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ABSTRACT Composite events are sense maximizes collaboration through multiple sensors. Efficient
matching of multi-modal sensing nodes in multi-composite events is always a thorny problem. In this paper,
the composite event sensingmodel is first proposed, and then the collaborative-sense problem ofmulti-modal
sensing nodes is translated into a binary matching problem. For these multi-class sensors and multi-class
compound events scene, a pruning-grafting and parallel strategy be adopted, which can speed up the traversal
speed and find the maximummatching edge quickly. For multi-nodes selection, the distance of the composite
event constraints into binarily weighted matching. A collaborative-sense intelligent matching algorithm is
suggested. It takes collaborative in various kinds of nodes matching combining with the distribution of the
composite event itself around the nodes. Combined with the random distribution of various sensor nodes
and composite events, the matching rate of some sensor nodes is sacrificed for the overall event efficiency.
Compare to parallel algorithms, it has another effect on perceived efficiency. Finally, by comparing with
other algorithms, CSSMA and other proposed algorithms have a certain advantage in the inclusive sense
efficiency. In terms of composite events collaborative-sense, this work has nice theoretical significance and
practical value.

INDEX TERMS Collaborative sense, composite events, bipartite graphs, binary match, pruning-grafting.

I. INTRODUCTION
The accurate and comprehensive observation of the physical
world is the application basis of Internet of things (IoTs)
and Cyber-Physical Systems (CPS [1], [2]. In the physical
world, all kinds of sensing nodes are deployed in the moni-
toring area to observe all aspects to obtain the physical world
information accurately, which usually contains a number of
heterogeneous sensor networks. These heterogeneous sensor
networks contain various multimodal sensing nodes with dif-
ferent sense, computing and communication capabilities. It is
of great significance to coordinate and monitor the complex
dynamic process of the physical world. It descriptions of
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the physical world are often represented by events [3], [4].
The data obtained by multi-modal sensing node are called
multimodal data, and the event model is proposed based
on multi-modal data and time and space attribute. Sensors
and networks are deployed to more precisely monitor the
physical world. And for different applications, the objects
of monitoring are also different, such as deployed in the
border to prevent invasion, deployed in the indoor to pre-
vent fire accident, deployed in the factory workshop, is to
monitor a process error resulting in product quality [5]. All
of the above monitoring objects can be defined as events,
and multiple types of sensors are required for collaborative
observation [6]. In these scenarios, a certain type of event
concerned by the application system requires joint judgment
of multi-class sense data. A single sense data is useless to the
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system and cannot predict the occurrence of certain events.
People do not care about the value or accuracy of a specific
data. Therefore, how to optimize and mobilize multi-class
sense nodes to monitor the occurrence of this kind of complex
events is extremely important. Events are divided into atomic
events and composite events [7], [8]. Atomic events are com-
posed of distinct modal data. And composite events com-
posed ofmultiple atomic events. It can describe the composite
state of the physical world. Therefore, how to collaborative
sense of composite events is an important problem to realize
physical observation.

The existing researches on composite event monitoring
are mostly based on event coverage. In [9], it studies how
to optimize the coverage of heterogeneous nodes to min-
imize the deployment cost, and proposes the approximate
algorithm and the precise algorithm of the greedy strategy.
Literature [10] for sensor hole repaired in heterogeneous sen-
sor networks, it studies how to repair the sense hole through
the mobile node relocation. The research object is the optimal
matching between the heterogeneous sensor nodes and the
sense hole, while composite events are different from sense
holes. The application of IoT monitoring in the physical
world is described and processed in the form of events, which
can be combined with the idea of software services such
as [11]. For composite event monitoring, a distributed com-
posite detection event method based on clusteringmechanism
proposes in [12]. The algorithm focuses on composite event
monitoring. An Internet-of-Things (IoT) Cooperative System
(IoT-CS) based on local Event-Driven response is developed
in [13]. The collaboration here is based on the service coop-
erative of the upper application. The problem of active node
selection for localization tasks, on the Internet of Things (IoT)
sensing applications, is addressed in [14]. Weight factors are
integrated into a two-phase active node selection mechanism
that uses genetic and greedy algorithms to select optimum
groups for localization tasks.

