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ABSTRACT NAND flash memory is widely used in various computing systems. However, flash blocks can
sustain only a limited number of program/erase (P/E) cycles, which are referred to as the endurance. On one
hand, in order to ensure data integrity, flash manufacturers often define the maximum P/E cycles of the
worst block as the endurance of flash blocks. On the other hand, blocks exhibit large endurance variations,
which introduce two serious problems. The first problem is that the error correcting code (ECC) is often
over-provisioned, as it has to be designed to tolerate the worst case to ensure data integrity, which causes
longer decoding latency. The second problem is the underutilized block’s lifespan due to conservatively
defined block endurance. Raw bit error rate (RBER) of most blocks have not arrived the allowable RBER
based on the nominal endurance point, which implies that the conventional P/E cycle-based block retirement
policies may waste large flash storage space. In this paper, to exploit the storage capacity of each flash
block, we propose an RBER-aware lifetime prediction scheme based on machine learning technologies.
We consider the problem that the model can lose prediction effectiveness over time and use incremental
learning to update the model for adapting the changes at different lifetime stages. At run time, trained data
will be gradually discarded, which can reduce memory overhead. For evaluating our purpose, four well-
known machine learning techniques have been compared in terms of predictive accuracy and time overhead
under our proposed lifetime prediction scheme.We also compared the predicted values with the tested values
obtained in the real NAND flash-based test platform, and the experimental results show that the support
vector machine (SVM) models based on our proposed lifetime prediction scheme can achieve as high as
95% accuracy for flash blocks. We also apply our proposed lifetime prediction scheme to predict the actual
endurance of flash blocks at four different retention times, and the experimental results show that it can
significantly improve the maximum P/E cycle of flash blocks from 37.5% to 86.3% on average. Therefore,
the proposed lifetime prediction scheme can provide a guide for block endurance prediction.

INDEX TERMS NAND flash, P/E cycle, retention time, RBER, machine learning.

I. INTRODUCTION
NAND flash has been widely used for data storage due to
its high density, high throughput, and low power. To realize
the high storage capacity, the size of 2D planar NAND flash
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has been scaled down from 9Xnm to 1Xnm, which can also
reduce the cost per bit. Nowadays, it has reached the limit
in process technology feature size, it is becoming extremely
difficult to further increase memory capacity using conven-
tional 2D planar NAND flash memory technology. To solve
this problem, 3DNANDflash has been studied and developed
to improve the storage density, it can be allowed to use larger
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FIGURE 1. The distribution of RBER when P/E cycle is 6000 for 600 blocks.

feature sizes and it is becoming an alternative to 2D planar
NAND flash. Unfortunately, the reliability of NAND flash is
still difficult to guarantee.

Flash cell in 2D planar NAND flash or 3D NAND flash
can only undergo a limited number of Program and Erase
(P/E) cycles due to the damage caused by the program and
erase operation on it, which will eventually lead to its wear-
out over time [1]. Endurance is defined as the maximum
P/E cycles that block can sustain before its Raw Bit Error
Rate (RBER) exceeds the error correction capacity of Error
Correcting Code (ECC). Traditionally, NAND flash manu-
facturers also prescribe a specified endurance for all blocks
in the same chip. However, due to process variations in the
lithography of flash manufacturing, the RBER varies sub-
stantially from block-to-block and page-to-page [2]–[4]. For
illustration, we also choose 600 blocks which are evenly dis-
tributed in a 3D-TLC NAND flash memory chip tested in our
experiment. Figure 1 shows the measured probability density
distribution for per-block RBERwithin the 600 blocks that all
have endured 6000 P/E cycles, the bars show the measured
per-block RBERs are categorized into 5 bins, the results
represent that flash blocks have a great difference in relia-
bility. Thus, the endurance has to be defined as the worst
case block with consideration of data integrity across all
blocks. Some researches have revealed that endurance of
most blocks is higher than the nominal endurance, most
blocks can still be used when P/E cycles exceed the speci-
fied endurance [3], [5]–[7]. However, in the practical use of
NAND flash, the flash-based device controller stops using
one block when P/E cycles exceed its nominal endurance, and
mark it a bad block. Most blocks are limited by the nominal
endurance and don’t arrive the allowable RBER limits at the
nominal endurance point, NAND flash is not fully utilized,
which introduces great waste of storage space.

The lifetime of NAND flash can be improved by the wear
leveling algorithms which always regards P/E cycle as the
target and make even consumption of P/E cycles among
blocks. However, wear leveling algorithms improve service
lifetime of NAND flash by minimizing the number of worn-
out blocks (Flash will be indicated as bad when the number of
worn-out blocks exceeds a given threshold), which actually
don’t improve the number of P/E cycles that each flash
blocks can tolerate. Some reliability enhancement schemes
take heuristic solutions to improve the endurance of flash

blocks [4], [8]–[15], however, parameters such as
ECC strength, program voltage and retention time need
to reconfigured at run-time. Our aim is to make full use
of the storage capacity of blocks without changing these
parameters. In this paper, we will exploit the maximum
P/E cycle to extend the lifetime of the individual block and
make flash blocks suffer the maximum allowed RBER rather
than retiring it at a prescribed P/E threshold at given parame-
ters, and the proposed scheme is also orthogonal with existing
works, it means that they are used together to improve the
reliability of NAND flash.

Nowadays, machine learning algorithms have been widely
used on various applications, it has been proved to be an
excellent method for finding the intrinsic relation of data and
it needn’t any assumption compared with traditional statisti-
cal learning method. Furthermore, machine learning models
can adapt to the change at run-time. In this paper, block
information arrive online and model is established based on
their historical data, current data (previously unseen) that
need to be predicted have no overlap with training dataset
for trained models and the status of flash blocks also change
over time, thus, trained models cannot guarantee predictive
accuracy at run-time, which is called ‘‘model aging’’. The
statistical learning method is also applied at off-line learning
and model is typically updated by retraining accumulative
data, which can need to preserve and train accumulated data
and cause great memory space and time overhead. Therefore,
in the paper, we could take machine learning technology to
establish flash lifetime prediction models and apply models
to predict endurance of flash blocks in advance, which can
make full use of flash blocks.

