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ABSTRACT This paper presents a road vehicle recognition and classification approach for intelligent
transportation systems. This approach uses a roadside installed low-cost magnetometer and associated
data collection system. The system measures the magnetic field changing, detects passing vehicles, and
recognizes vehicle types. We introduce Mel Frequency Cepstral Coefficients (MFCC) to analyze vehicle
magnetic signals and extract it as vehicle feature with the representation of cepstrum, frame energy, and gap
cepstrum of magnetic signals. We design a 3-dimensional map algorithm using Vector Quantization (VQ) to
classify vehicle magnetic features to 4 typical types of vehicles in Australian suburbs: sedan, van, truck, and
bus. In order to train an accurate classifier, training samples are selected using the Dynamic Time Warping
(DTW). The verification experiments show that our approach achieves a high level of accuracy for vehicle
detection and classification.

INDEX TERMS Vehicle classification, signal processing, road traffic model, magnetic sensing, mel
frequency cepstral coefficients (MFCC), vector quantization (VQ), dynamic timewarping (DTW), intelligent
transportation system (ITS).

I. INTRODUCTION
Intelligent transportation systems (ITS) apply sensors to col-
lect and analyze road vehicle information for road vehicle
monitoring and managing, control of road traffic, and traffic
data analysis for future development of transportation infras-
tructures. Useful road traffic information includes: vehicle
location, type, weight, passing speed and direction, and vehi-
cle volume in certain zones [1], [2]. The first traffic monitor
sensor was developed and installed for road use in 1928. This
device used a microphone to detect vehicle sound [1]. Since
then, road vehicle sensing technologies have been explored in
vibration, inductive-loop detecting, magnetic field, acoustic
sensing, optical and infrared sensing, satellite signal process-
ing, camera captured image and video processing, and inertial
sensing [1, 2]. These sensing technologies can be utilized for
a single sensor, or in a sensor network.

Various types of sensing technologies can be applied in dif-
ferent locations in transportation systems. The sensors can be
statically deployed on road side, underneath the road surface,
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over road, on a pole at an optimal height near the road,
on bridge crossing over the road, or dynamically installed in
road or aerial vehicles. In a sensor network, these technolo-
gies and deployment locations can be integrated.

From a commercial deployment perspective, the types of
sensing technologies and the deployment locations of sensors
will impact the reliability and cost of installation and mainte-
nance. For example, magnetic sensor installation underneath
the road surface will increase the sensor measurement accu-
racy, but disrupt the road traffic in installation and mainte-
nance phases.

In this paper, we propose a road vehicle detection and clas-
sification approach using roadside-installed single magnetic
sensor. The magnetic sensor measures the magnetic field
changes when a vehicle is passing the sensor. The sensor
measurement signals are analyzed to extract vehicle features,
and these features are classified into vehicle types. Passing
vehicles on road traffic are detected for four types of vehicles:
sedan, van, truck, and bus.

This paper is organized as follows. Section II reviews
related work in vehicle detecting and classification.
Section III presents the experimental design for magnetic
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sensing in this research. Section IV presents an algorithm
for vehicle identification and vehicle type classification. The
results of the road vehicle identification and classification
are demonstrated and evaluated in Section V. Conclusion are
drawn finally in Section VI.

II. RELATED WORK
Sensing technologies provide vehicle and road traffic infor-
mation to intelligent transportation systems.

Accelerometer is able to measure the vibration of the road
when a vehicle is passing. ITS can receive sensor input from
accelerometers installed under road surface, and compute the
weight of passing vehicle and number of vehicles.

Inductive loop technology uses electrical conducting loop
that is installed on road surface. When a vehicle passes
the loop, a current is induced in wired loops, and this sig-
nal change is processed and transmitted to ITS to compute
the detection of the passing vehicle type [1]. The vehicle
detection and type classification algorithms include back-
propagation neural networks [3], neural genetic controller
using single-loop [4], and 2-axle tractor/3-axle semi-trailer
approach [5].

