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ABSTRACT The selection of variational mode decomposition (VMD) parameters usually adopts the empir-
ical method, trial-and-error method, or single-objective optimization method. The above-mentioned method
cannot achieve the global optimal effect. Therefore, a multi-objective particle swarm optimization (MOPSO)
algorithm is proposed to optimize the parameters of VMD, and it is applied to the composite fault diagnosis of
the gearbox. The specific steps are: first, symbol dynamic entropy (SDE) can effectively remove background
noise, and use state mode probability and state transition to preserve fault information. Power spectral
entropy (PSE) reflects the complexity of signal frequency composition. Therefore, the SDE and PSE are
selected as fitness functions and then the Pareto frontier optimal solution set is obtained by the MOPSO
algorithm. Finally, the optimal combination of VMD parameters (k, o) is obtained by normalization. The
improved VMD is used to analyze the simulation signal and gearbox fault signal. The effectiveness of the
proposed method is verified by comparing with the ensemble empirical mode decomposition (EEMD).

INDEX TERMS Variational mode decomposition, multi-objective particle swarm, symbol dynamic entropy,

power spectral entropy, fault diagnosis of the gearbox.

I. INTRODUCTION

Over the years, through the continuous exploration of many
domestic and foreign scientific research workers, the reli-
ability and accuracy [1]-[4] of fault diagnosis have been
improved.

In 2014, Dragomiretskiy and Zosso [5] proposed a new
adaptive fault diagnosis method, variational mode decom-
position (VMD).The VMD method has the advantages of
solid theoretical basis, fast convergence speed and obvious
decomposition results. As a decomposition algorithm, VMD
is similar to empirical mode decomposition [6] (EMD) and
EEMD [7]. The fault signal can be decomposed into several
intrinsic mode functions [8] (IMF) according to high and low
frequencies. However, before the decomposition of the fault

The associate editor coordinating the review of this manuscript and
approving it for publication was Prakasam Periasamy.

signal, VMD needs to determine the decomposition number
of the intrinsic mode function k and the penalty factor «
in advance [9]. The decomposition number k has a great
influence on the decomposition results, that is, when the
kvalue is set too high, it will lead to over-decomposition and
decompose the abnormal white noise components. However,
when the k value is too low, under-decomposition will occur.
The penalty factor « directly affects decomposition accuracy.
The larger the value of «, the wider the bandwidth of the k
modal functions obtained. On the contrary, the smaller the
value of «, the smaller the bandwidth of the k modal functions
obtained, thus affecting the decomposition accuracy. And if
the value of k and « are improper, modal aliasing will occur.
If the appropriate value is taken, the phenomenon of modal
aliasing can be effectively suppressed, and the fault char-
acteristics can be effectively extracted [10]-[13]. Therefore,
the selection of the appropriate combination of parameters
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(k, ) is the key to the signal decomposition of VMD.
Due to the rapid development of intelligent algorithms
in recent years, such as: genetic algorithms, neural net-
work algorithms [14]. For adaptively determining the num-
ber of modal decompositions k and thepenalty factor « in
the VMD, Zhang et al. [15] used the grasshopper opti-
mization algorithm (GOA) to optimize the VMD param-
eters. In this method, first, a measurement index called
a weighted kurtosis index is constructed using a kurtosis
index and a correlation coefficient. Then, using the maxi-
mum weighted kurtosis as the fitness function, the VMD
parameters are optimized by the GOA algorithm; Wang
et al. [16] used the permutation entropy optimization method
to adaptively determine the number of modal decomposi-
tions k; Miao et al. [17] established the kurtosis of indicator
set as the objective function, and optimized the objective
function by using the GOA,adaptive determination values
of k and « by using the GOA; Other scholars use the Ant
Colony Algorithm (ACA) [18], Artificial Fish Swarm Algo-
rithm (AFSA) [19] and other optimization algorithms to opti-
mize parameters. Compared with the individual experience
to determine the value of k and the value of «,these opti-
mization algorithms can automatically determine the k value
and the « value according to the original signal, and have
well adaptability.At the same time, exclude the influence of
human factors on the decomposition result. However, these
methods are all constructing single objective functions for
optimization, and the single objective optimization problem
only considers the optimal problem in a certain sense con-
text. Multi-objective optimization considers the optimality of
multiple objective in a certain sense and it can achieve global
optimal characteristics. Therefore, this paper the construction
of multi-objective functions for VMD parameter optimization
has certain feasibility [20].