In addition to the P/E cycle, data retention time is another
important factor related to data reliability. The lifetime of
NAND flash also is defined as the P/E cycles with which
data can be reliably stored in flash cells while avoiding data
loss for a minimum data retention period as guaranteed by
manufacturers. NAND flash devices traditionally have reten-
tion times which are expected to hold data for one or more
years. According to the JEDEC standard [16], retention time
is required for at least 10 years when P/E reaches 10% of the
given endurance. When P/E is 100% of a given endurance,
retention time is at least 1 year. Enterprise SSDmust meet the
requirement of placing at 40◦C for 3 months and Customer-
level SSD requirements can be stored at 40◦C for 1 year.
In practice, retention time is often inversely proportional to
the P/E cycle in NAND flash, the higher the number of
P/E cycles, the worse the retention issue is.

To fully exploit a more accurate reflection of a block’s
endurance, it is very necessary to take into account the effect
of data retention. In this paper, by exploiting a key chal-
lenge about how to perform lifetime prediction flexibly and
efficiently, we propose an RBER-aware lifetime prediction
scheme based on machine learning techniques to fully exploit
the storage capacity of flash blocks.

In summary, the main contributions of this paper are sum-
marized as follows:
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• We investigate the problem that most flash blocks do not
arrive their actual endurance based on current endurance
definition and take RBER as the reliability measure.

• To establish the optimal machine learning models for
flash blocks, four well-known machine learning algo-
rithms are compared in terms of generalization ability
and time overhead.

• We find that there exists a model aging problem in
this lifetime prediction process and propose a model
updating strategy to construct adaptive run-time models.

• We apply SVM models based on our proposed life-
time prediction scheme to predict endurance of flash
blocks, the experimental results show it can significantly
improve the maximum number of P/E cycle from 37.5%
to 86.3% at four different data retention time. We also
discuss several different use cases of block lifetime pre-
diction model.

The rest of paper is organized as follows: Section II
shows the background of 3D-TLC NAND flash and motiva-
tion. Related works are discussed in Section III. The design
of the proposed lifetime prediction scheme is presented in
Section IV. Experiment and evaluation results are described
in Section V, and the conclusions are presented in Section VI.

II. BACKGROUND AND MOTIVATION
A. CHARACTERISTICS OF 3D NAND FLASH MEMORY
3D NAND flash, where multiple layers are vertically stacked
to increase the density and improve the scalability of memory,
consists of multiple Logical Units (LUNs). A Logical Unit
(LUN) consists of multiple planes. A plane consists of multi-
ple blocks. A block consists of multiple pages. Each LUN has
at least one page register and cache register, page register is
used to transfer data from NAND flash array, cache register
is used to transfer data from the host. Each page is divided
into the user area and spare area. The user area is used to
store written data, the spare area is used to store ECC or other
metadata. 3D NAND flash’s basic operations include read,
program, and erase. A page is the smallest unit of read and
program operation, the smallest unit of erase operation is
a block, an erase operation resets the data to value ‘‘1’’ in
all pages of a block. NAND flash does not support in-place
update, the block must be erased before programming data.

In 3D-TLC NAND flash, most existing 3D NAND flash
memory designs use a charge trap (CT) transistor for each
cell, each cell can be programmed to eight distinct states,
which each state correspond to the 3-bit value, the state of
a flash cell is determined by the number of electrons present
in a cell. As shown in Figure 2, each state corresponds to a
non-overlapping threshold voltage window, the non-overlap
space between adjacent distributions is called the distribution
margin. To read the value stored in a cell, the flash mem-
ory applies a read reference voltage to it, seven predefined
read voltage levels are used to distinguish the eight states
in 3D-TLC NAND flash. The threshold voltage is usually
distorted by various sources, such as P/E error, disturb error,

FIGURE 2. Threshold voltage shifts induced by retention time.

retention time [2], [17]. Thus, the cell can be misread when
we apply the read reference voltage in it, which leads to raw
bit errors.

B. FLASH ENDURANCE AND DATA RETENTION TIME
There are two major sources of errors in NAND flash: the
error caused by the program or erase operation and the error
caused by charge leakage during the retention time.

Program and erase operations are accomplished via the
Fowler-Nordheim (FN) tunneling mechanism. When NAND
flash is programmed and erased, the tunnel oxide layer is
conductive with a high voltage between the control gate and
the substrate layer. However, high voltage can cause the oxide
layer to become weak and electrons are trapped in it. When
the number of accumulated charges trapped in the oxide layer,
it can cause thresholds voltage shift and ultimately change the
program and erase levels of a cell. Thus, when we read data
from the cell, the read operation can no longer return valid
data.

Retention time is the measure of how long the integrity of
data can be guaranteed after being written to flash without
suffering from data corruption, and NAND flash also has a
limited retention time. Retention errors are caused by charge
leakage from a flash cell that contains valid data over time
while the cell is idle in data retention process [18], [19], it is
the dominant source of flash memory error [1], [20]. Due to
charge leakage, the threshold voltage of a flash cell decreases
over time, the threshold voltage can shift from higher voltage
states to lower voltage states, which is shown in Figure 2. Data
read from flash memory can be incorrect when the written
data is read after a certain retention time.

