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ABSTRACT The parameter tuning optimization design is realized for an active disturbance rejection
controller (ADRC) in combination with the improvement of the existing swarm intelligence algorithm.
Taking the optimization design and application ofADRC as an example, this paper is focused on investigating
the improvement of the hybrid algorithm composed of fish swarm algorithm and particle swarm optimization
algorithm and its application in parameter tuning of ADRC. The main contents are as follows. First,
the parameters that need to be tuned are determined based on the composition and principle of the ADRC.
The module building technology of S-function is adopted to create the module library of ARDC in terms of
the modular construction idea and a complete simulation example of ADRC is built in Simulink. Second,
the parameters are improved according to the proposed hybrid algorithm composed of the artificial fish
swarm algorithm and the standard particle swarm optimization algorithm, and the control performance is
tested by the MATLAB simulation of the ADRC whose parameters are optimized by using the algorithm.
Finally, the flight attitude control of the unmanned aerial vehicle (UAV) is taken as an application example,
and the fixed-wing UAV is selected as the research object. Through the analysis of the experimental results,
the effectiveness of the optimized design is verified for the ADRC in the attitude control of the UAV.

INDEX TERMS Active disturbance rejection controller, attitude control, hybrid algorithm of the fish swarm
and particle swarm, parameter optimization tuning, simulated flight simulation.

I. PREFACE
The active disturbance rejection controller (ADRC) was
proposed by researcher Han Jingqing in 1998 [1]. Nowa-
days, the ADRC technology [2] has been investigated and
applied in many areas such as motor control [3], precision
machining [4], chemical process [5], spacecraft control [6],
aircraft flight control [7], robot control [8], and a lot of results
have been achieved. However, the application effect of ADRC
is not ideal in practical applications due to its disadvantages
of many parameters and tuning difficulties.

Group intelligence is an intelligent behavior that is per-
formed by a single intelligent individual in any form and
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participates in coordinated behavior. It is also a computing
technology based on the laws of biological group habits.The
group intelligence algorithm is based on mathematics and
is developed by simulating these natural processes, such
as artificial fish swarm algorithm, particle swarm algo-
rithm, and ant colony algorithm.Nowadays, the group intelli-
gence algorithm developed by group intelligence has covered
multiple target optimization, data screening and clustering,
robot behavior control, simulation and system identifica-
tion.Therefore, the exploration and improvement of intelli-
gent intelligence algorithms with intelligent characteristics
has become a hot research direction.

In addition to solving the function optimization problem,
the artificial fish swarm algorithm has also been applied to
many other fields and certain results have been achieved
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on fault diagnosis [9], image detection and recognition [10],
path planning [11], network coverage optimization [12], etc.
However, there is big blindness of global search in the early
stage and a slow convergence rate in the later stage of the
artificial fish swarm algorithm. Although it can find the
approximate region where the optimal value is located, it is
difficult to find the optimal value with high precision. In this
regard, scholars have proposed some improved methods, for
example, the conjugate gradient method has been introduced
in the literature [13] to reduce randomness and enhance indi-
vidual local optimization ability and so on. Despite that the
overall performance of the algorithm has been improved by
some proposed improvements, there is still a problem of poor
balance between global search and local search, which results
in unstable optimization performance.

The particle swarm optimization algorithm is to solve the
optimization problem of the objective function, whose idea
is changed from something desirable in the foraging behav-
ior of the flock. This algorithm has the advantages of less
parameters, easy implementation, a fast calculation speed
and a strong ability of local search, etc. It has been applied
in many fields, such as power system optimization [14],
pattern recognition [15], target tracking [16]. Nevertheless,
the algorithm also has the disadvantages of poor performance
of global search, being easy to fall into local optimum,
and frequent stagnation when it iterates. The concepts of
commutator and exchange order have been proposed in the
literature [17], and a particle swarm optimization algorithm
has been constructed with a special arithmetic form. These
improvements have perfected the optimization results of the
particle swarm optimization algorithm, but have not given an
effective solution to the problem that the algorithm is easy to
fall into the local optimum.