Radar is a mature technology to detect passing vehicle
length, height and speed. Frequency modulated continuous
wave using Doppler radar is one of the traditional radar
techniques to extract shape information and classify vehicle
types [6]. Recent radar techniques include detecting vehicle
and analysis of the frequency of incoming vehicle and using
reconfigurable antenna array and Synthetic Aperture Radar
technique, which were applied for estimation of angular coor-
dinates [7].

Infrared (IR), including active infrared laser radar and pas-
sive infrared, has been used in road vehicle acquisition, track-
ing, and especially for night vision. Infrared is available to
operate in multiple lanes [1]. IR detecting techniques include
extracting histograms of oriented gradient features and local
binary pattern features, and concatenating to form classifica-
tion features [8]. IR technique can be applied to detect both
vehicles and pedestrians on road. However, infrared sensors
may reduce vehicle sensitivity in bad weather conditions, like
rain, fog and snow [1].

Cameras capture passing vehicle’s location, speed and
shapes in images and videos. Road traffic images contain
rich information in wide area. Vehicle image detecting tech-
niques can be used in multiple lanes and multiple zones.
Weather conditions and day-to-night transition may heavily
affect the performance [1]. Street lighting is required to assist
video image recording at night time for obtaining reliable
signals [1]. In literature, vehicle’s parameters such as length,
height and width dimensions were extracted and these fea-
tures are used to classify vehicle types [9].

Magnetic sensors measure the magnetic field. Mag-
netic sensing technologies include: squid, fiber-optic, opti-
cal pumped, nuclear procession, search-coil, anisotropic
magneto-resistive, flux-gate, and so on [10]. These sensors
detect different magnetic field range. The impact of a vehicle

passing or stopping causes a change to the earth magnetic
field within the range of 1 microgauss to 10 gauss [10].
Comparing with other types of magnetic field sensing tech-
nologies in range and cost, Anisotropic Magneto-Resistive
(AMR) sensors are able to work in this range of magnetic
field changes for practical applications.

Signal analysis of magnetic field measurement and clas-
sifying into signal shape patterns has been an effective
approach. In Sing Yiu et al.’s approach [11], three-axis mag-
netic vectors were analyzed separately in magnitude. The
magnitudes of signals in the x, y and z in time series were
classified into a number of patterns. These patterns illustrated
the shape of hills for each type of vehicles. Using the hill
pattern approach, Saowaluck et al. [12] extracted features of
normalized vehicle magnetic length, average energy, number
of peaks from hill patterns. Their classification types include
motorcycles, cars, pickups, vans, and buses.

An integrated approach was developed using magnetic
sensor and DGPS by Taghvaeeym and Rajamani [13]. In [13],
two magnetic sensors were used. DGPS measured the speed
of vehicles to aid the magnetic sensing. The vehicle clas-
sification was based on magnetic length and estimate of
the average vertical magnetic height of the vehicle. Vehicle
length was computed by using the vehicle presence time and
vehicle speed.

Using a single AMR sensor, Yang and Lei [14] detected
vehicles in a single lane by using sensor measurement when
vehicle passing the road sensing area. The following features
were extracted from measured signals for classification: sig-
nal duration, signal energy, average signal of signal, ratio
of positive and average energy of X-axis signal, and ratio
of positive and average energy of Y-axis signal. X-axis and
Y-axis of the magnetic sensor were installed parallel to the
earth surface. Z-axis was vertically installed. The types were
classified into motorcycles, two-box cars, saloon cars, and
sport utility vehicles in [14].

Among these approaches, the vehicle detection and classi-
fication had been developed as prototypes. In AMR sensor-
related systems, AMR sensors were installed on roadside,
under the surface of road, used a single sensor, or applied
multiple sensors as a sensor network. These impact the factors
of measured signal strength for detecting accuracy, cost of
installation and maintenance. Application in deployment has
not been commercialized in large scale yet due to these impact
factors. Further research of approaches is needed to achieving
reliable detection and classification results while reducing the
cost caused by sensor installation and maintenance.