C. LIFETIME OF FLASH BLOCKS
1) RELIABILITY METRIC
Reliability is the critical problem in flash-based devices,
it related to the lifetime of NAND flash. ECC is also adopted
to guarantee the reliability of NAND flash, it can correct data
with a high RBER and return data at an error rate called
Uncorrectable Bit Error Rate (UBER) that must meet the
requirement. The strength of ECC needed is a function of
the RBER and the acceptable UBER, the stronger the ECC,
the longer the usable life of the flash memory cells. However,
stronger ECC also causes higher logic complexity and power
consumption, which degrades the overall performance of
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FIGURE 3. RBER increases with P/E cycle rises at different retention time.

the system. In the true scenario, the flash manufacturers spec-
ify the ECC requirements for their individual flash devices,
it is only able to meet output bit error rate requirements with
up to a certain RBER, and when the cells deteriorate beyond
that point, there is an unacceptable UBER. RBER and UBER
are calculated by Equation (1)(2). Therefore, UBER is a func-
tion of RBER and determined by it. RBER can be used to be
the metric of flash reliability and must be monitored to ensure
that it falls in the region of ECC’s correction capability.

RBERi =
Bit error counti
Bit count of page

(1)

UBERi(n, t) =
n∑

j=t+1

(RBERji)(1− RBERi)
n−j (2)

where i is the page number, bit count of page is defined as
the length of codeword, bit error count is the number of raw
bit errors per page, N is the number of the page in a block,
0 < i <= N , n is the number of bits per page, t is the number
of bits that ECC can correct in a page.

2) LIFETIME MODELING OF FLASH BLOCKS
In NAND flash, due to process variations, flash blocks deteri-
orate at different speeds, which means that their RBER have a
huge difference when they arrived the same P/E cycle. Thus,
the traditional endurance definition method which takes a
conservative P/E cycle as the endurance of flash blocks
caused great waste of flash blocks. In order to solve the
problem, we must take measure to define ’True’ endurance
of each individual block. In 3D CT NAND flash, RBER rises
as P/E cycle increases and RBER increases with a different
rate under different retention time [2]. Figure 3 shows that the
higher the retention time, the faster the RBER change, thus,
there is the trade-off between the P/E cycle and data retention
time.

In practice, the lifetime of NAND flash is also defined
as the P/E cycles with which data can be reliably stored
in flash cells while avoiding data loss for a minimum data
retention period as guaranteed by manufacturers [1], [5], [6],
[16], in other word, the lifetime of flash blocks consists of
P/E cycle which correspond to the device lifetime and reten-
tion time which correspond to data lifetime, it motivates us
that we can establish lifetime prediction models of each flash
blocks based on the relationship of P/E cycle, retention time
and RBER. Hence, with the help of lifetime predictionmodel,

we can predict the actual endurance of each block at the given
retention time and the allowable RBER in advance, which can
make full use of flash blocks.

III. RELEATED WORK
NANDflash-based devices (e.g., Solid State Disk (SSD)) and
Hard Disk Driver (HDD) are two main storage devices for
data storage. Unfortunately, their reliability will deteriorate
over time, which can cause data loss and have catastrophic
effects for individual or enterprise. With the development of
machine learning and statistical learning methods, they have
attracted more interest to assist the storage system security
from the industry and academy, some works have taken
machine learning and statistical learning models to improve
the reliability of HDD and NAND flash-based device, where
researches of flash-based device have mainly focused on
NAND flash memory rather than flash-based device.

A. MODEL-BASED TECHNIQUES FOR OPTIMIZING
RELIABILITY OF HARD DISK DRIVE
Queiroz et al. [21] introduce a failure detection model
methodology. In this paper, Recursive Feature Elimination
is used to find a subset of SMART attributes that best rep-
resents the input data The proposed model is built upon
semi-parametric and nonparametric methods, which uses a
semi-parametric model (Gaussian Mixture Model) to build a
statistical model of the SMART attributes of healthy HDDs
and uses a nonparametric procedure to detect faults in HDD.

Li et al. [22] employ Classification Tree algorithm to estab-
lish failure model, they also proposed a health degree model
based on the regression model, which give the drive a health
assessment rather a simple classification result. This paper
simulates the practical use of the proposed scheme in real-
world data centers and develops a Markov model for RAID-
6 systems to evaluate how their prediction models benefit the
reliability of large-scale systems.

Mahdisoltani et al. [23] take a variety of machine learning
techniques to predict sector errors instead of disk failure,
results show that in that even smaller training data sets are
sufficient for successful training and that predictors trained
on one drive model can be used to predict errors on a different
drive model. This paper also proposes a number of different
use cases for error prediction.

Xiao et al. [24] introduce a disk failure prediction model
using Online Random Forests, which can automatically
evolve with the sequential arrival of data. This paper sim-
ulates the long-term use of Online Random Forests based
prediction models and demonstrates the effectiveness and
adaptivity of their method in real-world data centers.

B. MODEL-BASED TECHNIQUES FOR OPTIMIZING
RELIABILITY OF NAND FLASH MEMORY
Carlo et al. [9] propose to establish a flash RBER prediction
model to solve the problem which ECCs are designed for the
worse-case reliability design, flash controller can adapt the
ECC correction of each page based on the model, this paper
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considers the combined effect of P/E cycle and retention
time.

Bertozzi et al. [10] observe that designing NAND flash-
based systems based on worst-case scenarios leads to a waste
of resources in terms of performance, power consumption,
and storage capacity, thus, they exploit runtime reconfigura-
bility to support differentiated access modes in flash memory
controller, this paper proposes to combine an adaptable mem-
ory programming algorithms and adaptable ECC for provid-
ing trade-off between performance, reliability, and power.

Gherman et al. [11] also investigate that data refresh
scheme is based on worst-case scenarios, which can cause
unnecessary data refresh operation. Thus, the authors propose
to establish a prediction model to predict the data retention
age, data refresh operation will be triggered if the predicted
remaining retention time is smaller than the time to the next
read operation, otherwise, data will be refreshed, this adaptive
scheme can reduce write overhead caused by unnecessary
refresh operation and can improve the lifetime of NAND
flash.