Multi-objective Particle Swarm Optimization(MOPSO)
[21]-[23] algorithm can optimize the problem by using mul-
tiple objective function indexes.Due to its simple principle
andmechanism, rapid convergence speed and well global
search performance, it has been successfully applied to
many problems in many fields. Particle swarm optimization
algorithm is an evolutionary algorithm with the advantages
of simple form, rapid convergence and flexible parameter
adjustment mechanism, and has been successfully applied
to the single-objective optimization problem, which is con-
sidered as one of the most promising methods for solving
multi-objective optimization problems [24]. And domestic
and foreign scholars have done a lot of research on the
improvement of this method. Shu-Kai et al. [25] proposed
a multi-objective solution method based on particle swarm
optimization, which combines multiple search strategies and
empirical mobility strategies based on the Pareto advantage
concept. The results show that there are great advantages
for solving multi-objective problems. Zhang et al. [26] pro-
posed a MOPSO algorithm based on competition mecha-
nism. The method is based on pairwise competition to update
the particle swarm. The experimental results show that the
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algorithm has well performance optimization quality and
convergence speed. MOPSO has significant advantages com-
pared to single-objective particle swarm optimization. This
paper proposes to optimize the VMD parameters by using
MOPSO, and apply the improved VMD algorithm to the gear-
box composite fault diagnosis.The main part of the parameter
optimization using this method is the selection of multi-
objective functions.Because, SDE [27], [28] is from sym-
bol dynamic filtering,combining the advantages of symbol
dynamics and information theory, based on these advantages,
it can effectively remove background noise, utilize state mode
probability and state transition to retain fault information,
SDE has better performance in vibration signal analysis of
amplitude and frequency information. The SDE is similar
to the definition of PE, but SDE is better than PE, which
is mainly reflected in the better performance of SDE in the
evaluation of time series amplitude difference, and SDE has
the advantage of anti-noise. At the same time, considering
the PSE [29] reflects the signal power varies with frequency,
the PSE can effectively reflect the complexity of the signal
frequency composition. When the sparseness of the signal
is weak, the PSE value is large; when the signal exhibits
strong sparsity, the PSE value is small. So, this paper chooses
the SDE and PSE as the objective function of MOPSO.
Then, the Pareto frontier optimal solution set is obtained by
the MOPSO algorithm. Finally, the VMD parameter optimal
combination (k, «) is obtained through normalization. The
simulated signal and gearbox fault signal is analyzed using
the improve VMD [30].

Il. THEORETICAL FOUNDATION
A. VARIATIONAL MIODAL DECOMPOSITION (VMD)
ALGORITHM

VMD is a new approach to adaptive non-recursive signal
decomposition. It uses iterative solution to the optimal solu-
tion of the variational model, and can adaptively separate the
components to obtain the frequency center and bandwidth of
each IMF. The overall framework is variational model prob-
lem. The decomposition process of complex signals using
VMD is actually the solution process of the constructed
variational function problem.

The VMD decomposes the original signal x(t) into k
limit-bandwidth IMFs, which can be expressed as:

ug (1) = Ak (1) cos (gx (1)) ey

where, A(t) is the instantaneous amplitude of u(¢), and
wi (1) is the instantaneous frequency of u ().