Compared with different types of sensors, e.g. radar, opti-
cal images/videos and Infrared, AMR sensor has three main
advantages. 1) The AMR is the overall systems low cost and
smaller size due to high sensitivity, and they still maintain
reliability and quality. 2) AMR sensors have high sensitivity
and flexibility; therefore, they are placed further away from
themagnet. This allows the AMR sensor to be installed where
it is needed for the optimal performance. And, 3) the most
advantage of these solid-state devices are their durability
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and immunity to shock and vibration. They record magnetic
signals in a stable fashion that is not influenced by different
weather conditions.

In our research, considering the cost of installation and
maintenance, we use a single AMRmagnetic sensor to install
on roadside. Our approach is proposed for Australia road
environment. The types of vehicles in Australia road traffic
are typically sedan, van, truck and bus. We analyze these
vehicle types by using measured earth magnetic field signal
changes in time domain, when vehicle passes our sensing
area. We explore vehicle identification and classification by
extending audio signal analysis approach. The sensor mea-
surements of magnetic field are processed by signal feature
extraction and vector quantization for vehicle type classi-
fication. Compared with Yang and Lei’s work, we target
vehicle types which are suitable to Australia road traffic. Our
method of feature extraction and classification outperforms
the method proposed in [14] 1% on average classification
accuracy.

III. EXPERIMENT DESIGN USING MAGNETIC SENSOR IN
ROAD TRAFFIC
In our experiments, an AMR magnetic sensor is installed
on road side to collect data of a single lane. The distance
between the sensor and passing vehicles is 60 centimeters.
The roadside sensor is able to detect one vehicle on one lane
in our experiment. When vehicle passes the sensing area,
the magnetic field in that area will change and cause the mag-
netic measurement changes. These changes are displayed as a
signal wave in measurement. From the observation of vehicle
types on road, we classify and analyze road vehicles using
four types: sedan, van, truck, and bus. When these vehicles
pass the experiment spot, the magnetic field measurements
display signal changes as the form of waves. We have applied
dynamic time warping (DTW) to select the most representa-
tive samples from each vehicle type. Figure 1, 2, 3, 4 illustrate
the magnetic field changes in one dimension for these types
of vehicles.

FIGURE 1. Magnetic sensor measurement of Sedan signal.

FIGURE 2. Magnetic sensor measurement of van signal.

FIGURE 3. Magnetic sensor measurement of Truck signal.

FIGURE 4. Magnetic sensor measurement of Bus signal.

From the experiments, we found that magnetic signal wave
and audio wave display similar characteristics, such as reflec-
tion, refraction, intervene, measurement data and diffraction.
In time domain and frequency domain, the speed, length, and
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frequency of signal waves have certain relationship for both
magnetic wave and audio wave. In our research, we explore
filtering raw magnetic measurement signals as well as the
signal feature extraction to analyze magnetic field signal
features.

In this paper, we present a road vehicle detection and
classification approach using magnetic sensor and magnetic
signal feature extraction and classification. In order to reduce
the deployment, interruption of road traffic and maintenance
cost, we apply a road-side magnetic sensor to detect the
vehicles. The magnetic signal processing approach extended
MFCC to extract the magnetic signal feature and classify
the feature to categorize five types, as shown in Figure 6.
In our experiments, the signal types are: sedan, van, truck,
bus and non-vehicle. Figure 5 shows the first four dimen-
sions of MFCC extracted from the signature signal of four
different vehicle types. Usually, when there is no vehicle
in measurement area, the basic output signal from magnetic
sensor is the earth magnetic field with environment noises.
The non-vehicle can also include passengers, bicycles and
motors and the earth magnetic field with environment noises.
Since the signal sample length is set as one second, the num-
ber of non-vehicle samples is the number of seconds that
non-vehicle signal lasts.

FIGURE 5. The first four dimensions of MFCC feature extracted from
signals of four different vehicle types.