Zambelli et al. [12] propose to optimize ECC based on
clustering algorithms, and adapt the code rate of LDPC to
reduce the implementation cost based on the results of clus-
tering, which can improve the lifetime of NAND flash.

Nakamura et al. [13] found that 25% of P.D. errors are
concentrated in 3.5% of the memory cells, and these cells also
have poor retention time. The authors take a machine learning
approach to detect these cell in advance and screen these cell,
which can reduce retention error and program disturb error.

The above discussed works take adaptive flash controller
reconfigurability to improve flash reliability. In our paper,
we aim to exploit the actual lifetime of NAND flash to
expand the service time of NAND flash that has already
been deployed and needn’t take above reliability enhance-
ment techniques. Our proposed method is also orthog-
onal with existing technologies or some other heuristic
solutions [4], [14], [15].

Zous et al. [25] proposed a tolerance assessment method
that initial P/E window and erase threshold voltage have a
linear relation. This linear relation can be used to assess
the performance of the tunnel oxide and optimize the erase
waveform.According to the linear relation, it can be predicted
when the cell can no longer store data.

Lee et al. [26] studied Eaa for sub 20nm NAND flash
memory. They revealed the anomalous origin feature at Eaa
(apparent activation energy) and derived the mathematical
formula which is a function of Ea (the interface trap) in
NAND flash, and used the proposed mathematical equation
to estimate the lifetime of the NAND flash.

The above two works only consider the lifetime of data
retention in NAND flash, our work will consider the lifetime
of NAND flash which is consist of data retention time and the
P/E cycle.

Fayrushin et al. [27] find that endurance degradation is
determined by trapping properties of tunnel oxide and dis-
tribution of erase current. Therefore, the authors propose

FIGURE 4. Erase latency of block which is randomly chosen from chip.

to predict endurance of flash by simulation of several
P/E cycle steps with subsequent determination of midgap
voltage, where each step of simulated P/E cycles corresponds
to a specific distribution of trapped charge concentration in
tunnel oxide.

Peleato et al. [28] take RBER as a measure of block failure
and calculate the average RBER of pages as the RBER in
a block, then, they establish a relationship of P/E cycle,
program time, RBER and RBER after 3 months, but it lacks
the flexibility to retention time.

Fitzgerald et al. [29] propose to find flash metrics that
could be measured while the device was P-E cycling, and
use them to predict the true endurance of individual flash
codewords. This paper didn’t consider the impact of data
retention time.

Hogan et al. [30]–[32] establish dataset between program
latency, erase latency, and P/E cycles in 2D planar NAND
flash. Then, they use genetic programming to perform symbol
regression to achieve the prediction model for estimating
blocks endurance. In 3D NAND flash, the erase latency
exhibits a ladder-shaped growth and fluctuates near the joint
of each two steps [2]. Figure 4 shows that the erase latency
fluctuates between 3800 P/E cycles and 4700 P/E cycles,
which could cause an over-fitting problem for establishing
block lifetime prediction model. Furthermore, they also don’t
take account into the data retention problem. In our paper,
we will regard the lifetime of NANDflash as the combination
of P/E cycles and data retention time.

Failure prediction for HDD are based on SMART attributes
and has achieved great progress in prediction performance.
Nowadays, the flash-based device is gradually replacing
HDD and become the most important storage device. How-
ever, lifetime prediction research of flash-based device is
very rare, no large and available dataset for the flash-based
device is an important reason, the most individual have no
ability to collect flash-based device dataset such as Backblaze
dataset [33] that is open source and widely used for HDD
failure prediction. The lifetime of a flash-based storage device
is also defined as the total amount of data that the device
is guaranteed to able to write. Program and erase operation
occur whenever existing data needs to overwrite in flash cell,
thus, the lifetime of flash-based storage devices is mainly
determined byNANDflash. In this paper, we target onNAND
flash rather than the flash-based device and establish lifetime
prediction models based on block dataset which are collected
from real NAND flash chips.
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FIGURE 5. The overview of the proposed lifetime prediction architecture.

IV. OUR PROPOSED APPROACH
In this section, we will introduce our proposed lifetime pre-
diction scheme in detail.

A. THE OVERVIEW OF LIFETIME PREDICTION
ARCHITECTURE
Figure 5 shows an overview of the proposed block life-
time prediction architecture. In this framework, the client
first sends operation commands to the flash-based device
which is exposed to host system and can easily communicate
with host system, controller of flash-based device records
the number of P/E cycle and compute the retention time
between two cycles, these data are then sent to the Server
in a fixed period, collected data will be sent to Lifetime
Prediction System which consists of History Database and
Block Model, Lifetime Prediction System is used to pre-
train lifetime prediction model and update model over time.
Models can be saved as files in the persistent storage device
such as SSD or HDD, each block has a corresponding model
file. The detailed process can be described as follows: (1) The
client sends a request to the Server (2) The server receives
the request and sends operation command to the flash-based
device for acquiring block dataset (3) The flash-based device
receives these commands and implements them on NAND
flash, controller of the flash-based device then sent tested data
information to the Server and temporarily stored in DRAM
(4) Data collected at a certain stage will be sent to History
Database (5) Block Model will be trained based on data
which is from the History Database and will be dynami-
cally updated based on newly arrived data in a fixed period
(6) The client receives the completion command from Server
and block lifetime prediction model will be sent to DRAM
and ultimately be serialized as a file in the persistent storage
device of Server (7) Loading the corresponding model file
into Block Model when we need to predict the lifetime of
any flash blocks.

