboeck introduced a mapping for TCM that maxi-
mizes theminimum distance between symbol sequences [13].
This mapping labels the constellation symbols using set par-
titioning. Set partitioning initially divides the constellation
symbols into two subsets. In subsequent levels, each subset
is divided into two new subsets. The last level is reached
when each subset has two symbols. This is called binary set
partitioning (BSP) and is based on two rules [14]. First, all
subsets have an equal number of constellation points. Second,
coded symbols originating from the same state or merging
into the same state in the trellis are assigned in the same
subsets. With SQAM or phase shift keying (PSK), BSP
increases the minimum Euclidean distance within the subsets
in each partitioning level [15]. However, this property of
BSP does not hold with TQAM because of the triangular
structure of TQAM which results in symbols having more
nearest neighbors on average than with SQAM. To solve this
problem, ternary set partitioning (TSP) is introduced here.
This solution results in an increase in the Euclidean distance
within the subsets each partitioning level. Thus, in this paper
TSP is employed with TQAM constellations.

TCM with TQAM uses TSP for the mapping, so the con-
stellation symbols are labeled with trits, i.e. {0, 1, 2}. There-
fore, ternary arithmetic and ternary logic must be employed.
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FIGURE 1. Block diagram of a ternary trellis coded modulation (TTCM) system.

Ternary systems have been shown to be faster than binary
systems [16], [17]. Further, ternary systems can be imple-
mented in hardware more efficiently than for any other
integer base [17], and can provide higher data storage
densities [17]. Binary TCM (BTCM) employs a binary con-
volutional code [1], but TCM with TQAM operates on a
ternary alphabet so a ternary convolutional code should be
employed. Ternary convolutional codes (TCCs) have been
shown to provide better BER performance than binary con-
volutional codes (BCCs) for the same blocklength and com-
plexity [18]. Here, TCM with a TCC is called ternary trellis
coded modulation (TTCM).

Although ternary systems have several advantages over
binary systems, commercial communication systems oper-
ate with binary data. Therefore, the performance of TTCM
must be evaluated considering binary inputs and binary
outputs. This requires that binary data be converted to
ternary data (trits) before encoding. Then after TTCM decod-
ing, the output trits must be converted to bits. Binary to
ternary (BT) conversion was considered in [18], [19], [22].
With BT conversion, one trit error at the output may cause
more than one bit error. Thus, the conversion should be
designed to minimize these bit errors.

The block diagram of a TTCM system is shown in Fig. 1.
First, binary input data is converted to ternary data and
then encoded by the TCC. The encoded symbols along with
uncoded binary or/and ternary data are mapped to symbols
in the signal constellation. These symbols are then transmit-
ted over the channel. In this paper, additive white Gaussian
noise (AWGN) and Rayleigh fading channels are consid-
ered. At the receiver, the received signals are demodulated
and decoded using a soft decision ternary Viterbi deco-
der [18], [20]. Finally, the resulting trits are converted to bits.

The contributions of this paper are as follows.
1) TCM is proposed which employs TQAM rather than

SQAM or PSK. In addition, ternary set partitioning
(TSP) is introduced and applied to TQAM.

2) The performance of TCM with TQAM and ternary
convolutional coding (TTCM) is evaluated and com-
pared with that of TCM with SQAM and binary con-
volutional coding (BTCM). In particular, a detailed
comparison of BTCM with 16 SQAM (16 S-BTCM)
and TTCM with 18 TQAM (18 TTCM) is presented to
illustrate the advantages of TTCM. Several 18 TQAM
signal constellations are considered for TTCM, and

their TTCM performance is evaluated and compared
to that of BTCM over AWGN and Rayleigh fading
channels.

3) A new method is presented to construct a TQAM con-
stellation which is suitable for TTCM which is called
compatible TQAM (C-TQAM). Further, a technique
for determining the best BT conversion for TTCM
is given. The codes which provide the largest dEfree
for C-TTCM are determined, and the corresponding
asymptotic coding gains (ACGs) are obtained.