IV. VEHICLE CLASSIFICATION ALGORITHM
In our research, we extract Mel Frequency Cepstral Coeffi-
cients (MFCC) feature from signals and apply Vector Quan-
tization (VQ) to classify magnetic field measurement data for
passing vehicles. In order to efficiently model the probability
density functions, we use Dynamic Time Warping (DTW) to

FIGURE 6. Vehicle magnetic feature extraction and classification process.

filter the raw measurement signals to prepare training data
for VQ. MFCC has been proved to be one of the robust and
widely used features to analyze the characteristic of audio sig-
nals [15], [16]. Vector Quantization is a classifier to compare
the distance in vectors. VQ transforms several scalar data into
one vector data, and quantizes whole vector space [17].

In identification and classification of vehicle signals,
we filter the raw magnetic field measurement signals and
extract relative features, and then label the features to differ-
ent types of vehicles. The method is presented below.

A. TRAINING SAMPLE SELECTION BY DYNAMIC TIME
WARPING SELECTION OF MAGNETIC
MEASUREMENT SIGNAL
As we all know, for effective machine learning to occur, it is
important to select representative positive training samples.
Collected magnetic signals can be very raw due to noisy
introduced by environmental condition. (i.e. pedestrian, road
work, train/tram noise and track maintenance) In order to
accurately model the probability density function for each
type of vehicle, we introduce sample selection to make sure
training data efficiently represent the characteristics of each
vehicle type. Since magnetic signals are complex series with
the shift and stretching of amplitude, dynamic time warp-
ing (DTW) is applied in our research to measure similarity
among signals. In some boundary and temporal consistency
constrains, DTW is a point to point method and it can obtain
a global optimal solution through cost matrix [18], [19].

For each vehicle class, assuming we have n magnetic sig-
nals S = {s1, s2, s3 · · · sn}. Any two magnetic signals of one
category are compared with each other. Figure 7 shows an
example of comparison of two van sample pairs. We apply
16 sampling points. Each point has been compared between
two magnetic signals.

VOLUME 7, 2019 52625



X. Chen et al.: Road Vehicle Detection and Classification Using Magnetic Field Measurement

Assuming sw = {xi}16i=1 and su = {yj}16j=1 are the two sig-
nals in S. When u 6= w, u = 1, . . . , n, w = 1, . . . , n, xi, i =
1, . . . , 16 and yj, j = 1, . . . , 16 represent the sample points
of two magnetic signals, sw and su. DTW (sw, su) is used to
present the DTW distance between sw and su, which can be
calculated by the following equation (1).

DTW (sw, su) =
∑i

i=1

∑j

j=1
min(d

(
xi−1, yj

)
,

d
(
xi, yj−1

)
, d

(
xi−1, yj−1

)
). (1)

where d (xi, 〈〉)= ∞, d
(
〈〉, yj

)
= ∞ and d (〈〉, 〈〉)= 0. The

〈〉 indicates empty series. The d
(
xi, yj

)
indicates the distance

between two points xi and yj, which can be represented by
Euclidean Distance.
The D = {D1, D2, D3 . . .Dn−1 describes a set of DTW dis-
tance that eachmagnetic signal comparedwith the rest signals
within the same class, as demonstrated below:

D1 =
{
DTW 1,2,DTW 1,3, · · ·DTW 1,n

}
D2 =

{
DTW 2,1,DTW 2,3, · · ·DTW 2,n

}
...

Dn−1 =
{
DTW n,1,DTW n,2, · · ·DTW n,n−1

}
. (2)

The average distance between eachmagnetic signal to the rest
within the same class can be calculated as follows:

D1 =
1

n− 1

(
DTW 1,2 + DTW 1,3 + · · · + DTW 1,n

)
D2 =

1
n− 1

(
DTW 2,1 + DTW 2,3 + · · ·+DTW 2,n

)
...

Dn−1 =
1

n− 1

(
DTW n,1 + DTW n,2 + · · · + DTW n,n−1

)
(3)

The equation (3) can be further summarized as

Dp=
1

n− 1

∑m = 1, . . . , n
m 6= p

DTW p,m, p=1, . . . , n−1


Dr = argmin

p

{
Dp, p=1, . . . , n−1

}
. (4)

We then select Sr as the signature magnetic signal of the class
where Sr belongs to. For four vehicle classes, we can acquire
four signature signals, which is showed in Figure 1, 2, 3, 4.