B. MACHINE LEARNING METHOD
In order to establish block lifetime prediction model, four
well-known machine learning algorithms are represented
in Table 1, which are respectively Support Vector Machine
(SVM) [34], Random Forest (RF) [35], Multi-layer Percep-
tron (MLP) [36], Long Short Term Memory (LSTM) [37],

TABLE 1. The hyper-parameters for different machine learning models in
our experiment.

they are supervised learning models with associated learn-
ing algorithms that analyze data used for classification and
regression analysis. SVM is a kind of machine learning algo-
rithm based on VC dimension theory and risk minimization
principle on statistical learning theory. SVM have excel-
lent generalization capability with high predictive accuracy
and it has been widely used in classification and regression
problem. Random forests, also known as random decision
forests, are a popular ensemble method that can be used to
build predictive models for both classification and regression
problems. The random forest algorithm is based on ensemble
learning which is a type of learning where you join different
types of algorithms or the same algorithm multiple times to
form a more powerful prediction model. The random forest
algorithm combines multiple decision trees to obtain a more
stable and accurate prediction. MLP is an artificial neural
network, it consists of an input layer and an output layer that
makes a prediction about the input, there is an arbitrary num-
ber of hidden layers, MLP is widely used for solving various
classification and regression problems. LSTM is a type of
recurrent neural networks (RNN) used in deep learning, its
aim is to address the issue related to gradient-based learning
methods when back-propagating over long sequences. It does
so by enhancing previous RNN to include a memory cell and
a gating mechanism, which allows for controlling what is
remembered in memory and how the new input information
contributes to what is already in this memory cell.

C. MACHINE LEARNING BASED BLOCK LIFETIME
PREDICTION MECHANISM
Asmentioned above, we can applymachine learningmethods
to exploit the actual endurance of flash blocks. We aim to
establish lifetime prediction models based on collected block
dataset and then apply trained models to predict the lifetime
of flash blocks at a certain condition. In the paper, we take
the P/E cycle and retention time as input values and RBER as
the output value.

The variation of block-to-block lead to a problem that
no individual model can fit all blocks. If we train lifetime
prediction models for each flash blocks, which can cause
great overhead. However, we respectively train block lifetime
prediction models using the same type of machine learning
on collected block datasets and find their hyper-parameters
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are the same or distributed in a specified range, which can be
used to scale the range of parameter optimization. For reduc-
ing the overhead of searching hyper-parameter optimization,
we first choose some blocks that are evenly distributed in the
chip and determine the initial hyper-parameter range based
these blocks dataset. We then traverse to find the optimal
hyper-parameter based on achieved hyper-parameters range
for remaining blocks.

Table 1 shows the main hyper-parameters for four different
machine learning algorithms. For SVM, we will optimize
kernel function, penalty parameter of the error term, kernel
function includes the polynomial kernel, radial basis kernel,
and sigmoid tanh kernel [34]. For RF, the number of trees,
split criterion, the maximum depth of the tree and the min-
imum number of samples required to split in a node are
several important hyper-parameter which will be optimized.
For MLP, learning rate, optimizer, activation function will be
optimized during fitting, where optimizer include lbfgs [39],
sgd [40] and adam [41], etc, activation function include
logistic sigmoid function [42], hyperbolic tan function [43]
and rectified linear unit function [44]. For LSTM, hyper-
parameter are respectively the number of layers, the number
of units in each layer, and the size of a sliding window,
et al., In the training process, root mean square error is
calculated [45], and we set the tolerated error threshold value
as 0.001s.

For evaluating models, R-squared measure, R2, will be
used to evaluate the predictive accuracy [38]. In our present
paper, R2 describes how well a lifetime prediction model can
fit P/E cycle, retention time and RBER, it is calculated in
Equation (3), where y is the actual vector value which consists
of multiple samples, ŷ is the predicted vector value which
consists of multiple samples, yi is the ith expected response
sample, ŷi is the corresponding predicted value, there are
nsample samples. The higher the value is, the better the result
is. The best possible score is 1.0, the worst score is 0. Once
the block lifetime prediction model is established, it can be
used to predict a block’s endurance at the required retention
time or maximum data retention time in a certain P/E cycle.

R2(y, ŷ) = 1−

nsample−1∑
i=0

(yi − ŷi)2

nsample−1∑
i=0

(yi − ȳ)2

,

ȳ =
1

nsamples

nsample−1∑
i=0

yi (3)

D. MODEL AGING PROBLEM IN BLOCK LIFETIME
PREDICTION MECHANISM
In the practical scenario which flash-based device has been
deployed, the information of blocks are continuously gen-
erated over time and future information are unknown at
the moment, thus, block lifetime prediction models can
only be trained based on historical information and future

FIGURE 6. (a) Actual curve and predicted curve of a block based on static
lifetime prediction scheme, where retention time is 0. (b) The first order
differential of actual curve function.

information are not contained in the training dataset. When
the model training stage has finished, trained models will be
directly applied to predict the lifetime of flash blocks and
models remain unchanged over time, which is called ‘‘Static
Lifetime Prediction Scheme’’ in the context. The fundamen-
tal assumptions of the static lifetime prediction schemewhich
machine learning methods perform well are that training and
testing data follow the same distribution.

However, we apply the trained lifetime prediction model
to predict the lifetime of flash blocks, there can emerge a
problem that these trained lifetime prediction models loss
predictive accuracy over time. For illustration, we train life-
time prediction model for a block which is randomly cho-
sen from tested blocks, where training dataset is from 0 to
2500 P/E cycle. As shown in Figure 6 (a), we establish its
lifetime prediction model and apply the pre-trained model
to predict block status which isn’t included in the training
set, we find that the predicted curve is above the actual
curve when the number of P/E cycle exceed 4600 P/E cycle.
Figure 6 (b) shows the first differential of actual curve
function, it means that RBER changes with a different rate
throughout the whole life of the block, thus, there aren’t same
distribution between the training set and testing set. Due to
space limit, we only present the result of a block, other blocks
exhibit the same characteristics with the block. Since lifetime
prediction model of the block only relies on the dataset which
ranges from 0 to 2500 P/E cycle, it doesn’t contain these
change situation in the later stage, which can lead to the
failure for block lifetime prediction. Thus, it is very important
to update model which will contain the situation for flash
lifetime prediction.