The rest of the paper is organized as follows. In Section II,
signal constellations are examined, and the advantages of
triangular constellations are discussed. Section III introduces
BTCM with SQAM and considers BTCM with TQAM.
Section IV presents TSP for TQAM and the TTCM analy-
sis. Further, the construction of TQAM constellations which
are compatible with TSP (denoted C-TQAM) is presented
and the corresponding BT conversion is investigated. Per-
formance and simulation results are given in Section V to
illustrate the advantages of TTCMover BTCM. Finally, some
conclusions are given in Section VI.

II. SIGNAL CONSTELLATIONS
The structure and shape of the signal constellation have a
significant impact on the modulation power efficiency which
can be expressed as [21]

ηP =
dmin
Eb

, (1)

where Eb is the average bit energy and dmin is the minimum
Euclidean distance between constellation symbols. A bet-
ter power efficiency means a lower Eb and/or larger dmin.
Signal constellations with points close to the origin will
have a low Eb, but a small distance between symbols. Thus,
maximizing the power efficiency of a signal constellation
is a tradeoff between minimizing Eb and maximizing dmin.
A larger dmin results in a lower BER, so the constellation
should have a large dmin. Consider the 16 PSK and 16 SQAM
constellations shown in Figs. 2(a) and 2(b), respectively.
With 16 PSK, dmin = 2

√
ES sin( π16 ), while for 16 SQAM,

dmin = 2
√

ES
10 , where ES = Eb log2M [21]. For the same

value of ES , the distance between 16 SQAM symbols is 1.62
times larger than 16 PSK symbols. This implies that for the
same BER, 16 SQAM requires a signal to noise ratio (SNR)
20 log10(1.62) = 4.19 dB less than 16 PSK [21].
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FIGURE 2. The (a) 16 PSK, (b) 16 SQAM, (c) 16 R-TQAM, and (d) 16 I-TQAM
signal constellations.

It has been shown that TQAM, which has constellation
points from a triangular lattice, provides a larger dmin than
SQAM, which has points from a square lattice [9], [23].
Thus for the same average symbol energy and number of
constellation points (called the modulation orderM ), TQAM
has better BER performance than SQAM [9]. Fig. 2 shows
the constellations of 16 TQAM, 16 SQAM and 16 PSK. For
TQAM, the points on the edge of the constellation have at
least two nearest neighbors (NNs), while the middle points
have six NNs. Further, these points do not lie on lines parallel
to the axes. Therefore for a given M , TQAM has a higher
detection complexity than SQAM because it has a more
complex structure and a larger average number of NNs [12].
For example, the average number of nearest neighbors for
16 SQAM is NN = 3, but for 16 TQAM it is NN = 4.125.
The ML detection complexity of TQAM was considered in
[9], [11], and shown to be higher than that of SQAM for allM .
Regular TQAM (R-TQAM) and irregular TQAM

(I-TQAM) were introduced in [9], [11] and the constellations
for M = 16 are shown in Figs. 2(c) and 2(d), respec-
tively. R-TQAM has a symmetric constellation about the
origin, while the I-TQAM constellation is more irregular.
The power efficiency of I-TQAM is higher than that of
R-TQAM, but it has a higher detection complexity [11].

For 16 R-TQAM, dmin = 2
√

ES
9 , while for 16 I-TQAM,

dmin = 2
√

ES
8.75 , which is 1.054 and 1.069 times that of 16

SQAM for the same ES , respectively [9], [11]. Therefore for
the same BER, 16 R-TQAM and 16 I-TQAM require an SNR
20 log10(1.054) = 0.46 dB and 20 log10(1.069) = 0.58 dB
less than 16 SQAM, respectively. Further, 16 R-TQAM has
NN = 4.123 and 16 I-TQAM has NN = 4.3125, so the
detection complexity of I-TQAM is higher. Table 1 gives the
values of dmin for SQAM and TQAM with 4 ≤ M ≤ 265.

TABLE 1. dmin for SQAM, R-TQAM, and I-TQAM.