Using H' Gauss smoothness of the demodulated signal,
the bandwidth of u; (¢) is estimated, Finally, the constrained
variational models of VMD algorithm are as follows: (2), (3).
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where: 9; represents the partial derivative of t, and{u;} =
{ui, ..., ug} represents the k IMFs obtained by decomposing
the signal x(t). {wx} = {wi, ..., wy} represents the center
frequency of each IMF component.

In order to solve the optimal solution of the above vari-
ational model, the following form of Lagrange function is
introduced here:

L ({ux}, {wx}, V)

=azk

2

[(0 (1) + ;) X uk(t)] eIt

2

+

2
X0 =Y w@®)| + <)~ 0, x () =Y w(t) > )
k 2 k

where: A is the Lagrange multiplier operator and « is the
penalty factor.

Secondly, the time-frequency domain transform of equa-
tion (4) is performed, and the corresponding extremum solu-
tion is solved to obtain the frequency domain expression of
the modal component u; and the center frequency wy:

fw) = Z?:l,i;ék i (w) + 252
142

o0 2
d
Wit fooow |ug(w)|? dw ©

[ lugw)|* dw
0

W w) = alw —wp)> (5)

Finally, the Alternate Direction Method of Multipli-
ers (ADMM) is used to solve the optimal solution of the
constrained variational model. Thereby, the original signal
x(t) is decomposed into k IMFs. The specific steps of the
algorithm are as follows:

(1)The initialization of the parameters, set {u}, {wi}, {A'}
and n to 0.

(2)Update uZ‘H, wZ‘H according to equation (5)and(6).
(3)Update the value of A" ! according to equation A"+ (w) =
M) 4 T(f ) = 2w w)).

(4)Until the equation ), 7+l

2
wt —uy 5
satisfied, the iteration is stopped and the loop is exited. Oth-
erwise, the return step 2. Finally, k intrinsic mode functions
can be obtained. Complete decomposition [31].

gl < s

B. OPTIMIZATION OF VMD PARAMETERS BASED
ON MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION (MOPSO)

In the traditional VMD algorithm, due to the limitation
of its algorithm theory, it is necessary to preset the number
of decomposition modes k and the penalty factor o before
performing signal processing. According to the theoretical
study of the VMD, the preset decomposition modal num-
ber k is too large, there will be over-decomposition when
processing the signal; If the k value is too small, the under-
decomposition phenomenon will occur when the signal is
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processed.If the value of the penalty factor « is larger,
the smaller the bandwidth of the obtained k modal func-
tions;the value of « is smaller, the larger the bandwidth of
the obtained k modal functions.It can be seen that the preset
k value and « value have great influence on the VMD decom-
position result.Therefore, selecting the appropriate number
of decomposition modes k and the penalty factor o are the
key to accurately extract fault information. MOPSO is widely
used because of its simple principle, fast convergence, and
good global search performance. Therefore, this paper uses
the MOPSO algorithm proposed by Coello et al. [21] to
optimize the VMD parameters. The key part of optimiz-
ing the VMD parameters based on this algorithm is the
selection of multiple fitness functions. Due to PSE is the
extension of information entropy in the frequency domain,
it is related to the distribution of frequency components.
The frequency spectrum entropy is used to quantify the
degree of the chaos of various fault vibration signals from
the magnitude and distribution of frequency domain ampli-
tude. PSE reflects the complexity of the signal frequency
composition.
The principle of PSE algorithm is as follows:
Stepl: Calculate the power spectrum of x(t).

_ 1 2 7
s(h) = mN [x(w)] @)

where N is the signal length; x(w) is the Fourier transform of

x(1).

Step2: The probability density function of the
spectrum is obtained by normalizing all frequency
components:
,:Nsizel,z,wt,...w (8)
> k=1 ()

where s(f;) is the spectral energy of the frequency component
fi; Piis the corresponding probability density; N is the number
of frequency components in the total probability density fast
Fourier transform.

Step3: The PSE value is:

N
H=— Zk:l P;log P; )

Meanwhile, SDE combines the advantages of symbolic
dynamics and information theory. It can effectively remove
background noise, and use state mode probability and state
transition to preserve fault information. SDE has well perfor-
mance in vibration signal analysis of amplitude and frequency
information [21].