In order to select training samples of each vehicle class,
we calculate the DTW distance of each sample in that class
to the signature signal of that class and select samples with
DTW distance no greater than 2 as training samples. The
number of training samples of each vehicle class are listed
in the APPENDIX. Fig. 7 shows an example, which is a van
signal compared with its signature signal. The DTW distance
between these two signals is 0.167847.

FIGURE 7. An example of a van signal compared with its signature signal
by DTW.

B. MAGNETIC FEATURE EXTRACTION PROCESS
The process flow of magnetic field features extraction is as
Figure 8. Each step of the process is presented in this section.

Preemphasis: The first step of magnetic signal feature
extraction is ‘‘preemphasis’’. This step improves the energy
in high frequencies and balances the energy from lower and
higher frequencies. In the time domain, the filter equation is
as below:

y [n]= x [n]−αx[n− 1]. (5)

where, n is the time, x[n] is the input signal, and 0.9 ≤ α ≤ 1.
Windowing: In the second step ‘‘Windowing’’, we extract

signal feature from a small window of signal. The windowing
process is performed using signal value and window value.
If the value of the signal at time n is s [n], the value of
the window at time n is w [n], the signal value y[n] of this
windowing process is presented as the following equation:

y [n] = w [n] s [n] . (6)

In order to shrink the values of the signal toward zero at the
window boundaries and avoid discontinuities, we define two
windowing functions: ‘‘Rectangular’’ and ‘‘Hamming’’.
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FIGURE 8. Magnetic measurement feature extraction.

Rectangular:We set the window to 1when signal time n is
between 0 and L-1, L is the length of the frame of the signal.
In another time period, we set window to 0 [15, 16].

w[ [n] =

{
1 0 ≤ n ≤ L − 1
0 othervise .

(7)

Hamming: Hamming window is the goal to extract the spec-
tral features, not from the entire signal, it can extract spectral
features from a small window of signal [15], [16].

w [n] =

{
0.54− 0.46 cos 2πn

L 0 ≤ n ≤ L − 1
0 othervise .

(8)

After the ‘‘Windowing’’ process, the distributed frames
will result in two states: dynamic state and static state. The
feature extracting process will go through two different flows
as in Figure 8. After ‘‘Windowing’’ processing, there is a
condition to process each frame in magnetic feature and here
are two steps including dynamic and static site, due to the
reason of each frame in ‘‘Windowing’’.

Thewindowing process includes ‘‘frame shift’’ and ‘‘frame
size’’. In the frame state, there are two conditions: dynamic
state and static state to resolve this issue. The dynamic pro-
cessing is caused by frame shift that is 10ms, while the static

state is frame size, which is 25ms. Therefore, the total feature
is the data of dynamic and static.

1) STATIC STATE
Discrete Fourier Transform (DFT): For static frame con-
dition, the third step is Discrete Fourier Transform (DFT).
We extract magnetic information for windowed signal.
We calculate howmuch energy the signal contains at different
frequency bands. DFT is defined as:

x [k] =
∑N−1

n=0
x[n]ejθ . (9)

where k and N are the sequence of frame and discrete fre-
quency bands respectively. The e, and θ are presented in
Euler’s formula as below:

ejθ = cos θ + j sin θ. (10)

where, θ = −2 πN kn.
Mel Filter Bank: The next steps of feature extraction are

‘‘Mel Filter Bank’’ and ‘‘Log Processing’’ to reduce to lower
amplitudes. This is computed using:

mel (f ) = 1127In(1+
f

700 ). (11)

where f is the frequency of the input signal.
The final steps are ‘‘Inverse Discrete Fourier Transform’’

(IDFT) and ‘‘Deltas’’ and ‘‘Energy’’: therefore, the magnetic
feature include Cepstrum, Deltas and Energy.