In this paper, the parameter tuning optimization
problem [18] in the optimization design of the active
disturbance rejection controller is taken as the research back-
ground. For the defects of ADRC that there are many param-
eters to be tuned and it is not easy to adjust the parameters,
the active disturbance rejection control technology is used as
the theoretical basis. The influence from parameters of each
part of the ADRC on the control performance is analyzed,
and the optimization performance of the artificial fish swarm
algorithm [19] and the standard particle swarm optimization
algorithm is investigated. Then, a kind of improved hybrid
algorithm of fish swarm and particle swarm optimization is
proposed based on elite Gaussian learning. Thus, the param-
eter tuning problem is solved in the optimization design for
the active disturbance rejection controller. It is realized that
the parameter adjustment is fast and accurate, and the control
performance of the active disturbance rejection controller
is improved. Finally, the optimization design of the ADRC
is applied to the flight attitude control of the UAV, and
a simulation of a test flight is carried on for the UAV in
conjunction with MATLAB/Simulink. This proves that the
improved active disturbance rejection controller can solve the
practical problem of control application well.

The main work and contributions of this paper are stated
as follows:

1. Aiming at the advantages and disadvantages of basic
artificial fish swarm algorithm and particle swarm optimiza-
tion algorithm, an improved hybrid algorithm of fish popu-
lation and particle swarm is proposed. Three improvements
are made to the hybrid algorithm: 1) the distribution of the
initial population is optimized through uniform initialization;
2) grouping by frog jumping algorithm, and using differ-
ent search strategies for excellent individuals and general
individuals in the group, in order to improve the purpose
and efficiency of search; and 3) the improved elite Gaussian
learning is introduced to improve the accuracy of the final
result. Then through the standard function test comparison
and the independent impact analysis of each improved part,
it is verified that the improved hybrid algorithm is feasible
and effective.

2. Taking the application of the active disturbance rejec-
tion controller as an example, the improved hybrid algo-
rithm is used to optimize the parameters, and the improved
active disturbance rejection controller is applied to the atti-
tude control of the UAV. Take the control problem of the
drone’s flight attitude as an example. The ADRC-based UAV
attitude control simulation platform is built in Simulink,
which verifies that the improved active disturbance rejec-
tion controller has better control effect in UAV attitude
control.

Therefore, in combination with the improvement by the
existing swarm intelligence algorithm, the parameter tuning
optimization design is realized for active disturbance rejec-
tion controller, which will lay a good foundation for the active
disturbance rejection controller to solve practical problems.
At the same time, it has great theoretical research significance
and application reference value.

II. COMPOSITION PRINCIPLE OF THE ACTIVE
DISTURBANCE REJECTION CONTROLLER
The active disturbance rejection controller is composed
of a tracking differentiator (TD), an extended state
observer (ESO) and a nonlinear state error feedback (NLSEF)
control law. The structure diagram of the active disturbance
rejection controller is shown in Fig. 1.

FIGURE 1. Structure diagram of the active disturbance rejection
controller.
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The expression of the tracking differentiator is as follows:
e = x1 − v
fh = fhan(e, x2, r, h0)
x1 = x1 + Tx2
x2 = x2 + Tfh

(1)

where v is the input of the system. In order to pre-
vent the occurrence of chattering in digital calculation,
fhan(x1, x2, r, h) is used as the time optimal control function
of the discrete system. T is the sampling period, r and h0
are variable parameters, the tracking speed is determined by
the speed factor r , and h0 is the filtering factor which filters
the noise. According to the introduction of the differential
tracker, it can be seen that the parameters r and h0 are to
be tuned. The speed factor r and the filtering factor h0 are
tuned to find the best values of them, thus the fast tracking
function as well as the differential action of noise reduction
and extraction can be realized of the differential tracker.

The expression of extended state observer is:
ż1 = z2 − β01ε1
ż2 = z3 − β02fal(ε1, α1, δ)+ bu
ż3 = −β03fal(ε1, α2, δ)

(2)

where ε1 = z1 − y. fal(ε1, αi, δ)(i = 1, 2) is the continuous
power function. It can be seen from the analysis of the above
equation that there are mainly three parameters β01, β02
and β03 that need to be tuned. Considering the gains of the
error feedback, the larger the values of them, the smaller
the hysteresis of the disturbance estimation and the faster
the convergence process. However, if the parameter value is
selected to be too large, then it will cause serious oscillation
of the observer, and the ability to suppress noise will also
decrease along with it, which has a great influence on the
convergence speed of the extended state observer. Also, there
exist mutual restrictions among these three parameters.