For the same ES , SQAM has the smallest dmin and I-TQAM
has the largest dmin for all values ofM .
The second parameter that affects the signal constellation

is the number of bit differences between adjacent symbols.
A smaller number of differences results in better BER perfor-
mance.With a Graymapping, SQAM constellations have one
bit difference between adjacent symbols. A Gray mapping is
not possible with TQAM constellations because of the num-
ber of nearest neighbors. The Gray penalty GP is the average
number of bit differences between a symbol and its nearest
neighbors, so GP = 1 for a Gray mapping. GP for R-TQAM
and I-TQAM forM = 16 and 64 was given in [9], [11].GP is
greater than 1 for both R-TQAM and I-TQAM, but it is larger
with I-TQAM.However, TQAMhas better BER performance
than SQAM [9], [11]. Given the results in this section, TCM
with TQAM is considered in this paper.

III. BINARY TRELLIS CODED MODULATION
Ungerboeck introduced binary TCM (BTCM), which com-
bines a binary convolutional code (BCC) with M -ary
SQAM or M -ary PSK [1]. The advantage of BTCM arises
from the fact that the coding and modulation are combined.
The performance of BTCM is determined by the asymp-
tomatic coding gain (ACG) which is a function of the free
Euclidean distance dEfree. The free Euclidean distance is the
shortest distance between symbol sequences so that

d2Efree =
N−1∑
i=0

d2i , (2)

andN is the length of the symbol sequence that diverges from
a state in the trellis and then joins that state as shown in Fig. 3,
and di is the distance between the symbol sequences at trellis
stage i.
The asymptotic coding gain (ACG) of TCM is defined

as [1]

γ = 10 log10

(d2Efree/ES
d2min/E

′
S

)
, (3)

where ES and E ′S are the average symbol energy for coded
and uncoded symbols, and dmin is the minimum Euclidean
distance for the uncoded signal constellation. As ES and E ′S
are fixed, the goal with TCM is to maximize dEfree.
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FIGURE 3. The binary trellis diagram for 16 S-BTCM.

The value of dEfree depends on themapping of constellation
symbols and the code employed. Ungerboeck mapped the
constellation symbols using a technique called set partition-
ing. Here, this is denoted as binary set partitioning (BSP).
BSP divides the constellation symbols into two equal subsets,
and the symbols in each subset are assigned the same binary
label. The partitioning continues until there are only two
symbols in each subset. The number of partition levels is
L, where 2L+1 is the number of constellation symbols. For
example, 16 SQAM has three BSP levels as shown in Fig. 4.
The minimum distance between constellation symbols in the
subsets is denoted by d (l), where l is the partition level. Note
that d (l) increases as the level increases, which indicates that
BSP is compatible with SQAM, i.e. in Fig. 4 d (1) = 2

√
2,

d (2) = 4 and d (3) = 4
√
2.

A BCC is used in BTCM to increase dEfree by increasing
the distance between sequences of constellation symbols.
This code is represented by three parameters (n, k , m) where
k and n are the number of input and output data streams

FIGURE 5. A systematic binary feedback convolutional code with R =
2
3

and m = 3.

respectively, and m is the encoder memory length. The code
rate of a BCC is R = k

n . A systematic feedback BCC is used
in BTCM with n = k + 1 [1], [14]. Thus, a BCC(3, 2, 3)
code is used with 16 S-BTCM as shown in Fig. 5, where
⊕ denotes modulo 2 addition. The generator sequences for
this code are G = [(0100), (0010), (1001)], where a 1 indi-
cates a connection among the inputs, modulo 2 adders and/or
memory elements, and a 0 indicates no connections. For
example, the first sequence indicates a connection between
the first input and the first modulo 2 adder, while the second
sequence indicates a connection between the second input
and the second modulo 2 adder. Each time step, 3 coded bits
are combined with an uncoded bit and mapped to a 16 SQAM
symbol. This is the best BCC for BTCM with 16 SQAM (16
S-BTCM) as it provides the maximum dEfree [1]. The trellis
for this coding is shown in Fig. 3 and has

d2Efree
ES
=

(2
√
2)2

10
+

(2)2

10
+

(2
√
2)2

10
= 2. (4)