The principle of the SDE algorithm is as follows:

Given a time series X{x(k), k =1, 2,... N}, the length is N,
and the SDE algorithm steps are as follows:

Stepl: Due to the advantages of adaptive segmentation,
time series are converted to symbol time series (called
symbolization).

44873



IEEE Access

Z. Wang et al.: Application of Parameter Optimized VMD Method

Step2: Construct the embedded vector zm*
time series, the formula is as (10), (11).

using symbol

Z/,’"'A{z(j), 2GHA), G+ m—1Drr  (10)
j=1,2,.....,N—(m—Dxr (11)

where m represents the embedded size and X represents the
delay.

Step3: Calculate the probability p (¢5™") of each state pat-
tern using equation (12).

The symbol time series in which the embedded size is m and
the number of symbols is ¢ has &” state patterns.

HI] JEN—=(m=1)A, type( ““) qi’“]H

£,m, A
(12)
where type(.) represents the mapping of symbol space to state
space. Il. Il indicates the cardinality of a set.
Step4: Construct the state mode matrix using the probability
of state pattern g&™* as
&,m,\ &,m, A &,m,\
[p (ql ) p (q2 ) oo (qm ):les’” '
Step5: The state transition probability p (o;, | 5™ )‘) is calcu-
lated using the formula (13).
p(onlg5™")
H{] J<N—mx, type( Fm)‘) qﬁ;m’}‘,Z(j+m)L=6;,)}H
N —mA
(13)
where « = 1,2,....; &™; b = 1,2,.... ¢. ¢ represents the

number of symbols; & is the number of states.
Step6: The following (14) state transition matrix is con-

structed based on p (o3 | ¢5™*):
pilq) p (ol q1)
(14)
p(o1lq™) p(oe 147

exemn

Step7: SDE based on Shannon entropy is calculated as fol-
lows:

m

&
SDEorm (X, m, b, €)== p(d; m*)lnp( ””)

gn
e 2P
a=1°¢ b= 1

xIn (p (¢5™") .p (oh|cf’“)) (15)

Step8: The SDE value is normalized using the following
formula.

SDEporm (X, m, %, &) = SDEX, m, 1, 2) [ In(e"*!)  (16)
Therefore SDE satisfies that 0 < SDE 5 (X, m, A, &) < 1
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C. PARAMETER OPTIMIZATION STEPS ARE AS FOLLOWS
Stepl: Set the basic parameters of the algorithm, including
the population size np, the save set size nR, the maximum
iteration number ml, the upper and lower bounds of each
dimension position of a particle, Var Min and Var Max,
the inertia weight W, and the learning factors ¢; and c;.
Among them,when the number of populations is small, the
algorithm is easy to fall into the local optimal possibility,
affecting the global search ability. However, if the popula-
tion is too large, it will increase the calculation time and
affect the calculation efficiency. Therefore, when selecting
the size of the population, the reliability and calculation time
of the algorithm should be considered comprehensively. For
a typical problem, it can be 30 populations, and for complex
problems, it can be 50 populations. The algorithm uses 30 ini-
tial population numbers, each of which is equivalent to one
vector. that is, 30 initial vectors are used in this algorithm;The
save set size nR is to store all the non-dominated solution
sets in the particle swarm into the save set. When the save
set capacity reaches the maximum nR, the particles in the
sparse area are preferentially retained when the save set is
updated, and the particles in the dense area are replaced. And
the global extremum is selected in the storage set, and the
particle swarm continuously searches for the optimal solution
under the guidance of the extreme value; The maximum
number of iterations ml is a preset algorithm iteration stop
condition. When the algorithm is iteratively updated to the
corresponding number of times, the algorithm terminates; Var
Min and Var Max can improve the global search ability of
the particles and improve the convergence speed and con-
vergence precision of the algorithm; The inertia weight W
indicates how much the original velocity of the particle can
be retained. In the process of algorithm iteration, the inertia
weight value should be continuously reduced to ensure the
strong global search ability of the algorithm. Therefore, this
paper chooses the dynamic value of this parameter between
0.4 and 0.9; The learning factors ¢ and ¢, are also called
acceleration constants, c¢; regulates the step size at which
the particles fly to their best position, and ¢, regulates
the step size at which the particles fly to the global best
position.