The expression of nonlinear state error feedback control
law is: 

e1 = v1 − z1
e2 = v2 − z2
u0 = β1fal(e1, α1, δ)+ β2fal(e2, α2, δ)

(3)

where β1 and β2 are variable parameters that need to be
adjusted to satisfy the control requirements. In order to sup-
press high frequency oscillation, it is generally selected that
gi(ε1) = fal(ε1, αi, δ), where fal(ε1, αi, δ) is a continuous
power function with the following form:

fal(ε1, αi, δ) =

{
|ε1|

αsgn(ε1) |ε1| > δ,

ε1/δ
1−α ε1 ≤ δ,

δ > 0. (4)

It can be seen from the equation that the three parameters β1,
β2 and b0 need to be tuned.

In summary,eight parameters are required for parameter
tuning.

III. IMPROVED HYBRID ALGORITHM OF FISH
POPULATION AND PARTICLE SWARM OPTIMIZATION
BASED ON ELITE GAUSSIAN LEARNING
A. THE IMPROVED PART OF THE ALGORITHM
Firstly, for the random initialization part of the fish swarm
algorithm, a method of uniform initialization of dimensional
space is used in this paper to initialize the population. Uni-
form initialization reduces unnecessary constraints and the
number of loop operations, and improves the initial search
efficiency while ensuring the uniform distribution of the ini-
tial population in space. Its operation method is as follows:

(1) According to the total number of population individ-
uals, the population density coefficient ρ in the subspace
and the upper bound XMAX and the lower bound XMIN of
the population individuals in each dimension component,
the space where the entire population is located is uniformly
divided into K subspaces.

(2) In each subspace, M population individuals are ran-
domly generated, and the Euclidean distance matrix is estab-
lished for the M individuals by equation (5). According to
the matrix and the population density coefficient ρ in the
subspace, if Dij < ρ ∗ ‖XMAX − XMIN‖, which means that
the two individuals xi and xj are too close, then one of the
individuals is removed according to the Euclidean distance
matrix and a new individual is regenerated to replace the old
one.

Dij =

√√√√ n∑
k=1

(xik − xjk )2 (5)

where Dij represents the spatial Euclidean distance between
any two individuals xi = (xi1, xi2, . . . , xin) and xj =
(xj1, xj2, . . . , xjn) of the M population individuals, and n is
the dimension of the population individuals.

The K × M population individuals constitute the initial
population, and the population initialization is completed.

Secondly, in this paper, guiding towards the direction
with a certain probability [20] being utilized in combination
with dynamic population collaboration [21], [22] in order to
strengthen the global optimization ability of the fish swarm
algorithm part, which shows good feedback on each iteration
result. The adopted grouping mode follows the leapfrog algo-
rithm. At the same time, different position update equations
are used for excellent individuals and general individuals
in the group, as well as dynamic adjustment strategies for
visual field and step size. Adaptive functions of the power
function type are used for excellent individuals to adjust the
visual field and step size, and the perturbation variable of
global optimal value is introduced to the position update
equation [23]. Linear function type adjustment is utilized
for general individuals, and the perturbation variable of the
optimal value in the group is introduced to the position update
equation. The specific implementation method is as follows.

(1) Grouping mode
For all N artificial fish in all groups of the initial fish pop-

ulation, they are sorted in terms of fitness value from small

59864 VOLUME 7, 2019



C. Kang et al.: Optimization Design and Application of ADRC Based on Intelligent Algorithm

to large. The ordered artificial fish individuals are divided into
m groups, and each group contains p artificial fish satisfying
N = m × p. The grouping method is: The first artificial fish
is placed in the first group, the second artificial fish is placed
in the second group, themth artificial fish is placed in themth
group by analogy, and the m + 1th artificial fish is placed in
the first group, and so on until the division is completed. Sort
and group according to this method after each iteration.