The corresponding ACG over uncoded 8 PSK [1] is

γ = 10 log10

(
20/10
0.586/1

)
= 5.33 dB. (5)

Now BTCM is considered with TQAM (T-BTCM), so that
BSP is used for mapping the constellation symbols. Many
symbols in a TQAM constellation have six neighbors, so it
is not possible to have d (1) > dmin. However in subsequent

FIGURE 4. Binary set partitioning for 16 SQAM.
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FIGURE 6. Binary set partitioning (BSP) for 16 R-TQAM.

levels, d(l) can be increased as the number of NNs is reduced.
For example, Fig. 6 shows BSP for 16 TQAM, and in the
first level d (1) = dmin = 2. Thus, BSP is not compatible
with TQAM. In subsequent levels, the distances between
constellation symbols in a subset increases to d (2) = 2

√
3

and d (3) = 2
√
7. The BCC that provides the largest dEfree

for 16 T-BTCM was obtained using a search as in [1]. For 16
T-BTCM, this code gives

d2Efree
ES
=

1
ES

(d (1)
2
+ d (0)

2
+ d (1)

2
),

=
22

9
+

22

9
+

22

9
= 1.33, (6)

and the corresponding ACG over uncoded 8 PSK is

γ = 10 log10

(
12/9

0.586/1

)
= 3.57dB. (7)

From the previous results, the ACG of 16 T-BTCM is
1.76 dB less than the ACG of 16 S-BTCM, which confirms
that BSP is not compatible with TQAM. Therefore, a suitable
set partitioning for TQAM is introduced in the next section.

IV. TERNARY TRELLIS CODED MODULATION
A. TERNARY SET PARTITIONING
Set partitioning with TQAM should divide the constellation
into more than two groups, so here three groups are consid-
ered which is called ternary set partitioning (TSP). As in [14],
the number of constellation symbols in each subset should
be equal, so the modulation order cannot be a power-of-two.
Therefore, TSP can be employed if M = 2j × 3t+1, where t
is the number of coded and uncoded trits and j is the number
of uncoded bits. For j > 0, TSP continues until the number
of constellation symbols in each subset is 2 symbols, while
for j = 0, the subsets in the last TSP level have 3 symbols.
The number of set partitioning levels is j + t . For example,
for M = 18 = 2 × 32, the number of levels is 2, and
each symbol corresponds to two trits and one bit. In addition,
the subsets in the last level have 2 symbols. ForM = 27 = 33,

FIGURE 7. Block diagram for a TCM encoder which employs a TCC with
uncoded bits and trits.

the number of TSP levels is 2, so the subsets in the last level
have 3 symbols.

A ternary convolutional code is required with TSP as
shown in Fig. 7. Here there are two possible cases,
with or without uncoded bits and/or trits. For example,
TCC(2, 1, 2) is employed with 27 TQAM so there are
two coded trits and an uncoded trit. Conversely, 36 TQAM
employs TCC(2, 1, 2) with two coded trits and two uncoded
bits, and both TSP and BSP are used. BSP is used last because
the uncoded bits have less protection, and the largest distance
between constellation symbols is in the last level of partition-
ing [14]. In the next section, the performance of ternary trellis
coded modulation (TTCM) with TSP is analyzed.

B. TTCM WITH 18 TQAM
A block diagram of the proposed ternary trellis coded modu-
lation system is shown in Fig. 1. The TTCM encoder consists
of a BT converter, TCC encoder, and modulator, while the
decoder has a soft decision Viterbi decoder and BT converter.
TTCM is embedded in a binary communication systemwhere
the input and output are binary data. First the binary data is
converted to trits using BT conversion. These trits are then
encoded by the TCC. The coded trits with uncoded bits and/or
trits are mapped to a constellation symbol, and this symbol is
labeled using TSP (and BSP if there are uncoded bits).