Bipartite graph is the basic problem of discrete mathemat-
ics. Many scholars have studied it [15]–[17]. A novel frame-
work for restricted 2-matchings close to Hamilton cycles
proposed in [15]. Based on the Hosoya index, it determines
the maximummatching energy among all connected bipartite
graphs [16]. MinimumCost Bipartite Perfect Matching Prob-
lem with Conflict Pair Constraints (MCBPMPC) on bipar-
tite graphs proposed. A specially tailored branch-and-bound
(B&B) algorithm is adopted in [18].

Many real-world complex networks have a naturel bipar-
tite structure. It describes the connection in a bipartite net-
work that is suitable for the nature of today’s huge data
networks in [19]. A hybrid bipartite graph based recom-
mendation algorithm for mobile games in [20]. This paper
proposes a bipartite graph based recommendation algorithm
PKBBR (Prior Knowledge Based for Bipartite Graph Rank).
The problem of ranking vertices of a bipartite graph is
studied, based on the graph’s link structure as well as
prior information about vertices in [21]. The problems of
quasi-matchings and semi-matchings in bipartite graphs are

considered with applications in wireless sensor networks
in [22]. Nodes collaborative sense of composite events is
actually a matching problem. Numerous scholars have con-
ducted beneficial research on this problem [23], [24], [27].
In [16], it research optimization configuration of the optimal
relay selection according to the theory of cognitive wireless
network optimization of resource allocation problem. Equiv-
alent to MWBM, through Hungary method instead of statisti-
cal expectation, is more effective than the traditional method.
Azad proposed a maximum cardinality matching algorithm
in [25]–[27], which can share memory in parallel, achieve
good performance and scalability, and obtain the maximum
cardinality matching in the two parts. A novel hierarchical
node deployment strategy is proposed for static wireless
sensor network data flow collection in [28]. A probabilistic
analysis method based on a complete matching random graph
is established. In order to bridge the scalability problem of
integer programming, a bipartite matching algorithm with
maximum weighting is designed to overcome the scalability
problem of integer programming in [29].

The monitoring of composite events needs the cooperative
sense of multiple multi-modal sensing nodes. The above is
mostly aimed at the idealization of the composite event model
in the scene, and many models are modeled as coverage
problems. Secondly, the multi-class of data is involved in the
composite events. It requires multi-class sense nodes to be
coordinated. In fact, it is a matching optimization problem
built on the composite event and the multi-modal sensing
nodes. In view of this, this paper studied how to collabora-
tive various kinds of sensing nodes under random composite
events. It mainly involves multimodal sensors between nodes
and composite events matching optimization. And maximize
overall perceived effectiveness. According to the problem
model, it was converted to binary matching problem. And
then puts forward cooperative sense optimization algorithm.
Finally it compares the algorithm performance, through the
experiment showed that the collaborative sense algorithm can
increase the overall efficiency.

The monitoring of composite events requires the coop-
erative work of multiple multi-modal sensing nodes. The
above is mostly aimed at the idealization of the composite
event model in the scene, and many models are modeled
as coverage problems. Secondly, the multi-class of data is
involved in the composite events. It requires multi-class sense
nodes to be coordinated. In fact, it is a matching optimization
problem built on the composite event and the multi-modal
sensing nodes. In view of this, this paper studied how to col-
laborative various kinds of sensing nodes under the composite
under random events. It mainly involves multimodal sensors
between nodes and composite events matching optimization.
And maximize overall perceived effectiveness. According to
the problemmodel, it was converted to binary matching prob-
lem. And then puts forward cooperative sense optimization
algorithm. Finally it compares the algorithm performance,
through the experiment showed that the collaborative sense
algorithm can increase the overall efficiency.
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Our main contributions in this paper are as follows:
1. Composite Events Collaborative Sense Model: In this

paper, the problem of multi-modal sense nodes’ collaborative
sense of composite events is proposed. This is the first time
that, from this point of view, to address this problem.
2. MS-BFS-Pruning-Grafting algorithm: We propose a

new matching search method based on tree pruning-grafting
mechanism. It reduces the repetitive work of multiple phases
and named MS-BFS-Pruning-Grafting. It integrated the
advantages of multi-source and single source. It lies a foun-
dation for solving the problem of the sensor node matches the
compound event.
3. Smart Matching Algorithm for Collaborative Sense