Figure 7 shows the typical model updating flowchart for
flash blocks, the client first sends a model detection request
to check if the lifetime prediction model of each flash blocks
needs to be updated, the Server receives the request and
implement model checking operation. There is a Data Queue
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FIGURE 7. The typical model updating flow char of Block lifetime model.

in the host of the Server, the incoming data from the flash-
based device will be first sent to Data Queue. When Data
Queue is full, the model file of the block will be deserialized
from a persistent storage device and loaded into the host
system, Model monitor then evaluated the lifetime predic-
tion scheme with newly arrived data from Data Queue and
determine whether the model should be updated. The updated
model will be serialized and stored in the persistent storage
device, the original model will be marked as invalid.

Algorithm 1 Dynamic Lifetime Prediction Algorithm With
Model Updating
Input: X= (P/E cycle, Retention time)
Output: RBER
1: /* Searching optimal machine learning algorithms

and hyper-parameter range */
2: Choose some blocks which are evenly distributed in the

chip
3: for K in SVM,...MLP do
4: Search the hyper-parameter range for blocks in the

chip
5: end for
6: /* Pre-training block lifetime prediction model */
7: Input collected dataset of blocks in the earlier stage
8: Get pre-trained model of each block based on the

achieved hyper-parameter range
9: /* Updating trained models at run-time */
10: Acquire new arrived data at run-time, take interval

of 500 P/E as a lifetime stage
11: Xstage(i) are inputs and ystage(i) is true output in the i-th

lifetime stage.
12: for i=1,2...n do
13: if R2(model(Xstage(i)), ystage(i)) < 0.9 then
14: Update model with arrived data in this stage
15: end if
16: end for

E. OUR PROPOSED LIFETIME SCHEME
In order to solve the model aging problem mentioned in
Section IV. D, we should adaptively adjust the lifetime predic-
tion model at run-time. However, there are plenty of blocks in
a chip, it is impractical to retrain lifetime prediction models

FIGURE 8. Prediction accuracy distribution of 600 blocks based on static
lifetime scheme.

once we find their R2 are below a given threshold at run-time,
which can cause huge overhead. To mitigate the problem,
model monitor procedure will be performed infrequently,
we define the interval of 500 P/E cycles as a lifetime stage,
where each P/E cycle could correspond to different retention
time at each lifetime stage, which is different from a fixed
length queue mentioned in Figure 7. We then compute R2 and
monitor the results at runtime, the model updating process
will be triggered onceR2 is less than 0.9 at any certain lifetime
stage. We update the model using newly arrived data in this
stage and then apply the updatedmodel to the later prediction.
There can also exist a problem that frequently model updating
can cause great overhead and impact on system performance.
Figure 8 shows probability density for per-block prediction
accuracy within 600 blocks, their models are established
based on datasets which range from 0 to 2500 P/E cycle and
then apply the trained model to predict currently collected
data for each block, we find that predictive accuracies of 48%
blocks exceed 90%. Therefore, model updating is rare for
these blocks. We also have statistics for the number of model
updating in 600 blocks, the number of their model updating
is less than 4 in their whole lifespan. Therefore, the model
updating strategy will not cause frequent updates.

V. EXPERIMENT METHODOLOGY
In this section, we describe the methodology used in the
experiment for acquiring block dataset, the dataset will be
used to train block lifetime prediction model.

A. EXPERIMENT PROCEDURE
In our experiments, a 512G NAND flash is configured based
on the specifications of a typical 3D-TLC flash memory
structure BICS2 from TOSHIBA. Each chip has 2 LUNs,
each LUN has 2 Planes, each Plane has 3944 blocks, each
block has 576 pages, the size of one page is 16KB.

Figure 9 shows a NAND flash-based testing platform that
allows us to issue commands to raw flash chips, there is not
an ECC engine in the testing platform. Due to limitations
of experimental condition, we only test a chip of 3D-TLC
NAND flash which is described above, we leave a large-scale
study of different chips for future work.

Though access patterns are dramatically different, how-
ever, there is a data randomization module (scrambler) in a
modern flash-based device controller, the data 0 and 1 finally

VOLUME 7, 2019 44703



R. Ma et al.: RBER-Aware Lifetime Prediction Scheme for 3D-TLC NAND Flash Memory

FIGURE 9. NAND flash-based testing platform in the experiment.

written to flash memory are basically balanced. To emulate
this, we consider using a pseudo-random number to operate
on the flash device. For accelerating experiment process,
a data retention test will be carried out in a temperature
chamber which can provide precise control over the inter-
nal temperature. For ensuring that the temperature can be
maintained accurately, our NAND flash testing platform has
a temperature sensor, which is used to monitor the ambient
temperature. We consider the temperature is accurate if the
temperature collected from the sensor is consistent with that
set in the temperature chamber.

AF = exp
−Eaa
K ×(

1
T1
−

1
T2

) (4)

RetentionTimeT2 = RetentionTimeT1 × AF (5)

According to the Arrhenius equation [16], which is shown
in Equation (4), where Eaa is the activation energy, K is the
Boltzmann constant: 8.62× 10−5V/K , T1 is the temperature
of high-temperature baking, T2 is the standard retention tem-
perature which is usually 40◦C [16], AF is the acceleration
factor. In our experiment, Eaa is set to 1.0 eV, T1 is 85◦C,
T2 is 25◦C, we convert them into Kelvin. AF is calculated,
it is about 105. AF is used to determine the required time
placed in the temperature chamber. The baking times need
to be normalized to equivalent time at 85◦C to simulate the
retention time in 40◦C. Retention time will be calculated
based on Equation (5).