The binary to ternary (BT) conversion employed is impor-
tant because it affects the BER performance [18]. At the
decoder output, one trit error causes one or more bit errors
because of this conversion. The goal is to minimize the aver-
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FIGURE 8. TTCM with 18 TQAM and a ternary convolutional code (TCC)
using 3B2T conversion.

FIGURE 9. The best TCC for TTCM with 18 TQAM.

age number of bit errors due to a trit error, denoted eav. In [18],
three bit to two trit conversion (3B2T) was shown to provide
the smallest value of eav, and so 3B2T conversion is used here.
For M = 2j × 3t+1, each constellation symbol represents j
bits and t trits. However, as the input to the system is binary,
the number of bits per symbol with 3B2T conversion is

I = t ×
3
2
+ j. (8)

For example, with M = 22 × 32, I = 1 × (1.5) + 2 =
3.5 bits/symbol, and with M = 20 × 33 = 27, I = 2 ×
(1.5)+ 0 = 3 bits/symbol.

To evaluate the performance of TTCM and compare it with
that of BTCM, both 18 TQAM and 16 SQAM are consid-
ered in this section. The 18 TTCM block diagram is shown
in Fig. 8. First, 3 bits are converted to 2 trits using 3B2T
conversion, and the trits are input to the TCC. A ternary con-
volutional code TCC(2, 1, 2) is employed and the best code
obtained using the search method in [1] is shown in Fig. 9.
In this case, ⊕ denotes a modulo 3 adder. This code has

FIGURE 10. The constellations for (a) 18 R-TQAM, (b) 18 H-TQAM, and
(c) 18 I-TQAM.

FIGURE 11. Trellis diagram for TCC(2,1,2).

generator sequences G = [(010), (101)]. The two encoded
trits are combined with an uncoded bit and mapped to an 18
TTCM symbol. Therefore, there are I = 2.5 bits/symbol.
In this section, regular, hexagonal and irregular 18 TQAM
are considered, and the constellations are shown in Fig. 10.
The structure of the constellation affects dEfree, so the perfor-
mance of TTCM will differ for these constellations.

Fig. 12 shows the ternary set partitioning for 18 R-TQAM.
Note that d (l) increases with each level. For this constellation,
if dmin = 2 then ES = 13.92. The trellis diagram for the TCC
in Fig. 9 is given in Fig. 11. This shows that four transitions
are required to diverge and then merge with the same state,

FIGURE 12. Ternary set partitioning for 18 R-TQAM.
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FIGURE 13. Ternary set partitioning for 18 H-TQAM.

FIGURE 14. Ternary set partitioning for 18 I-TQAM.

so that for TTCM with 18 R-TQAM (18 R-TTCM)

d2Efree
ES
=

(2
√
3)2 + 22 + (2

√
3)2 + 22

13.92
= 2.30. (9)

For comparison purposes, the ACG of 18 TTCM over
uncoded 8 PSK is employed. However, each 18 TTCM sym-
bol represents only I = 2.5 uncoded bits whereas uncoded
8 PSK represents 3 bits, which represents a loss of

10 log10

(
3
2.5

)
= 0.792 dB. (10)

Thus, the ACG of 18 R-TTCM over uncoded 8 PSK is

γ = 10 log10
( 2.30
0.586

)
− 0.792 = 5.14 dB. (11)

H-TQAM has constellation points from a triangular lattice
in a hexagonal shape as shown in Fig. 10(b). Fig. (13) shows
the TSP for 18 H-TQAM. The average symbol energy of

18 H-TQAM is ES = 10.67 for dmin = 2, which is lower
than with R-TQAM. TTCMwith 18 H-TQAM (18H-TTCM)
gives

d2Efree
ES
=

(2
√
3)2 + 22 + (2

√
3)2 + 22

10.67
= 3.00, (12)

and the corresponding ACG over 8 PSK is

γ = 10 log10

(
3

0.586

)
− 0.792 = 6.30 dB. (13)

This is 1.17 dB better than R-TTCM because of the lower
value of ES .