Optimization of Composite Events(CSSMA): Based on the
previous analysis, combine the distance of the composite
event constraints into binary weightedmatching. A collabora-
tive sense intelligent matching algorithm is proposed. It takes
collaborative in various kinds of nodes matching combining
with the characteristics of the composite event itself around
the nodes.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. COMPOSITE EVENTS COLLABORATIVE SENSE MODEL
Assume the sensors deployment area is defined as A. Dif-
ferent k types of multimodal sensors are deployed. The
sense radius of each sensor is r1, r2, . . . , rk respectively. The
number of nodes in each class is n1, n2, . . . , nk . Composite
events monitored by the system are E (e1, e2, . . . , en). The
composite event co-sense model composed of different k
types of nodes is defined as D = {n1, n2, . . . , nk}. While
∀i ∈ {1, 2, · · · , k}, ni is represented the number of the i
sensor nodes in the system.
Definition 1: atomic event: e

(
data, t̂

)
.

While data represents a perceptual data, t̂ represents the
data collection moment, and both of them determine the
occurrence of atomic events together. Composite events are
usually composed of several atomic events. Composite rules
of composite events are constructed according to application
requirements, mainly including the requirements for the syn-
thesis of these atomic events.
Definition 2: composite events are: E (e1, e2, . . . , en) =

9 (e1, e2, . . . , en).
Composite events are composed of several atomic events

e, which 9 represent the logical relations of several atomic
events and describe the composite rules of composite events.
The concrete form of composite events depends on the spe-
cific application requirements.

As shown in Fig. 1, Composite event E1,E2,E3 are sensed
bymulti-modal sense nodes Sai , S

b
i , S

c
i , S

d
i . However, only the

event E1 is accomplished by the collaborative sense of four
types of sense nodes Sai , S

b
i , S

c
i , S

d
i .

Definition 3: composite event sense quality is:

1i = δj1 ⊕ δj1 ⊕ · · · ⊕ δjl, Si = {j1, j2, . . . , jl} (1)

Among them, composite events are composed of multiple
atomic events, and its quality monitoring is determined by

FIGURE 1. The collaborative sense model of composite events of
heterogeneous sensing nodes. (a) Multi-sensor nodes and
multi-compound events are randomly distributed. (b) The sense relation
of the sensors node to composite events.

monitoring the quality of atomic events. While, δji repre-
sents corresponding monitoring quality of atomic events or
confidence, and on the basis of synthetic rules to compute
composite event monitoring quality.

B. PROBLEM FORMULATION
In this paper, the problem of multi-modal sense nodes’
collaborative sense of composite events is defined as
follows:
Definition 4 (Maximize Sense Effectiveness problem: MSEP):

k class nodes are deployed to sense composite events
E (e1, e2, . . . , en). Each type of nodes distributed in area ran-
domly. Assume that the cost of each nodes are c1, c2, . . . , ck
and total cost constraintC . Find the best collaborativemethod
D = {n1, n2, · · · , nk} which achieved maximum sense
effectiveness with no more than overall cost constraints.

max1E = E (1) =
N∑
i=1

Pi1i (2)

s.t.
k∑
i=1

cini≤C,where: i = 1, 2, · · · , k, ni ∈ {0, 1, 2, · · ·}

(3)
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while: Pi =
∏

j∈Si pj
∏

j/∈Si (1− pj) =
∏

j∈Si (1 − e−
πr2i ni
A )∏

j/∈Si e
−
πr2i ni
A . Pi P is the probability of event. A is the sensed

area.

III. COLLABORATIVE SENSE EVOLUTION OF
COMPOSITE EVENTS
It is assumed that the monitoring area of multi-type sensing
nodes s and multiple composite events e is distributed in area
A evenly. The perceived quality of each composite event is
defined as 1i = δj1 ⊕ δj1 ⊕ . . .⊕ δjl . It needs the multi-type
senses to be coordinated to detect the occurrence of the event,
as shown in Figure 2. However, each observation capability
of the random distributed multi-type sense nodes is different,
and one of nodes can only be used to monitor one of the
composite events in the range of its observation capability.

FIGURE 2. Heterogeneous sensing nodes and composite events are
randomly distributed in the monitoring area. (a) Random distribution of
multimodal sensing nodes and composite events.. (b) Composite events
are covered by various sensing nodes with different sense radius.