Block’s reliability is related to its physic locations [2],
thus, in this paper, we select blocks which are evenly dis-
tributed in the chip. In the experiment, we first scan the bad
block table and remove the bad block from the selected chip.
Due to the limitation of the experiment condition, we only
select 600 blocks from remaining valid blocks, these blocks
are evenly distributed in the different physic locations of
the chip. During the experiment, there is a certain recovery
time (dwelling time) between the program and erase oper-
ation at the room temperature (25◦C), which is set to 5s.
Then, we repeatedly program and erase target blocks with
pseudo-random data to different P/E levels to cover the range
from 0 to the P/E cycle which the erase failure or program
failure happen. After each 100 P/E cycle interval, a pseudo-
random data is written to flash blocks. We then immedi-
ately read the data from each block and compare the written
pseudo-random data with the value read from the block,
we compare it with raw true value, record error counts

FIGURE 10. Test procedure in the experiment.

TABLE 2. Dataset format of flash blocks in the experiment.

and calculate RBER. Finally, after completing the required
P/E cycle, we perform write operation using pseudo-random
numbers. In this paper, we only heat it in 85◦C range 0 from
7 hours which correspond from 0 to 4 weeks in 40◦C. For
every 1.75 hours, we need to cool down to room temperature,
we ten read data, compare, and count the number of bit errors
at the end of each interval, the detailed flowchart is shown
in Figure 10.

B. BLOCK DATASET
Our dataset collected are based on the above experiment,
which includes RBER, P/E cycle and retention time. In this
experiment, RBER is collected in 4KB units, therefore, there
is totally 2304 4KB’s RBER value in a block. We choose
the highest RBER from 2304 4K’s RBER corresponding to
the ith P/E level and retention time of j week in a block and
take the value as RBER(i, j) of the block. For the condition’s
limitation, retention time ranges from 0 to 4 weeks, the detail
representation is shown in Table 2.

C. RESULTS ANALYSIS
In this section, we present the evaluation results of our
proposed RBER-aware lifetime prediction scheme based on
machine learning techniques. We compare four machine
learning algorithms in terms of predictive accuracy and time
overhead.
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FIGURE 11. (a) Original data and data after EWMA. (b) First order
difference data after EWMA.

1) EXPERIMENT ENVIRONMENT
The experiment is implemented on Windows 64 bits using
a desktop equipped with CPU of Intel(R) Core(TM) i5-4460
@3.2GHz, DRAMof 16GB, SSD of 128G, and HDD of 1TB.
Tests are implemented in Python 3.5.

2) DATA PREPROCESSING
We analysis dataset and find there is a lot of jitter throughout
their life. Because the block data set we have collected is
relatively small, these jitters can bring noise pollution for
block lifetime prediction model, which can cause an over-
fitting problem and seriously affect the predictive stability of
models. In order to solve the problem, we take the P/E cycle
and RBER as time series data under the same retention time,
we then apply a non-uniform weighting to training set, but
recent data is weighted more heavily, which is called Expo-
nentially Weighted Moving Average (EWMA) [46], EWMA
is calculated in Equation (6). Figure 11 (a) shows the results
of applying N = 5. Figure 11 (b) shows RBER changes
with different rates over time, thus, the model still needs to
be dynamically adjusted to adapt change over time.

EWMA(RBER(i, j)) = a ∗ RBER(i, j)

+(1− a) ∗ EWMA(RBER((i− 1), j))

(6)

xNorm =
x − xmin

xmax − xmin
(7)

where x is P/E cycle or retention time, xmin is the minimum
value and xmax is the maximum value, N specify decay in
terms of span, a = 2

N+1 , 0 < a <= 1, i indicates P/E cycle,
j indicates retention time.

In the true scenario, we apply the EWMA method to
process streaming data, which could cause extra memory
overhead. However, Equation (6) shows we need to save the
last data that was processed. Experiment results show that the

FIGURE 12. Cumulative predictive accuracy distribution of four different
machine learning models.

FIGURE 13. Time overhead statistics of block models under four different
machine learning algorithms.

time overhead of data transformation is about 0.0003s for our
training set.

Prior to any model training and testing, it is critical to
do data normalization so that block data points to be within
uniform scale range, which can equal contribution for all
features. In the experiment, the P/E cycle and retention time
are first normalized using Equation (7).

3) WHICH MACHINE LEARNING ALGORITHM?
We pre-train block lifetime prediction model based on SVM,
MLP, RF, LSTM and then evaluate their models in terms of
time and predictive accuracy overhead, where training set
consists of P/E cyclewhich ranges from 100 to 2500 P/E cycle
and corresponding RBER, testing set consists of P/E cycle
which ranges from 2500 to 6000 P/E cycle and corresponding
RBER, retention time ranges from 0 to 4weeks. Experimental
results are shown in Figure 12, 13, 14.

According to our pre-training results, their initial parame-
ters of pre-trained models are set as follow : For SVM, Kernel
type is polynomial, Penalty parameter range from 1 to 100 ;
For MLP, Activation function is tanh, Learning rate is 10−3,
the number of neurons is 100, total epoch is 50, Solver is
Stochastic Gradient Descent, the number of hidden layers
is 1; For RF, the number of trees is 200, split criterion is Gini
impurity, the maximum depth of the tree is 6, the minimum
number of samples is 60. For LSTM, the size of the sliding
window is set 5, the number of neurons for the first hidden
layer and second hidden layer respectively are 100 and 50,
the activations of the two-layer respectively are both RELU,
a fully connected standard neural network, without activation
function in its neurons, is later applied to the output of the last
LSTM layer, the number of epoch is 10.
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FIGURE 14. Time overhead statistics of one update under different
machine learning algorithms.