Step2: Initialize the multi-objective particle swarm optimiza-
tion parameter [k, ], randomly generate the position P(i)
of each particle, and initialize the velocity V(i)= 0 of each
particle.

Step3: Calculate the fitness value of each particle in the
population.

Where the value of PSE and the value of SDE are used to
calculate the fitness value of each particle in the population.
Because PSE and SDE are used as objective functions for
parameter optimization, the values are used to measure the
parameters. When the value of PSE is smaller, the signal
exhibits strong sparse characteristics, and the IMF obtained
by the VMD processing contains more fault characteristic
information. The value of SDE is smaller, the more regular
and periodic the distribution of time series, which can better
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TABLE 1. The parameters of the simulation signal.

/i I Sz I A, & T, 2
35Hz 15Hz 20Hz 135Hz 2 0.1 0.1 280Hz

Input signal x(t)

Initialize multi-objective
particle swarm optimization

parameters [k, a]

Initialization iteration number

t=1

Calculate the fitness value of
each particle in the population

Update the speed and position

of the particles

t=t+1= ml?

The optimal value of k and a
is obtained by normalization

Spectrum analysis

Fault feature extraction

Update save set R

Calculate the fitness value of
each particle in the population

Select the non-dominated
solution set in the particle
swarm into the save set R

Update individual optimal
position with pb[i]=pl[i]

Select the global optimal
position in the save set R

VMD decomposition

FIGURE 1. Flow chart of the proposed method.

measure the complexity of time series. Therefore, when the
value of PSE and the value of SDEare small, the correspond-

ing parameters are optimal.

Step4: Select the non-dominated solution from the particle
swarm, and store them into save set R.

Step5: Generate a hypercubes for a search space, and locate
the particles using hypercubes as a coordinate system. Which
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defines the coordinates of each particle according to its objec-
tive function value.

Step6: Initialize the memory of each particle and store it in the

save set R, which is also used as a guide to the search space.

Step7: Initialize the number of iterations t= 1, when the

number of loop iterations is less than or equal to the maximum
number of iterations ml, perform the following steps.
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< TR
% :E Tmels ’

FIGURE 2. The time domain waveforms that make up the simulated
signal.

a) Calculate each particle velocity using equation (17).

v(i)=wxv[i]4+ ¢ X1
X (pp il = plil) + c2 x ra x (R[A] — pliD)  (17)

where w is the inertia weight; ¢ and ¢, are the learning fac-
tors; r1 and r; are the random numbers between [0 1]; pp, [i] is
the historical optimal value of the particles; p[i] is the current
value of the particle i; R [/] is the value taken from the save
set, and the index value h is selected as follows: first, divide
any number x > 1 by the particle size, and the obtained value is
assigned to a plurality of particle hypercube, Then,we apply
roulette-wheel selection using these fitness values to select
the hypercube from which we will take the corresponding
particle. Once the hypercube has been selected, we select
randomly a particle within such hypercube.