Therefore, two adjacent composite events such as
{
ei, ej

}
,

at the same time, both need one kind of sense nodes Sκ .
And the sensing nodes around the composite event there are

FIGURE 3. A bipartite graph between composite events and multi-modal
sensing nodes.

multiple
{
sκ1 , s

κ
2 , · · · , s

κ
t
}
. How to optimize matching such

sense nodes and composite event is to research on this thesis.
Namely composite events require multiple different types of
sense nodes to collaborative sense of composite events. It
needs composite event matching with multimodal sensors.
The above optimization problem can be converted into a
binary matching problem. And binary matching is the impor-
tant problem in graph theory and combinatorial optimization.

It is assumed that E is composite events set {e1, e2, · · · ,
en}. S is a multi-modal sense nodes set. Composite event
requires multi-modal sensing nodes to make collaborative
sense based on composite event combination rules. The
multi-modal sensing node set is S = {s11 · · · s

1
m1
; s21 · · · s

2
m2
;

sk1 · · · s
k
mk }. There are k class nodes. The corresponding num-

ber of different sensors is mk respectively.
It can be transformed into a graphG (V ,P), which contains

the composite event set E and multi-modal sense node set S,
as shown in Fig. 3. If a composite event ei requires some kind
of sense node sj, and there is a kind of sense node around it,
an edge pγ is formed between them. All the edges constitute
a set P.

Each composite event ei has a variety of sense nodes sij
around it. The composite events in the monitoring area cor-
respond to multiple sensory nodes. This requires the collab-
oration of surrounding nodes to complete the monitoring of
composite events. In the case of binary matching, each class
of sense nodes and composite events are a set of matching
relationships. So the matching relationship between the same
class of perceptual nodes and the composite events is ana-
lyzed first. As shown in the Fig. 4, (a) a binary graph, (b) is a
weighted binary graph, and (c) is the maximum matching.

Due to distances between different sense nodes and com-
posite events are also different, so their sensed effectiveness
also are different. The matching problem of multi-modal
sensing nodes and composite events can also be transformed
into theMaximumMatching Problem of Weighted Bipartite
Graph in Collaborative Sense of Composite Events.

IV. OPTIMIZATION ALGORITHM BASED ON WEIGHTED
BINARY GRAPH MATCHING
A. THEORETICAL BASIS
The following analysis is used to analyze the matching
problem of bipartite graph. Alternate paths refers to the
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FIGURE 4. Binary matching process graphs. (a) Binary graph. (b) weighted dichotomy. (c) Maximum matching.

path that is formed from an unmatched point, which is fol-
lowed by non-matching edges, matching edges, and non-
matching edges. An augmented path refers to an alternate
path from an unmatched point to alternate paths, if another
unmatched point (the starting point does not count). As shown
in Fig. 5(a)(b), it forms an augmented path. As shown
in Fig. 5(c). Solid lines edges represent an alternating tree
T(x0). Broken lines Edges represent an augmenting path
P=(x1, y1, . . . , xk , yk ). There arematched and unmatched ver-
tices in small circle. Thick lines represent matched edges and
thin lines represent unmatched edges. Fig. 5(c) represents a
plausible situation that T(x0) and P have an edge in common.

B. THE MOST WEIGHT AUGMENTED PATH ALGORITHM
In this paper, the weight is different, and the most weight
match is searched. Therefore, when expanding by augment-
ing path, it needs to combine the greedy strategy to search for
the most weight matching edges in each search. Therefore,
the most weight augmenting path algorithm based on greedy
strategy can be proposed. The pseudocode is as follows
Algorithm 1.

Algorithm 1 The Most Weight Augmented Path Exten-
sion Algorithm Based on Greedy Strategy
Input : G(X, Y),M ;
Output: The most weight augmented path M’;

1 Let M ′ = M ,G′ = G;
2 Select a M ′-Expose Vertex r , let T = ({r} ,∅);
3 Start with the smallest number, and then run BFS for
unmatched points to find the matching edge with the
maximum weight.

4 While there is vw ∈ E ′ let v ∈ B (T ), w /∈ A (T );
5 Case: w /∈ V (T ), w is M ′-Expose;
6 Used vw augmented M ′;
7 Extending M ′ is a match M of G;
8 Used M ′→ M and G′→ G;
9 Return M ′ and Stop.