(2) Dynamic adjustment of visual field and step size
For all individuals in each group, the top 20% of the

individuals are defined as excellent individuals, and the rest
are general individuals. For excellent individuals, the adjust-
ments of their visual field and step size are shown in
equations (6) and (7):

visual = visualmax × iter
log(visualmin/visualmax)

log(genmax) (6)

step = visual × A (7)

For the remaining individuals in the group, the adjustments
of their visual field and step size are shown in equation (8) and
equation (7).

visual = visualmax −
iter × (visualmax − visualmin)

genmax
(8)

where visualmax represents the initial value of the visual field,
visualmin represents the end value of the visual field, iter
represents the current iteration number, genmax represents the
maximum number of iterations, and A ∈ [0.5, 1] is a random
number.

(3) Position update equation of individuals in the group
Improvements are made to the location update equation

with foraging behavior and random behavior. Taking the
foraging behavior as an example, its position update equation
for excellent individuals and the update equation for other
individuals are shown in equation (9).

Xnext = Xi + Step×
Xj − Xi
‖Xj − Xi‖

+ R× Step×
XG − Xi
‖XG − Xi‖

(9)

where Xi is the current position state of the artificial fish, Xj is
a randomly selected state position within its visual field, Step
is the step size, XG is the position state of the optimal artificial
fish, and R is the disturbance influence factor used to adjust
the influence from optimal value of the global or the group
on the moving direction. For excellent individuals, XG is the
position state of the global optimal artificial fish. For other
individuals, XG is the positional state of the optimal artificial
fish in the group. The equation for random behavior is similar
to it.

Finally, in order to solve the problem of optimal value
stagnation and low precision of the final result when the
particle swarm optimization algorithm is iterative, a kind of
improved elite Gaussian learning is adopted in this paper to
jump out of the state of stagnation, thus the accuracy of the
final result is improved [24]. The Gaussian learning mode is

shown in equation (10) and equation (11):

Pd = Pd + (Xmax − Xmin)× Gaussian(µ, σ 2) (10)

d = random(1,D) (11)

where P represents the position state of the current optimal
individual, d represents a random dimension of the indi-
vidual, Xmax and Xmin are the upper and lower bounds of
the dimensional component, µ is the mean of the Gaussian
distribution, σ 2 is the variance of the Gaussian distribution,
and D is the total dimension.

However, all of the above usage modes have shortages,
and the main representations are that the large randomness of
the variation result causes the low success rate of variation;
and when learning is done for the optimal individual, too
much blind learning is unstable to the increase of convergence
accuracy and affects the running speed of the algorithm.

In view of the above deficiencies, the following improve-
ments from two aspects are made in this paper on the basis of
the existing elite Gaussian learning:

(1) Adjusting the timing of the call and the applicable
individuals of the elite Gaussian learning. When the global
optimal value has no change for 3 consecutive generations,
the elite Gaussian learning is performed on the global optimal
individual and the top 10% of the best individuals in this
iteration. The impact from multiple learning is reduced on
the running speed of the overall algorithm while expanding
the learning object.

(2) Conducting the directional learning for elite groups.
First, Gaussian learning is performed one by one on all the
dimensions of the individual, the results of each dimension
are summarized and sorted, and the first dbest dimensions are
selected as the learning directions. Then, the T -dimensional
Gaussian learning is conducted for the dbest dimensions of
the individual to take the optimal value. If the optimal value
is better than the global optimal one, then the optimal value
is made to replace the global optimal one, otherwise it is not
retained, and this method is also adopted to deal with other
elite individuals. Through the determination of the learning
direction, the uncertainty in the random learning process is
reduced, and the execution efficiency of the elite Gaussian
learning is improved.

B. ALGORITHM ANALYSIS AND HYBRID
ALGORITHM STEPS
In summary, the steps of the improved hybrid algorithm of
fish swarm and particle swarm optimization based on elite
Gaussian learning are as follows:
Step 1: Set the parameters in the hybrid algorithm: The

initial population number N , the number of groupings m,
the initial value of the visual field visualmax, the end value of
the visual field visualmin, the number of attempts try number ,
the maximum number of iterations genafsa of the fish swarm
part, and the maximum number of iterations genpso of the
particle swarm optimization part, and so on.
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Step 2: Perform the population location initialization
according to the improvements of Section III-A.
Step 3: Calculate the fitness of the population and sort the