0.9982

0.9981

0.9981

Fitness function 2

0988

*

0.998 A
0.3475 0.3476 0.3477 0.3478 0.3479 0.348 0.3481

Fitness function 1

(@

b) Update the new position of the particle as follows (18).
plil = p [il + v[i] (18)

¢) Keep the particles in the search space to prevent them from
crossing the border. When the decision variable exceeds the
boundary, the decision variable first takes the correspond-
ing boundary value, and then the flight speed is multiplied
by (—1) to cause the particles to searches in the opposite
direction.

d) Calculate the fitness value of each particle of the
population.

e) Update save set R. Insert all current non-dominated solu-
tions into the save set R, and the dominated solution will be
deleted. Due to the capacity of the save set R is limited, once
the capacity is maximized, the second criterion is applied, that
is, the particles in the sparse area are preferentially retained,
and the particles in the dense area are replaced.

f) When the current position of the particle is better than the
individual historical optimal position, theparticle position is
updated with P,[i] = p[i]. The Pareto dominance criterion
is applied to determine which position in the memory is
reserved. If the memory position dominates the current posi-
tion, the memory position is retained; otherwise, the current
position is retained. If neither is dominated by the other party,
then choose one to make a reservation.

gt=t+1.

Step8: The number of cycles is equal to ml, ending the
program.

lll. SIMULATION

A. SIMULATION SIGNAL CONSTRUCTION

When the gearbox has a composite fault, its vibration signal
are often coexisting with multiple modulation sources.So,
in order to make the simulation analysis closer to the engi-
neering reality, the simulation signal should be closer to the
actual gearbox fault signal. Therefore, in the construction of
composite fault simulation signals, this paper uses the bearing

0.684 . T

0.682 i

Fitness value
o [
» o o
< = @
()] (o] (0]

x=15
| y=0.6729
0.674 K i
0
0672 L L 1 L
0 10 20 30 40 50
Number of iterations
(b)

FIGURE 3. MOPSO (a) Pareto optimal frontier solution set; and (b) The fitness value during the iteration process.
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FIGURE 4. EMMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after EMMD; and (b) The

spectrum corresponding to each layer of IMF.
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FIGURE 5. VMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after VMD; and (b) The spectrum

corresponding to each layer of IMF.

inner ring fault signal and bearing rolling ball fault signal for
simulation analysis. The composition of the simulation signal
x(t) is as shown in the following equation (19):

x (t) = x1 (t) + x2 (¢) + x3 (t) + 2.5randn(t) (19)

where: the composition signal xj (f) = 2sin(2nfit) is a
sinusoidal signal;

The composition signal xp (t) = (1 + cos 2afut) +
cos(2mfynt)) sin(2mf;t) is a gear fault simulation signal with
two modulation sources. f;; and f;» are the modulation

VOLUME 7, 2019

frequency of the modulation source and f; is the carrier
frequency, that is, the meshing frequency of the gear;

The composition signal x3 (1) =A,; xexp (—g/ —Tn)
sin (2rf,t) is a periodic impact signal, which is specifically
used to simulate the failure of the rolling bearing;

A;, represents the impact amplitude, g is the damping
coefficient, T, is the impact period, and f. is the rotation
frequency of the bearing;

The parameters of the simulated signal are shown in the
following table 1:
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Wind power
generator

Wind speed

1-intermediate shaft; 2-low speed shaft; 3-high speed shaft; 4-medium speed gear; 5-high speed gear; 6-planetary gear.

FIGURE 6. Wind turbine gearbox test bench.

peeling off; (b) bearing rolling body pitting.

Set the number of sampling points N to 3000 andthe sam-
pling frequency is1500 Hz. The time-domain waveforms of
the component signals x1 (¢), x2 (), x3 (), and the simulation
signal x(t) are shown in figure 2.

B. COMPARISON OF DIFFERENT ALGORITHM
DECOMPOSITION RESULTS

The basic parameters of the multi-objective particle swar-
moptimization algorithm are set as follows [32].