10 END

The above is a single source algori1thm. In our sce-
nario, the model can be abstracted as multi-source graph.
Algorithms based on multi-source graph searches (i.e.,
multi-source or MS algorithms) are more suitable for this
kind of scenario. However, it has a significant weakness
that multiple source algorithms have repeated searches at
mismatched vertexes [30]. Because, search trees of MS
are constrained to be vertex-disjoint to allow concurrent
augmentations.

C. THE MS-BFS-PRUNING-GRAFTING ALGORITHM
To address this weakness of MS, a tree pruning-grafting
mechanism that reduces the repetition work of multiple
phases is presented and it named MS-BFS-Pruning-Grafting
integrated the advantages of MS(multi-source) and SS(single
source). It demonstrates better serial and parallel performance
that other existing algorithms [25], [27].

Consider a maximal matching in a bipartite graph shown
in Fig. 6(a).The unmatched S vertices s1 and s2 and cre-
ates two vertex-disjoint alternating trees T (s1) and T (s2).
Thin lines represent unmatched edges and thick lines
represent matched edges. Matching nodes are connected
by matched edges. (b) A forest with two trees T (s1)
and T (s2) created by MS-BFS algorithm [31]. The edges
(s1, e2) , (s3, e3), (s4, e5) are scanned but not included in
T (s1) to keep the trees vertex-disjoint. Unvisited vertices
shown in Subfig.(a) did not take part in the current BFS
traversal. (c) The current matching is augmented by the aug-
menting path (s5, e3) , (s6, e5). T (s1) remains active since
no augmenting path is found in it, while T (s2) becomes a
renewable tree. (d) Vertices e3 and e5 along with their mates
are grafted onto T (s1). The vertices s5 and s6 form the new
frontier.
A alternating trees are rooted at unmatched vertices S.

The frontier F grows by the alternating forest. It is a subset
of S vertices. Each visited E vertex will be marked. It is a
part of a single tree. parent[e] is the parent of a vertex e in
E . A vertex s is visited from the mate. root[s] is included
the root of the tree. leaf [x] is included unmatched leafs of
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FIGURE 5. Augmented paths. (a) Binary matching path search. (b) The most augmenting path. (c) An alternating tree T
(
x0

)
and an augmenting path P.

FIGURE 6. Tree-pruning-grafting mechanism. (a) A maximal matching in a bipartite graph. (b) Alternating BFS forest. (c) Tree
pruning. (d) Tree grafting.

root[s]. The parent , root and leaf are set to -1 for a vertex
out of tree. Each iterations in Algorithm 3 is can divided into
three steps: 1. search for a set of vertex-disjoint augment-
ing paths by MS-BFS, 2. Expand the maximum match by
augmenting paths, 3. rebuilding a tree by Pruning-Grafting
mechanism.

We evaluate the performance of parallel matching algo-
rithms (MS-BFS-Pruning-Grafting) on a representative set of
bipartite graphs. It is from the University of Florida sparse
matrix collection [32] and a randomly generated RMAT
graph. The algorithms to compare them together include MS-
BFS-Pruning-Grafting, GA and KM (Kuhn and Munkres)
algorithm. KM algorithm is KM algorithm is a classic perfect
matching algorithm.

As shown in Figure 7, we compared the matching rate and
running time. SM-GA is based on the greedy strategy, which
runs the fastest and takes the least time on the same scale. The
parallel matching algorithms (MS-BFS-Pruning-Grafting) is
able to findmore matches due to its pruning strategy. In large-
scale bipartite graph search, the time advantage is obvious due
to KM algorithm.

D. SMART MATCHING ALGORITHM FOR COLLABORATIVE
SENSE OPTIMIZATION OF COMPOSITE EVENTS(CSSMA)
The above algorithm is matches the most weight values in the
binary graph based on greedy strategy. However, composite
events are various types, and the following is a study of the
most weight matching algorithm for the composite event.
First of all, we introduce a parameter with the weight binary
graph which can be converted into a binary matrixW

(
xi, yj

)
.

If some of them are no edge existed, the corresponding edge
weight is 0. wij represents the weight between sense nodes
and events.