Inverse Discrete Fourier Transform (IDFT): IDFT is
computed using the following equations:

c [n] =
∑N−1

n=0
log(|

∑N−1
n=0 x[n]e

−j 2πN kn
|)ej

2π
N kn. (12)

where c is the cepstrum of magnetic feature.
Delta: InDelta stage, we compute the gap cepstrum (delta).

Delta is defined as the value of average of current cepstrum
and the cepstrum of next time. Delta d is computed as below.

d (t) =
c (t + 1)− c(t)

2
. (13)

Double delta is defined as:

z (t) =
c (t + 1)− c(t − 1)

2
. (14)

2) DYNAMIC STATE
For the dynamic state frames after ‘‘Windowing’’, we start
‘‘Energy’’ process as in Figure 8.

Energy: Energy is computed using the energy of the frame
between two time points t1 and t2. We calculate Energy of
cepstrum c,delta d and double delta z.

Energy =
∑t2

t=t1
x2[t]. (15)

Feature: For both process flows for dynamic state and static
state as in Figure 8, the final features are integrated. Magnetic
feature is presented using integration of cepstrum c, delta d ,
double delta z and Energy, as in Equations 12, 13, 14 and 15.
Vehicle magnetic features are consequently extracted and
represented in this process.
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C. VEHICLE CLASSIFICATION PROCESS
To classify magnetic sensor signals for vehicle types,
we transform several scalar magnetic measurement data into
one vector. We design this vector containing cepstrum c,
Energy, and the gap cepstrum d, which are extracted from
the vehicle magnetic feature extraction process.

A vector space is quantized using all magnetic feature
vectors. We compress data and store this feature information
in magnetic vector space [20].

We design a 3-dimensional classification model to present
the distribution of vehicle types as in Figure 9.

FIGURE 9. Distribution of vehicles on 3-dimensional classification
algorithm.

In this distribution 3-dimension model (magnetic-x,
magnetic-y, magnetic-z), we design three axes as the coor-
dinate. The coordinate displays the different vehicles in the
region. We uniquely represent each color circle by this coor-
dinate. In this case, we design sedan as red circle, vans as
orange circle, truck as dark red circle, bus as yellow circle,
none-vehicle as blue circle and input data as pink circle
in Figure 9. For example, we design the coordinate [0.352,
0.412, 0.786] to allocate the position of one passing sedan
in this distribution. The VQ algorithm compares the distance
between input data (pink circle) and others vehicles (red cir-
cle, orange circle, dark red circle, yellow circle, blue circle).
If the distance between the input data (pink circle) and sedan
(red circle) is the shortest, the input signal is labeled as a
sedan. Similarly, each input signal has corresponding vehicle
label in this 3-dimension space.

The classification algorithm is roughly described as fol-
lows. Given M as the number of training samples, the train-
ing data set can be represented as X = {xm,m =

1, . . . ,M}. For each training sample in the training set, xm ={
xm,1, xm,2, . . . , xm,k

}
, where k represents the dimension

number of a feature vector used to represent each sam-
ple. Divide the classification feature space to N parts, i.e.

N classes. In our case, N = 5 to indicate five pre-defined
vehicle classes. For each vehicle class n, a code vector cn ={
cn,1, cn,2, . . . , cn,k

}
, which is the feature vector of the cen-

troid point of that class. Therefore, in our case, the code-
book of classification space can be represented as C =

{cn, n = 1, . . . , 5}. Sn is the encoding region including cn.
We set partition of the space P = {Sn, n = 1, . . . , 5}. If xm is
in Sn area, xm can be quantized as cn: Q (xm) = cn.

The average distortion Dave can be computed using

Dave =
1
Mk

∑M

m=1
|xm − Q (xm)|2 . (16)

We design optimality criteria using ‘‘Nearest Neighbor Con-
dition’’ and ‘‘Centroid Condition’’.