The 18 I-TQAM constellation shown in Fig. 10(c) has
ES = 10.17, which is lower than with R-TQAM and
H-TQAM. Fig. 14 shows the TSP for 18 I-TQAM, and
illustrates that 18 I-TQAM is not compatible with TSP
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FIGURE 15. Modifying 18 I-TQAM to be compatible with TSP,
denoted 18 C-TQAM.

as dmin = d (1). TTCM with 18 I-TQAM (18 I-TTCM) gives

d2Efree
ES
=

22 + 22 + 22 + 22

10.17
= 1.57, (14)

and the corresponding ACG over 8 PSK is

γ = 10 log10

(
1.57
0.586

)
− 0.792 = 3.50 dB. (15)

I-TQAM provides the lowest ACG for the three 18
TQAM constellations, and is also 1.04 dB lower than
16 S-BTCM because of the incompatibility with TSP.
To make 18 I-TQAM compatible with TSP, some of the
constellation points must be relocated. Although ES for this
new constellation will be larger, the TTCM ACG will be
lower. Fig. 15 shows the relocation of two 18 I-TQAM
constellation points. This new constellation is compati-
ble with TSP, and so is called compatible 18 TQAM,
(18 C-TQAM). For dmin = 2, ES = 10.33, which is lower
than with R-TQAM and H-TQAM, but higher than with

TABLE 2. Comparison between 18 TTCM and 16 S-BTCM.

18 I-TQAM. Fig. 16 shows the TSP for 18 C-TQAM. TTCM
with 18 C-TQAM (18 C-TTCM) gives

d2Efree
ES
=

(2
√
3)2 + 22 + (2

√
3)2 + 22

10.33
= 3.09, (16)

and the corresponding ACG over 8 PSK is

γ = 10 log10

(
3.09
0.586

)
− 0.792 = 6.43 dB. (17)

As expected, C-TTCM provides the best ACG because ES for
C-TQAM is lower than with R-TQAM and H-TQAM, and it
is compatible with TSP.

Table 2 gives the values of ES , d2Efree/ES , and ACG for
regular, irregular, hexagonal and compatible 18 TTCM, and
16 S-BTCM. From the table, 18 H-TTCM and C-TTCM have
a better ACG than 16 S-BTCM by 6.30−5.33 = 0.97 dB and
6.43−5.33 = 1.10 dB, respectively. Thus, C-TTCMprovides
the highest ACG. The construction of M -ary C-TTCM is
considered in the next section.

C. M-ARY C-TTCM
The I-TQAM constellations presented in [11] provide the
lowest values of ES , but are not compatible with TSP. The
I-TQAM constellations for smallM can easily be modified to
obtain compatible constellations, but for large M this can be
difficult. Therefore, a construction technique for compatible

FIGURE 16. Ternary set partitioning for 18 C-TQAM.
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FIGURE 17. The 27 C-TQAM constellation which is compatible with TSP.

TQAM (C-TQAM) is introduced here and is given in the
following steps.

1) Construct a rectangle of points from a triangular lattice
with the origin at the center. The rectangle dimensions
are the two integers closest to

√
2M , with the largest

equal to the number of rows and the smallest equal to
the number of columns. In particular, the number of
rows is d

√
2Me and the number of columns is b

√
2Mc.

2) Divide the points into three groups as follows.

a) The first group is selected by choosing the first
of every three points in the odd numbered rows,
and the second of every three points in the even
numbered rows.

b) The second group is selected by choosing the sec-
ond of every three points in the odd numbered
rows, and the third of every three points in the
even numbered rows.

c) The third group is selected by choosing the third
of every three points in the odd numbered rows,
and the first of every three points in the even
numbered rows.

3) The M
3 constellation points in each group closest to

the origin are selected, and the remaining points are
deleted.

4) The selected points constitute the M -ary C-TQAM
constellation that is compatible with TSP and has the
lowest value of ES .