The population size np = 30, the save set size nR = 30,
the maximum iteration number ml = 50, the inertia weight
W = 0.5, and the learning factor ¢c; = ¢ = 1.965.
By using the method proposed in this paper, the number of
decomposition modal k and the penalty factor & in VMD
are optimized,the Pareto frontier optimal solution set and
the fitness value change with thenumber of iterations in
the multi-objective particle swarm optimization process are
shown in Figure 3. Among them, in figure 3(a), the fitness
function 1 is the value of the symbol dynamic entropy (SDE)
when calculating the fitness value of each particle in the
population; The fitness function 2 is value of the power spec-
trum entropy (PSE) when calculating the fitness value of each
particle in the population. In Figure 3(b), the fitness value is
the average value of the symbol dynamic entropy value and
the power spectrum entropy value. The minimum value in the
iterative process is the best influence parameter value, duo
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(b)

FIGURE 7. Bearing inner ring and rolling element failure diagram. (a) Bearing inner ring

a 500 1000 1500 2000 2500 3000
Frequency /Hz

(k)

FIGURE 8. Time-frequency spectra of complex fault signal of gearbox.
(a) Time domain of complex fault vibration signal; and (b) Spectrum of
complex fault vibration signal.

to the PSE value is smaller, the signal exhibits strong sparse
characteristics, and the IMF obtained by the VMD process-
ing contains more fault characteristic information. The SDE
value is smaller, the more regular and periodic the distribution
of time series, which can better measure the complexity of
time series. Therefore, when the smaller the mean value of
the symbol dynamic entropy and the power spectrum entropy,
corresponding parameters are optimal. That is, the optimal
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TABLE 2. Failure frequency.

Intermediate shaft speed Intermediate shaft frequency

Inner ring failure frequency Rolling ball failure frequency
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FIGURE 9. EEMD decomposed IMFs and their corresponding spectra. (a) Time domain of IMFs after EEMD; and

(b) The spectrum corresponding to each layer of IMF.

impact parameter value is the minimum value during the
iteration process.

Obviously, the minimum value of fitness value is
0.6729 with 15 iterations. The optimal impact parameter
combination found is [k, o] = [3, 3548], and set the VMD
algorithm parameter k= 3, « = 3548. At the same time,
the simulated signal is processed using the improved VMD
algorithm.

In order to compare the results from different algorithms
for the same simulation signals, this section will use EEMD
and VMD to separately decompose the gearbox composite
fault simulation signal x; (#) mentioned above. The analysis
results are shown in figure 4 and figure 5.

It can be found in figure 4 that EEMD decomposes to
11layers modal function when processing the simulated sig-
nal, but only the first five layers are meaningful. Among
the decomposition results of EEMD, decomposed compo-
nents are meaningless in IMF1; The frequency component
of 130 Hz is decomposed into IMF2 and IMF3, and modal
aliasing occurs. At the same time, the frequency component
of 32 Hz is decomposed into IMF4 and IMF5, and modal
aliasing also happens; The frequency component of 280 Hz
in the original signal can’t be extracted. It is shown that
although EEMD adopts the idea of noise-assisted analysis,
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it still cannot avoid the occurrence of modal aliasing. It can
be found in figure 5, the VMD algorithm improved by the
parameter optimization proposed in this paper decomposes to
the 3 layers modal function when processing the simulation
signal: the low frequency component of 32 Hz in the origi-
nal signal is successfully extracted in IMF1,andlts spectrum
characteristics are very obvious; In IMF2, the 130 Hz center
frequency of the amplitude modulated signal is successfully
decomposed from the original signal containing strong noise;
In IMF3, the center frequency of 280 Hz and the 10 Hz
sideband uniformly distributed on both sides are also very
obvious. Therefore, through comparing the decomposition
results of the two algorithms, it is apparent that in the strong
noise environment, the improved VMD can not only effec-
tively eliminate the modal aliasing phenomenon of EEMD,
but also obtain very obvious fault frequency characteristics.