These criteria are presented as follows:
‘‘Nearest Neighbor Condition’’:

Sn = {x : |x − cn|2 ≤
∣∣x − cn′ ∣∣2 ∀n′ = 1, 2, . . . ,N }. (17)

The vectors standing on boundary can be chosen to certain
region Sn.
‘‘Centroid Condition’’:

cn =

∑
xm ∈ s

Xm
n∑

xm ∈ s1n
n = 1, 2, . . . ,N . (18)

If the transformed vehicle magnetic vector meets the both
‘‘Nearest Neighbor Condition’’ and ‘‘Centroid Condition’’,
then the magnetic vector can be classified into that vehicle
type.

V. ANALYSIS OF VEHICLE CLASSIFICATION
EXPERIMENT RESULTS
We perform experiments for vehicle type classification, i.e.
classifying signals into five classes including sedan, van,
truck, bus and non-vehicle, based on features extracted from
each signal. ‘‘non-vehicle’’ type is defined for magnetic sig-
nals when vehicles are absent.

A. CLASSIFICATION WITH ROUGH TRAINING DATA
AND CROSS- VALIDATION
We separate magnetic measurement data into two sets: train-
ing data set and testing data set. Experiments are set up in
three groups. In Experiment Group 1, we set up 2/3 of entire
data (87 sedans, 76 vans, 82 trucks, 71 buses and 96 non-
vehicle signals) as training data and the rest 1/3 data as testing
data. In Experiment Group 2, we set up 3/4 as training data
and 1/4 as testing data. The last group 3, we set up 4/5 as
training data and 1/5 as testing data.

The cross-validation is an approach to generalize the clas-
sification result to an independent data set. In our approach,
we apply K-fold approaches [21]. K is set up as 3, 4 and
5 respectively for different experiment groups. For Group 1 of
3-fold, we firstly divided the entire experimental data into
three partitions, each of which had 1/3 of the total data. One
of the partitions was picked up as testing data. The data in
the other two partitions were training data. Then, the second
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TABLE 1. Cross-validation accuracies of three groups with rough training
data.

TABLE 2. Cross-validation accuracies of three groups with DTW selected
training data.

TABLE 3. Group 1 round 1 accuracy with rough training data (2/3 for
training and 1/3 for testing).

partition was used for testing and the rest two partitions were
for training. After that, the third 1/3 data were for testing,
and the rest 2/3 data were for training. At the end, the three
times accuracies are averaged as the classification accuracy
for 3-fold cross-validation. For Group 2 of 4-fold, we divided
the whole data set into 4 partitions. Each partition was in
turn used for testing and the rest were for training. Then,

TABLE 4. Group 1 round 2 accuracy with rough training data (2/3 for
training and 1/3 for testing).

TABLE 5. Group 1 round 3 accuracy with rough training data (2/3 for
training and 1/3 for testing).

TABLE 6. Group 2 round 1 accuracy with rough training data (3/4 for
training and 1/4 for testing).

TABLE 7. Group 2 round 2 accuracy with rough training data (3/4 for
training and 1/4 for testing).

the average accuracy was calculated. For Group 3, i.e. 5-fold,
the data were divided into 5 partitions for experiments.

Cross-validation classification results of each experimental
group are listed in Table 1. The number of training samples
and testing samples are also listed. Please note, when the
total number of samples cannot be divisible by K, the number
of training and testing samples can be slightly different for
each cross-validation run of the same experiment group. It is
obvious that, the less the testing data, i.e. themore the training
data, the higher the classification accuracy.
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TABLE 8. Group 2 round 3 accuracy with rough training data (3/4 for
training and 1/4 for testing).

TABLE 9. Group 2 round 4 accuracy with rough training data (3/4 for
training and 1/4 for testing).

TABLE 10. Group 3 round 1 accuracy with rough training data (4/5 for
training and 1/5 for testing).

TABLE 11. Group 3 round 2 accuracy with rough training data (4/5 for
training and 1/5 for testing).