To choose the optimal machine learning algorithm for flash
block, we compare four different machine learning algo-
rithms based on four machine learning models in terms of
prediction accuracy and time overhead. We train machine
learning models based on the training set and apply the
trained models to testing set which has not any overlap with
the training set. Figure 12 presents the cumulative probabil-
ity of prediction accuracy under different machine learning
models. The horizontal axis is the predictive accuracy range,
vertical axis represent the cumulative probability distribu-
tion of 600 blocks under different machine learning algo-
rithms. RF performanceworst in terms of predictive accuracy,
LSTM have the best predictive accuracy and stability for
most blocks, SVM also shows better prediction accuracy and
stability. However, as shown in Fig 13, LSTM and MLP can
cause great training time overhead compared with SVM and
RF, they are unpractical for applying in a real-world system,
which can seriously impact the overall system performance.
Figure 14 show time overhead of one model updating for
the four machine learning models, MLP and LSTM mod-
els also cause great time overhead at the model updating
process.

In summary, there is a trade-off between predictive accu-
racy and time overhead for machine learning models, which
is crucial for applying it to a practical environment. RFmodel
has the fastest convergence rate, however, its prediction per-
formance is the worst. Therefore, the SVM model is the
optimal choice with consideration of predictive accuracy and
time overhead, it can be applied in our proposed lifetime
prediction scheme.

4) WHICH LIFETIME PREDICTION SCHEME?
In this section, we will compare the static lifetime prediction
scheme without model updating and dynamic lifetime pre-
diction scheme with model updating in terms of predictive
accuracy and time overhead.

In the dynamic lifetime prediction algorithm, models will
be monitored and adjusted over time, which could cause
extra time overhead compared to the static lifetime prediction
scheme. Figure 14 shows time overhead caused by one model
updating under four different machine learning algorithms,
which consist of the maximum value, minimum value and
mean value for 600 block models. The model updating con-
sists of original model loading and model updating process.

FIGURE 15. Average predictive accuracy of 600 SVM models under static
lifetime prediction scheme and dynamic lifetime prediction scheme.

FIGURE 16. Endurance comparison of baseline and predicted endurance
based on our proposed lifetime prediction scheme.

Figure 15 shows the predictive results of SVM models based
on static lifetime prediction scheme and dynamic lifetime
prediction scheme at 4 different lifetime stage. The results
show SVM models based on dynamic lifetime prediction
scheme has a significant improvement compared with SVM
models based on static lifetime prediction scheme in terms
of predictive accuracy. Therefore, although the proposed
scheme causes a little extra time overhead, it can significantly
improve the predictive accuracy of blocks model.

D. ENDURANCE PREDICTION RESULTS
In this paper, the allowable RBER of ECC is assumed as
5 × 10−3 and we define the maximum P/E cycle of the
worst block as the nominal endurance within the 600 blocks.
We then predict block’s endurance based on proposed lifetime
prediction scheme, the results represent an average result
of 600 blocks at five different retention time. We take the
nominal endurance as a baseline, Figure 16 shows the pro-
posed lifetime prediction scheme can significantly improve
the endurance of flash blocks from 37.5% to 86.3%.

E. USE CASES FOR BLOCK LIFETIME PREDICTION
In this sector, we will discuss some applications of the life-
time prediction model in a storage system.

1) BLOCK REPLACEMENT
In SSD, flash blocks will gradually wear out over time, with
the help of lifetime prediction model, we can predict when
flash blocks will fail in advance.We then allocate a new block
from over-provisioning space and data in the old block can be
migrated to the block before arriving the failure point.
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2) WEAR LEVELING
Traditional wear leveling scheme take P/E cycle as the target,
which causes great storage waste. Using the lifetime predic-
tion model, we can predict RBER of flash blocks at real-time
and take RBER as the target, which can greatly improve the
block’s lifetime.

3) BLOCK ALLOCATION
With the help of block lifetime prediction model, we can
know block’s maximum P/E cycles in advance, which can
motivate us we can allocate hot data in a strong endurance
block and put cold data in a weak endurance block, which can
greatly improve the overall lifetime of NAND flash memory.

4) ERROR CORRECTING CODES
Traditional ECC for flash memory is designed to tolerate
the worst case to ensure data integrity, it is redundancy for
most flash blocks. We can take adaptive ECC for flash blocks
based on block’s endurance. And the reliability of flash cells
changes over time, we also can adaptively adjust ECC at
a different stage. We can use a less powerful code at the
beginning at the low RBER and stronger ECC when RBER
is higher based on the predictive results, which can greatly
reduce decoding latency.

5) DATA REFRESH
In order to guarantee data integrity, data refresh operation
need to be implemented. A refresh operation consists of
reading, correcting, and rewriting the stored data at a fixed
frequency that is at least as fast as the current internal
retention time, which could cause extra program and erase
operation. Data refresh at a fast rate will detect errors more
quickly, while a slow data refresh speed imposes less load
on the system. Using the block lifetime prediction model,
we can predict the maximum retention time in advance and
adaptively adjust refresh frequency based on the predictive
results, which can reduce the impact caused by data refresh
operation on system performance.

VI. CONCLUSION
In this paper, we exploit large variation in flash blocks and
traditional block retirement policy introduces a great waste of
storage space. To address the problem, this paper introduces
a dynamic lifetime prediction scheme which is based on the
machine learning technique for 3D-TLC NAND flash mem-
ory. We take RBER as the measurement of block reliability
and take amachine learning approach to build lifetime predic-
tion models which consist of RBER, P/E cycle, and retention
time for each flash blocks. The lifetime predictionmodels can
adapt to the changes at run-time.We also compared four well-
known machine learning algorithms in terms of predictive
accuracy and time overhead under our proposed lifetime pre-
diction scheme, the results show SVMmodels perform better
in predictive accuracy as well as stability and interpretability.
We apply SVMmodels based on proposed lifetime prediction

scheme to predict endurance of flash blocks, the experimental
results show it can greatly improve the block’s lifetime.
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