groups.
Step 4: For the outstanding individuals occupying the top

20% of each group and the general individuals, conduct
behaviors such as clustering, rear-end and foraging in accor-
dance with the corresponding dynamic adjustment strategy of
the visual field and step size and the improved position update
equation in Section III-A.
Step 5: Determine whether the global optimal value is less

than 10−4 or the number of iterations reaches the end condi-
tion of the maximum number of iterations. If it is satisfied,
the global optimal value and the first 20% individuals of each
group in the bulletin board are used as the initial particles of
the particle swarm optimization algorithm part, and Step 6 is
executed. Otherwise, continue with Step 3.
Step 6: Update the particles according to the update equa-

tion of particle swarm optimization to find the global optimal
value.
Step 7: Determine whether the global optimal value has no

change for 3 consecutive generations. If it is satisfied, then the
improved elite Gaussian learning is conducted for the global
optimal value and the top 10% of the best individuals in this
iteration according to Section III-A. Otherwise, continue with
Step 6.
Step 8: Judge whether the end condition of the maximum

number of iterations is reached. If it is satisfied, then the
final global optimal value is output. Otherwise, continue with
Step 6.

The algorithm flow chart is shown in Fig. 2.

FIGURE 2. Hybrid algorithm flow chart.

IV. OPTIMIZATION DESIGN OF ACTIVE DISTURBANCE
REJECTION CONTROLLER BASED ON IMPROVED HYBRID
ALGORITHM
A. OPTIMIZATION DESIGN FLOW OF ACTIVE
DISTURBANCE REJECTION CONTROLLER BASED
ON THE HYBRID ALGORITHM
Combined with Section 1, it is known that there are eight
parameters of the ADRC that need to be tuned, i.e. r , h0,
β01, β02, β03, β1, β2, b0. By consulting a large number of
literatures and conducting simulation analysis, it is found that
the parameters β01, β02, β03, β1, β2 play a decisive role in
the performance of the active disturbance rejection controller.
Therefore, these five parameters are selected to be tuned
by the usage of an optimized intelligent algorithm, which
can avoid excessive computational optimization and enable
ADRC to obtain better control effects. The system design for
its parameter optimization is shown in Fig. 3.

FIGURE 3. Parameter optimization design of active disturbance rejection
controller based on improved hybrid algorithm.

The specific steps of parameter optimization for the hybrid
algorithm are:
Step 1: Initialize the parameters to be tuned. Determine the

parameters such as the value range of the parameters {β01,
β02, β03, β1, β2} of the active disturbance rejection controller
which are to be tuned, the size of the initial population,
the maximum number of iterations, and the initial value and
the end value of the visual field.
Step 2: Initialize the population according to Section III-A.
Step 3: Using the created active disturbance rejection con-

trol technology module library, selecting the corresponding
module to build the simulation platform of the active dis-
turbance rejection controller, determining the fitness value
corresponding to each initial individual, and sorting and
grouping the population.
Step 4: For the outstanding individuals occupying the top

20% of each group and the general individuals, conducting
behaviors such as clustering, rear-end and foraging in accor-
dance with the corresponding dynamic adjustment strategy of
the visual field and step size and the improved position update
equation in Section III-A.
Step 5:Determinewhether the performance index of global

optimal value is satisfied or the number of iterations reaches
the end condition of the maximum number of iterations.
If it is satisfied, the global optimal value and the first 20%
individuals of each group in the bulletin board are used as the
initial particles of the particle swarm optimization algorithm
part, and Step 6 is executed. Otherwise, continue with Step 3.
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Step 6:Update the particles according to the particle swarm
optimization update equation to find the global optimal value.
Step 7: Judge whether the global optimal value has no

change for 3 consecutive generations. If it is satisfied, then the
improved elite Gaussian learning is conducted for the global
optimal value and the top 10% of the best individuals in this
iteration according to Section III-A. Otherwise, continue with
Step 6.
Step 8: Decide whether the end condition of the maximum

number of iterations is reached. If it is not satisfied, continue
with Step 6 until the maximum number of iterations is sat-
isfied. If it is satisfied, then the control parameter is output
which corresponds to the final global optimal value.