For example, Fig. 17 shows the 27 C-TQAM constellation. In
the construction, a rectangle of 2 × 27 = 54 points is used,
so the number of rows is 8 and the number of points in each
row is 7. The colors in the figure represent the three groups.
The 27

3 = 9 points in each group closest to the origin are
selected (shown within the dashed line), and the remaining
points are deleted. This construction ensures that d (1) > dmin.
The resulting constellations for M = 27, 36, 54 and 108
are shown in Fig. 18. The constellation of 36 H-TQAM in
[10] is compatible with TSP but Es = 30.85 for dmin = 2.
Applying the above construction technique for 36 C-TQAM
gives Es = 20.33 for dmin = 2 as shown in Fig. 18. Therefore,
36 C-TQAM has a higher power efficiency than 36 H-TQAM
in [10].

TABLE 3. Parameters for M-ary C-TTCM with TCC(2, 1, m).

The TCC code rate is related to the TQAM modulation
orderM . Tables 3 and 4 present the parameters for C-TTCM
with R = 1

2 and R = 2
3 , respectively. The best TCCs

were found using the search method in [1] and consider-
ing the unequal error probabilities of the trits. The average
symbol energy was calculated using the constellations shown
in Fig. 18 with dmin = 2. The corresponding values of dEfree
are given in the tables.

D. BINARY TO TERNARY CONVERSION IN TTCM
3B2T conversionmaps every string of 3 bits to a unique string
of 2 trits. The goal is to have a low value of eav considering
dEfree rather than dmin as in [18]. A TTCM decoding error
occurs when a wrong trellis path is chosen. Therefore, eav can
be reduced by minimizing the number of trit differences
between branches leaving a state.

TCC(2, 1, 2) is considered here to illustrate the steps in
creating the 3B2T conversion that provides the lowest eav.
The trellis diagram of TCC(2, 1, 2) is shown in Fig. 11. For
18 C-TTCM, the lines between states represent two parallel
branches, so each state has six output branches. The outputs
of the first state are (000, 001, 100, 101, 200, 201), where the
first two digits are encoded trits and the last is an uncoded bit.
The focus here is on trit errors, so the uncoded bit is ignored,
in which case there are only three branches leaving a state
given by (00, 10, 20). These ternary strings are mapped to
binary strings so that the average bit difference is lowest. For
example, mapping to (000, 001, 101) results in an average bit
difference of 1.33 bits.

The difference between the three ternary blocks is one
trit, so choosing an incorrect branch results in one trit
error, or from the given mapping 1.33 bit errors on average.
The same occurs for the fourth and seventh states in this
example. Following a similar procedure for the second, fifth,
and eighth states, (01, 11, 21) is mapped to (111, 011, 010).
The average difference between these ternary strings is one
trit, and the average bit difference is 1.33 bits. For the third,
sixth, and ninth states, (02, 12, 22) is mapped to the remain-
ing binary strings giving (110, 100, 100), where the last
binary string is repeated. A difference between these ternary
strings of one trit results in an average difference between the
mapped binary strings of 0.67 bit. Thus, the average number
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TABLE 4. Parameters for M-ary C-TTCM with TCC(3, 2, m).

FIGURE 18. The C-TQAM constellations for M = 27, 36, 54 and 108.

of bit errors due to a trit error for this 3B2T conversion in
TTCM is

eav =
6(1.33)+ 3(0.67)

9
= 1.11 bits/trit error. (18)

This 3B2T conversion is shown in Table 5. Based on
an exhaustive search, it has the lowest average number
of bit errors for BT conversion with 18 C-TTCM using
TCC(2, 1, 2).

The 3B2T conversion given above is used for coded trits.
For uncoded trits, the 3B2T conversion in [18] is optimal and
has eav = 1.55. For example, 27 C-TTCM with TCC(2, 1, 2)
has two coded trits and one uncoded trit. Therefore, the first
two trits are mapped using Table 5, while the uncoded trit
is mapped using the table in [18]. Thus for the three trits,
eav =

1.55+2(1.11)
3 = 1.26 bits/trit error. Note that the output

trits from 3B2T have unequal probabilities [24]. In particular,
the probabilities of 0 and 1 are 0.375 while the probability of
2 is 0.25. These probabilities were used in determining the
BER results.