B. CLASSIFICATION WITH DTW SELECTED TRAINING
DATA AND CROSS-VALIDATION
As we known, training sample selection is vital for effective
machine learning to occur. Different from experiments pro-
posed in V.A, in order to improve the classification perfor-
mance, all training data has been further selected by applying
Dynamic TimeWarping (DTW). For each vehicle type, we set
DTW = 2 as a threshold value to select training data.
If DTW (sw, sr ) < 2, then sw will be selected for training.
As discussed in Section IV.A, sr is the signature in a particular
vehicle class and sw, w= 1, . . . , n,w 6= r , indicates the rest
signals in the same class. The numbers of training data used
for different sets of experiments are listed in the APPENDIX.

TABLE 12. Group 3 round 3 accuracy with rough training data (4/5 for
training and 1/5 for testing).

TABLE 13. Group 3 round 4 accuracy with rough training data (4/5 for
training and 1/5 for testing).

TABLE 14. Group 3 round 5 accuracy with rough training data (4/5 for
training and 1/5 for testing).

TABLE 15. Group 1 round 1 accuracy with DTW selected training data
(2/3 for training and 1/3 for testing).

Table 2 summarizes the cross-validation accuracies of
three groups with DTW selected training data. We also
list the number of training and test samples in the table.
When the total number of samples cannot be divisible by K,
the number of testing data can be slightly different for each
cross-validation run of the same experiment group. Detailed
experimental results of cross-validation runs can be found
in VII. Appendix.

Compared Table 2 with Table 1, we can find that
the classification performance was improved significantly
by selecting efficient training samples. DTW, as a fil-
ter, made a great contribution to increasing classification
accuracy.
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TABLE 16. Group 1 round 2 accuracy with DTW selected training data
(2/3 for training and 1/3 for testing).

TABLE 17. Group 1 round 3 accuracy with DTW selected training data
(2/3 for training and 1/3 for testing).

TABLE 18. Group 2 round 1 accuracy with DTW selected training data
(3/4 for training and 1/4 for testing).

TABLE 19. Group 2 round 2 accuracy with DTW selected training data
(3/4 for training and 1/4 for testing).

VI. CONCLUSION
In this paper, we present a road vehicle identification and
classification approach using magnetic sensing, magnetic
signal feature extraction and classification. This approach is
designed for analyzing road traffic in intelligent transporta-
tion systems.

Using this approach, the installation of magnetic sensor in
roadside does not require interruption of road traffic. This
reduces the deployment and maintenance cost.

Processing magnetic signals by extracting the features of
MFCC and VQ based on classification can categorize five
types of vehicle signals. Applying DTW to select efficient

TABLE 20. Group 2 round 3 accuracy with DTW selected training data
(3/4 for training and 1/4 for testing).

TABLE 21. Group 2 round 4 accuracy with DTW selected training data
(3/4 for training and 1/4 for testing).

TABLE 22. Group 3 round 1 accuracy with DTW selected training data
(4/5 for training and 1/5 for testing).

TABLE 23. Group 3 round 2 accuracy with DTW selected training data
(4/5 for training and 1/5 for testing).

TABLE 24. Group 3 round 3 accuracy with DTW selected training data
(4/5 for training and 1/5 for testing).

training samples can further improve the classification accu-
racy significantly.

As an initial research, we have set up distance between
the sensor and passing vehicles as 60 centimeters. In our
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TABLE 25. Group 3 round 4 accuracy with DTW selected training data
(4/5 for training and 1/5 for testing).

TABLE 26. Group 3 round 5 accuracy with DTW selected training data
(4/5 for training and 1/5 for testing).

future studies, we will consider applying multiple sensors to
monitor multiple lanes. Moreover, experiments can be carried
out to investigate the effect of various distance between AMR
sensor and passing vehicles.

APPENDIX
Detailed experimental results of cross-validation runs are
listed as follows.

CLASSIFICATION WITH ROUGH TRAINING DATA AND
CROSS-VALIDATION
See Tables 3–14.

CLASSIFICATION WITH ROUGH TRAINING DATA AND
CROSS-VALIDATION
See Tables 15–26.
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