B. SIMULATION AND SIMULATION ANALYSIS
In the Simulink simulation environment of ADRC, a step
signal with a set value of 3 is used as the input of the system.
During the setting of the algorithm parameters, the maximum
number of iterations of all algorithms is adjusted to 50 times,
where it is selected that genafsa = 15 and genpso = 35 in
the hybrid algorithm of this paper. The population size is 50,
and the dimension of population individuals is 5. That is, five
parameters {β01, β02, β03, β1, β2} are optimized. According
to the debugging experience, the value ranges of β01, β02,
β03, β1, β2 are set respectively as [0, 200], [0, 500], [0, 4000],
[0, 500], [0, 100]. For other parameters of the active distur-
bance rejection controller, the compensation coefficient b0,
the velocity factor r of the TD part and the filtering factor h0
are taken as 1, 1 and 0.01.
The parameters of the ADRC optimized by the algorithm

of this paper compared with the other three algorithms are
summarized in Table 1. The response curves to the input step
signal are shown in Fig. 4 of the ADRC whose parameters
are optimized by the four algorithms. The corresponding
performance indicators are shown in Table 2, and the fitness
iteration curves are shown in Fig. 5.

TABLE 1. Summary table of ADRC parameters optimized by four
algorithms.

TABLE 2. Comparison of step response performance indicators of ADRC
after optimization of four algorithms.

By comparing the simulation results of the four algo-
rithms, it can be seen that under the same step input signal

FIGURE 4. Comparison curves of step response.

FIGURE 5. Comparison curves of fitness iteration.

and external disturbance, the ADRC can respond to system
instructions quickly whose parameters are optimized and
tuned by using the hybrid algorithm of this paper and the
PSO-FSA algorithm. However, compared with the PSO-FSA
algorithm, the ADRC, whose parameters are tuned by adopt-
ing the algorithm of this paper, has shorter rise time and
smaller overshoot, and this indicates that it has better dynamic
performance. At the same time, the steady state can also be
reached more quickly of the ADRC with the algorithm of
this paper, and the oscillation phenomenon does not occur
after the stability with the disturbance from the outside, which
indicates that it has good anti-interference ability and steady
state performance. The controllers that use PSO and AFSA
algorithms for parameter tuning have relatively long rise time,
relatively long time to reach the steady state and relatively
large overshoots. The oscillation phenomenon occurs in the
ADRC after it reaches the steady state which is influenced
by the external disturbance, and it is known that its dynamic
performance and steady state performance are relatively poor
compared with the former controllers. It can also be seen
from the fitness iteration curve of Fig. 5 that the smaller the
fitness function value is, the better the control effect of the
corresponding controller is, whose parameters are tuned by
using it. The convergence speed and final precision of the
proposed algorithm in this paper are obviously better than
the other three algorithms, and there exists no phenomenon
of optimal value iteration stagnation. It can be seen that the
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improvement of the algorithm in Section 2 still has a good
effect in practical applications.

V. UAV ATTITUDE SIMULATION TEST AND ANALYSIS
USING OPTIMIZED DESIGN OF ADRC
The structure diagram of the UAV attitude control system is
shown in Fig. 6.

Refer to [25] to select the transfer function and gain of
the corresponding steering gear and compensation network.
The Simulink simulation design of the three attitude angles is
depicted in Figs. 7-10.Fig. 7 and Fig. 8 are to verify the appli-
cability of the optimization parameters and the robustness of
the algorithm when the simulation conditions change. In the
absence of basic difficulties, the simulations of the remaining
two attitude angles will obtain similar results, which are
hence omitted.

FIGURE 6. Structure chart of the attitude control system.

FIGURE 7. Simulink simulation of pitch angle control.

FIGURE 8. Simulink simulation of pitch angle control.

FIGURE 9. Simulink simulation of roll angle control.

FIGURE 10. Simulink simulation of yaw angle control.