W
(
xi, yj

)
=


w00 w01 · · · w0n
w10 · · · · · · w1n
· · · . . . · · · · · ·

wm0 wmn−1 wmn

 (4)

The most weight matching algorithm can generate a
two-molecule graph using the expected value of the node and
the matching edge weights. And then it finds the maximum
match on the two molecule graph. If and only if find the
perfect match, it can obtain the best matching nodes expecta-
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Algorithm 2 MS-BFS-Pruning-Grafting
Input : A bipartite graph G (S,E).
Output: Updated the maximum matching mate

1 for each e ∈ E in parallel do
2 visited[e]← 0, root[e]←−1, parent[e]←−1
3 for each s ∈ S in parallel do
4 root[s]←−1, leaf [s]←−1
5 T ←unmatched S vertices;
6 for each s ∈ F in parallel do
7 root[s]← s
8 repeat
9 while T 6= φ do

10 R← unvisited E , F ← Update pointers and queue;
11 if s is in an active tree then
12 Fleaf[root[s]]= −1;
13 for each unvisited neighbor e of s do
14 parent[e]← s, visited[e]← 1, root[e]←

root[s] FUpdate pointers and queue;
15 if mate[e] 6= −1 then
16 Q← Q ∪ {mate[e]} ,

root {mate[e]} ← root[e]
17 else
18 leaf {root[s]} ← e Fend of augmenting

path
19 for every unmatched vertex s0 ∈ S in parallel do
20 if an augmenting path P from s0 is found

then
21 Augment matching by P
22 F ← Prun− Graft(G, visited, parent, root,

leaf , mate)
23 until no augmenting path is found in the current phase

tions. And the role of the matching edge weights is to restrict
the new side to join, make to join the new edge can always
graph matching number, weight and to obtain the biggest
increase again at the same time, algorithm for pseudo code
is as follows:

The above algorithm can realize the most weight matching
of the same kind of sense nodes and events. In some scenarios,
however, a composite event around just a lack of awareness of
a kind of have to node, in this case, will not be able to form
effective sense of the composite events, therefore, the com-
posite event can give up to match to other nodes, so that sense
around the node to choose more qualified composite event,
in order to obtain the overall regional composite events sense
efficiency maximum. As can be seen in Fig. 8, the composite
event lacks the perceived node coverage, so it cannot form
an effective sense, so it can consider giving up the matching
of the sense node. So that you can match and match, and
you get the overall perceived efficiency. Therefore, when the
algorithm is executed, the first step can be taken to eliminate
the above non-effective sense of composite events.

For the more general situation, each composite event
dynamically sets its own sense attraction for surrounding

FIGURE 7. algorithm comparison. (a) Run time comparison. (b) Matching
rate comparison.

FIGURE 8. Multi-modal sensing nodes’ collaborative sense of composite
events.

sense nodes based on the situation of the multi-modal sense
nodes around itself. Therefore, each composite event E set
rewards �. Each composite event set different rewards for
different kinds of sensing nodes according to the distribution
of all kinds of multi-modal sense nodes. In general, for less
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Algorithm 3 Maximum Weight Matching
Algorithm (MWMA)
Input : Bipartite graph: G(X, Y), Binary matrix:

W
(
xi, yj

)
;

Output: Maximum weight binary matching M (S,T )
1 Let S = ∅, T = ∅ in M (S,T );
2 Initialize the expected value of each element in the set
X , Y .

3 for Q (xi) = max
(
wig
)
in X do

4 for Q
(
yj
)
= 0 in Y do

5 Loop
6 for x0→ xm do
7 Search for an augmented path xiyj used

MS-BFS-Pruning-Grafting
8 xiyj meet wij = max

[
wig
]
, where yj /∈ T ;

9 used xiyj augmented M ;
10 S ← xi,T ← yj;
11 if failed to find an augmented path, then
12 Change X , Y set expectation weight

Q (xi) ,Q (yi);
13 Calculated 1 = min

{
Q (xi)+ Q

(
yj
)
− wij

}
;

14 for xi ∈ S: Q (xi) = Q (xi)−1; do
15 for yj ∈ T : Q

(
yj
)
= Q

(
yj
)
−1; do

16 Jump Step 7;
17 if there is no M-Exposure Vertices in X; then
18 Return maximum weight matching M , and Stop;
19 else
20 Return 6;
21 END

surrounding, more remote sensing nodes are configured with
higher returns. In this way, it can achieve the collabora-
tive sense by attracting the sense nodes, so as to maximize
the sense efficiency. At the same time, the composite event
reward is set to 0, if there is no certain class sense node around
itself that cannot form effective cooperative sense. This max-
imizes the sense effectiveness of the overall composite event
by optimizing the maximum weight value matching.