V. PERFORMANCE RESULTS
In this section, the probability of bit error for 16 S-BTCM
and 18 TTCM is evaluated over additive white Gaussian
noise (AWGN) and Rayleigh fading channels. Monte Carlo
simulation is employed with 108 bits for each value of Eb/N0
where Eb is the energy per bit given by Eb = Es/I and N0
is the noise power spectral density. I = 3 for 16 S-BTCM

TABLE 5. Optimal three bit to two trit conversion.

FIGURE 19. Bit error rates for 16 S-BTCM and 16 T-BTCM over an
AWGN channel.

while I = 2.5 for 18 TTCM. For a fair comparison, the values
of Eb for 16 S-BTCM and 18 TTCM should be the same.
This is done by reducing dmin of 16 S-BTCM and 18 TTCM
by
√

I
ES

[21]. Therefore from Tables 2 and 3, dmin becomes
1.095, 0.848, 0.968, and 0.984 for 16 SQAM, 18 R-TQAM,
18 H-TQAM, and 18 C-TQAM, respectively. These scaled
values of dmin affect both d2E free and ES , so the resulting

values of d
2
E free
ES

and γ are the same as in Table 2.
The bit error rate (BER) over an AWGN channel for 16

S-BTCM and 16 T-BTCM, and uncoded 16 SQAM and
16 TQAM, is shown in Fig. 19. The BER performance of
uncoded 16 TQAM is better than uncoded 16 SQAM by
0.43 dB. However, 16 S-BTCM is better than 16 T-BTCM
by 1.42 dB at BER = 10−5, which shows that BSP is not
compatible with TQAM.
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FIGURE 20. Bit error rates for TTCM with 18 R-TQAM, 18 C-TQAM, and
18 H-TQAM, and 16 S-BTCM over an AWGN channel.

FIGURE 21. Bit error rates for TTCM with 18 R-TQAM, 18 C-TQAM, and
18 H-TQAM, and 16 S-BTCM over a Rayleigh fading channel.

Fig. 20 presents the BER for 18 TTCM and 16 S-BTCM.
18 C-TTCM is better than 16 S-BTCM by 0.93 dB at BER =
10−5, while 18 H-TTCM is better than 16 B-STCM by
0.81 dB. However, the performance of 16 S-BTCM is better
than that of 18 R-TTCM by 0.12 dB. Therefore, for the same
average bit energy, 18 C-TTCM and 18 H-TTCM provide
better BER performance than 16 S-BTCM. Fig. 21 presents
the BER for 18 TTCM and 16 S-BTCM over a frequency-flat
Rayleigh fading channel. The average SNR is Ēb/N0 where
Ēb = ĒS/I and ĒS = E{ES}. These results show that 18
C-TTCM and 18 H-TTCM are better than 16 S-BTCM by
0.91 dB and 0.79 dB, respectively, at BER = 10−5. Thus,
the performance of 18 TTCM is closer to that of 16 S-BTCM
in Rayleigh fading channels compared to AWGN channels.

VI. CONCLUSION
A new form of coded modulation was introduced called
ternary trellis coded modulation (TTCM). This employs
triangular quadrature modulation (TQAM) which provides
better performance than square QAM. It was shown that
binary set partitioning (BSP) is not compatible with TQAM,
so ternary set partitioning (TSP) was employed. The advan-
tage of TTCM over binary TCM (BTCM) with SQAM
was illustrated. A new class of TQAM constellations called
compatible TQAM (C-TQAM) was introduced that is com-
patible with TSP and has a low average symbol energy.

As communication systems have binary inputs and outputs,
a new binary to ternary (BT) conversion technique was
proposed for TTCM. For the same average bit energy, results
were presented which show that the bit error rate (BER)
with 18 C-TTCM and 18 H-TTCM is better than that with
16 S-BTCM in both AWGN and Rayleigh fading channels.
Further, TTCM with C-TQAM provides the best perfor-
mance compared with the TQAM constellations in the liter-
ature, namely regular TQAM (R-TQAM), irregular TQAM
(I-TQAM), and hexagonal TQAM (H-TQAM).
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