IV. EXPERIMENTAL VERIFICATION

In order to verify the feasibility of the proposed method
in engineering application, this method is applied to the
composite fault diagnosis of wind power gearbox. The wind
power gearbox test rig is used in this test verification,
whose main components include: electric motor, wind power
generator,the acceleration sensor, data acquisition analyzer,
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FIGURE 11. Time-spectrum diagram of IMFs after VMD decomposition. (a) Time domain of IMFs after VMF; and (b) The spectrum

corresponding to each layer of IMF.

gearbox and so on. At the same time, the output shaft has
a frequency of 30.24 Hz, the intermediate shaft frequency is
8.19 Hz, the low speed shaft frequency is 1.8 Hz, and the data
sampling frequency is 5000 Hz. The fault frequency obtained
by calculation is shown in table 2. The fault type of the gear-
box in this experiment is a composite fault, which includes
the inner ring of the bearing, as shown in figure 7(a); and the
pitting of the bearing rolling ball, as shown in figure 7(b).

It can be seen from figure 8 that the periodic shock
of the vibration signal collected by the sensor is irregular.
However, in the frequency domain diagram obtained by the
FFT transformation of the vibration signal, we can find the
characteristic frequency of the inner ring fault 84.3 Hz and its
double frequency 168.6 Hz,but there is no bearing rolling ball
failure frequency 27.3Hz does not appear. Thereby, the com-
posite fault signal needs to be further decomposed.

A. EEMD DECOMPOSITION RESULTS OF FAULT SIGNALS
The vibration signal is analyzed by the EEMD method,
and the obtained decomposition result is shown in figure 9.
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As shown in the figure 9 that the signal is decomposed
into 12 layers by the EEMD method, which the first four
layers are noise components, and the 5th layer decomposes
the bearing inner ring fault frequency 84.3 Hz. However,
the 6th layer also decomposes the bearing inner ring fault
frequency of 84.3 Hz, which occurs the mode aliasing phe-
nomenon, the 7th layer decomposes the rolling ball fault
frequency 27.3Hz. 8th to 12th layer are meaningless inter-
ference components. It is obvious that the modal aliasing
phenomenon occurs when the gearbox fault frequency is
extracted by the EEMD method. Consequently, the fault
frequency cannot be successfully extracted efficiently and
accurately.

B. DECOMPOSITION RESULTS OF THE METHODS
PROPOSED IN THIS PAPER

The vibration signal is analyzed by the method presented
in this paper. Firstly, the power objective entropy (PSE) and
symbol dynamic entropy (SDE) are used as the fitness func-
tion to calculate the fitness value. Then the Pareto frontier
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optimal solution set is determined using the multi-objective
particle swarm optimization algorithm through iteration.The
minimum value of the fitness obtained after processing is
0.444, The optimal combination of parameters found is [k,
a] = [3,4000], as shown in Figure 10. The fault signal
of the gearbox is decomposed by the VMD decomposition
method after parameter optimization, and the result is shown
in figure 11. The spectrogram of figure 11 shows that the
rolling ball fault frequency of 27.3 Hz and the inner ring
fault frequency of 84.3 Hz in the gearbox fault signal are
successfully extracted. Meanwhile, IMF3 decomposes out the
double frequency 168.6 Hz of the inner ring fault frequency
84.3 Hz, and the spectral characteristics are very obvious.
Compared to EEMD decomposition, VMD decomposition
doesn’t emerge modal aliasing. The validity of the proposed
method is proved.

V. CONCLUSION

This paper proposes a method to improve the VMD param-
eters and successfully applied to the fault diagnosis of wind
power gearbox. The proposed method can efficiently and
accurately determine the VMD parameter combination (k, o),
as well as effectively extract the composite fault characteris-
tics in the gearbox. The effectiveness of the proposed method
is verified by simulation and experiment.

The PSE and SDE proposed in this paper are fitness func-
tions, and then multi-objective particle swarm optimization
algorithm is used to obtain the Pareto frontier optimal solution
set, followed by normalization to get the optimal combination
of VMD parameters (k, o). The VMD algorithm with these
adaptive parameters of the optimization algorithm not only
overcomes the limitations of the VMD but also successfully
extracts the composite fault characteristics of the gearbox
under a strong background noise environment. And the valid-
ity of the algorithm is confirmed.

Compared with EEMD, the VMD decomposition sig-
nal with optimized parameters does not exhibit modal
aliasing.
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