Firstly, based on the built-up simulation example of
Simulink UAV attitude, the ADRC parameters to be tuned
for the three attitude angle control channels are optimized
respectively according to the method in Section IV-A. The
parameter tuning of the PID controller participating in the
comparison is in a similar way. The relevant parameter
settings of the hybrid algorithm are consistent with the exper-
iments in Section IV-B. According to the debugging experi-
ence, some parameters are given as follows. The value ranges
of β01, β02 and β03 of the ESO part of ADRC are set as
[0, 3000]. The value ranges of β1 and β2 in NSEFL part are
set as [0, 500]. The compensation coefficient b0, speed factor
r of the TD part and the filtering factor h0 are respectively 1,
1 and 0.01. The value ranges of KP, KI and KD of the PID
controller part are [0, 20], [0, 1] and [0, 1]. The parameters
optimized by the hybrid algorithm are shown in Tables 3-4.

TABLE 3. ADRC parameter table optimized by the hybrid algorithm.

TABLE 4. PID controller parameter table optimized by the hybrid
algorithm.

Using the optimizing tuning results in Tables 3-4 for
the three attitude ADRC parameters and PID parameters,
the ADRC and PID are set respectively, and then independent
simulation tests are conducted on the pitch angle, roll angle
and yaw angle of the UAV. During the test, it is assumed that
the speed of the UAV is constant, and three kinds of typical
signals, i.e. step signal, square wave signal and sinusoidal
signal, are respectively selected as the input signals. The step
signal is selected in the pitch angle test to simulate the action
of maintaining the climbing or descending posture of the
UAV. The square wave signal is selected in the roll angle test
to simulate the actions of horizontal attitude switching and
returning of the UAV. The sinusoidal signal is selected in the
yaw angle test to simulate the action of swinging the rudder
to balance the airflow interference and maintain the flight
path during the level flight of the UAV. At the same time,
sinusoidal interference with amplitude and frequency of 1 is
added in each channel to simulate external disturbance. After
the simulation test, the respective responses of the pitch angle,
the roll angle and the yaw angle are shown in Figs. 11-14.

It can be seen from the comparative experiments of
simulationsfigures (Figs. 10-12) that compared with the
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FIGURE 11. Comparison of the pitch angle response curves.

FIGURE 12. Comparison of the pitch angle response curves.

FIGURE 13. Comparison of roll angle response curves.

TABLE 5. Comparison of the performance index in pitch angle response
curve.

PID controller, the response curves of the pitch angle, the roll
angle and the yaw angle using the ADRC can track the
changes of the respective command signals well. Although

FIGURE 14. Comparison of yaw angle response curves.

there is a shorter rise time when using the PID controller,
the overshoot is larger. In contrast, the dynamic response pro-
cess using the ADRC is about 1.3 seconds and the overshoot
is much smaller than the PID controller. At the same time, for
the disturbance existing in each channel, when conducting the
attitude control by adopting theADRC, the steady state can be
quickly got into after reaching the corresponding command,
whereas the attitude control using PID controller needs a rela-
tively longer time to get into the steady state. Summing up the
comparative experiments above, for the attitude control of the
UAV, theADRChas better control effect and anti-interference
ability than the PID controller which also uses the hybrid
algorithm of this paper for parameter tuning.

It is known from the simulation and comparison test of
the UAV flight command with the above three typical input
signals that compared with the PID controller, the active dis-
turbance rejection controller whose parameters are optimized
by the hybrid algorithm can obtain the ideal tracking effect on
the attitude control of the UAV, can well complete the basic
attitude control action of the UAV and has good dynamic
performance and the robustness.

VI. CONCLUSIONS
This paper has been focused on the improvement of the hybrid
algorithm of fish swarm and particle swarm optimization and
its application problem on the parameter tuning of the active
disturbance rejection controller. Firstly, the principle of the
active disturbance rejection controller has been described.
Through the analysis of the parameter tuning problem of
the active disturbance rejection controller and the research
on the optimization performance of the artificial fish swarm
algorithm and the standard particle swarm optimization algo-
rithm, an improved hybrid algorithm of fish swarm and par-
ticle swarm optimization has been proposed based on the
elite Gaussian learning, and the parameter tuning problem has
been solved in the optimization design of active disturbance
rejection controller. Finally, the optimized and designed
active disturbance rejection controller has been applied to
the flight attitude control of the UAV. The ADRC-based
UAV attitude control simulation platform has been built in
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Simulink, and it has been verified that the improved active
disturbance rejection controller has better control effect in the
UAV attitude control.
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