Based on the above ideas, a Smart Matching Algo-
rithm for Collaborative Sense Optimization of Composite
Events (CSSMA) is proposed. The pseudocode is as follows:
Through the above algorithm, the composite event weighted
allocation of multi-modal sensing nodes can be obtained,
so that the sense efficiency of the whole event area should
be better.

E. THEORETICAL ANALYSIS OF ALGORITHMS
Theorem 1: Algorithm 2 finds a maximum cardinality

matching in a bipartite graph G (X ∪ Y ).
Proof: If M is the final matching, it returned

by the MS-BFS-Pruning-Grafting algorithm. To contra-
diction, assume that M is not a maximum cardinality
matching. According to Berge’s theorem, there is another
M-augmenting path in the graph. There is an M-augmenting

Algorithm 4 Weighted Allocation of Composite Events
Based on Multimodal Sensing Nodes
Input : Bipartite graph: G(X, Y), MatchM;
Output: Maximum sense efficiency matching M’;

1 Set M ′ = M ,G′ = G;
2 for e0→ em do
3 ei search the peripheral sense nodes set SRi based on

the composite event composite rules,
4 if Various sense nodes ei in SRi ; then
5 Assign rewards � based on the number of different

sensors, get Q
(
yj
)

6 else
7 � = 0;
8 Get bipartite graph G(X ,Y ) and binary matrixW

(
xi, yj

)
;

9 Run the most weight binary matching algorithm
MWMA;

10 END

path P = (x0, y0, x1, . . . , yk , xk+1, yk+1) in the graph. x0
is the root of an active tree. yk+1 is an unvisited ver-
tex. P as a M-augmenting path include at least one edge
with an active vertex and an unvisited vertex. According to
Pruning-Grafting mechanism, no edge between active and
unvisited vertices, the path P does not exist. So M is a
maximum cardinality match. �
In this section, the simulations are conducted to evaluate

the performance of proposed method.

V. SIMULATION AND RESULTS
A. SIMULATION ENVIRONMENT
In order to verify the performance of the algorithm proposed
in this paper, we use MATLAB7.0 as the simulation plat-
form to experiment and analyze this algorithm. The computer
configuration is: 8GB of memory, Intel(R) CoreTMi7 CPU
processor. The simulation experiment is assumed that there
are three kinds of sensing nodes to randomize in the area of
120*160m2. And the combination rules of composite events
require the realization of three kinds of perceptual modes. All
kinds of sensing nodes and composite events are randomly
distributed in the monitoring area. The comparison algorithm
includes CSSMA, which proposes under this paper, GA,
maximummatchingMMA,maximumweight valuematching
MWMA and other total 4 algorithms. Evaluation indexes
mainly include sense efficiency, running time, maximum
matching number and other horizontal and vertical compar-
isons. The algorithm scenario sets three types, as showed
in Table 1.

B. PERFORMANCE EVALUATION
First of all, we compare the different sense energy efficiency
and running time of the four algorithms in scenario 1,2,3.
As showed in Fig. 9, in the three types of scenarios, the algo-
rithm presented in this paper is the most efficient and superior
to the other three algorithms. MWMA pursued by the weight
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TABLE 1. Settings for different scenarios.

FIGURE 9. The sense performance of the algorithm in different scenes.

FIGURE 10. Compares the running time of the algorithm in different
scenarios.

matching algorithm, and then the MMA maximum matching
algorithm. Efficiency of algorithms based on the overall sense
greedy strategy is the most weak. It main reason for the lack
of co-ordination, a single node largest sense quality can’t
ensure the quality of the overall maximization. However,
the algorithm proposed in this paper is coordinated with the
composite event sense of multi-modal sensing node.

The running time of the four algorithms is presented
in Fig. 10. GA based on a greedy strategy has the shortest
running time. And the algorithm itself determines that each
sensor node always finds the nearest composite event around
itself. The algorithm process is simple. GA is based on the

FIGURE 11. Average sense efficiency of each nodes under different
scenarios.

FIGURE 12. The average sense efficiency of CSSMA in different scenarios.

strategy of maximizing matching, so the search speed is fast,
while the performance is not as good as other algorithms.
MMA and MWMA consider the distance weight and the
coordination of overall performance respectively, so their
execution process is more complex and the running time
is longer. In the following analysis, in different scenarios,
the average perceived energy efficiency comparison of each
algorithm’s individual sense nodes is compared, and the sim-
ulation results are shown in Fig. 11, 12.

It can be observed that the average efficiency of each sens-
ing node of GA algorithm is the most. And it always searches
for the latest events around it, so the sensor efficiency is
maximized. MMA and MWMA algorithm are lower than
GA. Node sense effectiveness of CSSMA algorithm is the
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FIGURE 13. Search rate comparison.

TABLE 2. Settings for different scenarios. Number×102.

lowest. At the same time, its overall effectiveness is the best.
This shows that the algorithm has better sense collaboration.
Unique sense of GA algorithm efficiency is high, and the
overall sense of efficiency is low, explain repetition rate is
good, so the efficiency is low.

It can be seen that sense an effect on the composite event of
three kinds of sensor nodes. In the first and second scenario,
the number of composite events is constant and the number
of sensor nodes increases. In the second and third scenario,
the number of nodes increases and the number of compos-
ite events increases. The efficiency of each sensor node is
reduced.

For the MS-BFS-Pruning-Grafting algorithm proposed,
we compare search rate between different algorithms with
traversing edges per second (TEPS). TEPS is determined
by the ratio of edges traversed in total runtime. MS-BFS-
Pruning-Graft algorithm traverses edges with a faster rate in
comparison to MS-BFS and GA. Fig. 13 shows MS-BFS-
Pruning-Grafting with excellent search performance. The
improvement mainly comes from Pruning-Grafting mech-
anism and parallel strategy. It is particularly true for our
multi-sensor and multi-event scenarios.

Let’s analyze this further that the characteristics of the
proposed algorithm. It set three scenarios as shown in table 3,
and the comparison algorithm includes GA, KM, MWMA
and CSSMA. Sense nodes are randomly distributed in the
area. We did a number of experiments and then aver-
aged the results. The experiments results are shown in the
Figure 14,15,16,17.

For the composite event monitoring, the matching rate of
each sensor node to different types of the event is analyzed
below. In scenario 4, the number of sensor nodes of different
types varies greatly, and the matching rate of different sense
nodes for events is different. The matching rate of all sorts of

FIGURE 14. Scenario 4 results.

FIGURE 15. Scenario 5 results.

FIGURE 16. Scenario 6 results.

sensors can reach 78% atmost and 46% at least. Thematching
rate gap of different sense nodes in the same algorithm is also
different, for example, GA algorithm has the largest matching
rate of all kinds of sense nodes. The largest SA was 46%,
SC 63%, and the gap between them was 17%. As see from
the results in Fig. 14-17, GA, KM and MWMA algorithms
performance is getting higher and higher. Due to the differ-
ence in the number of nodes, there is also a difference in the
matching degree. Scenario 5 and 6 is under the condition that
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FIGURE 17. Event Matching Rate.

the number of sensors is greater than the number of composite
events and the number of sensors is the same. It can be seen
from the test results in Fig. 15 that the matching rate of differ-
ent sensors in the same algorithm is relatively close in Fig. 16.
This happens because the number of nodes is the same, so it
is only related to the random distribution of sense nodes.
Secondly, the matching rate of CSSMA algorithm is lower
than that of MWMA, which is due to the local sacrifice to
balance the matching of different sensors. And in the overall
composite event matching, CSSMA is obviously superior to
the other three types of algorithms in Fig. 17. This is also in
line with the original intention of the algorithm design, that
is, the matching rate of some nodes is sacrificed to maximize
the matching rate of the whole event.

VI. CONCLUSIONS
Multimodal sensing nodes have significant applications in the
collaborative sense of composite events. Currently, there are
relatively few researches on the collaborative sense of com-
posite events, and most of them are transformed into single
coverage problems. In order to solve the problem of compos-
ite event co-optimization with different sensing nodes, this
paper puts forward the most robust matching algorithm based
on collaborative sense. Finally by comparing with other algo-
rithms, this algorithm has a certain advantage in the overall
sense efficiency, in terms of composite events collaborative
sense has good theoretical significance and practical value.

However, in this paper, as a kind of heuristic algorithm
approximate performance lack of comparison. The next step
of work, it can need to be further analyzed in terms of
algorithm theory. And, the collaborative sense of composite
events was studied combining with a group of intelligence
algorithm.
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