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ABSTRACT Considering the enormous advances in nanometer-scale CMOS technology that now allows one
to reliably fabricate billions of switching devices on a single silicon die, electrostatically controlled quantum
dots (implemented as quantum wells) appear to be promising candidates for a massive implementation
of quantum bits (qubits) and quantum logic circuits in order to facilitate high-volume production of
quantum computers. In this paper, the case of finite two-well and multiple-well potentials arising from
semiconductor charged-coupled structures are treated in a rigorous way by Schrödinger formalism. The
modeling methodologies presented to allow one to describe the dynamics of quantum states in non-ideal
geometries, account for some mechanisms of qubit decoherence and model electrostatic interaction between
electrons that lead to entanglement. The presented methodology can be scaled up to circuits of greater
complexity.

INDEX TERMS CMOS technology, electrostatic semiconductor qubit, coupled semiconductor quantum
dot, N -well system, decoherence time, time-dependent Schrödinger equation, predictor-corrector scheme,
occupancy oscillations, tight-binding method, entanglement, entangled electrons, quantum computer.

I. INTRODUCTION
The race towards the implementation of a practical quantum
computer is taking placeworldwide asD-wave, Google, IBM,
Intel, Microsoft, and other companies intensify their efforts.
At this stage of technology, the first quantum computers can
sustain a few dozen quantum bits (qubits). Quantum com-
puters can deliver an exponential computational processing
boost by overcoming the performance limitations of clas-
sical computers [1], [2]. This spurs fundamental research
related to the massive operation of qubits [3], [4]. It is
not surprising that physical systems, which are showing
macroscopic quantum effects in quite a natural way, pro-
mote the coherence of quantum states, and so the atten-
tion of quantum computing community has been focused
on superconducting and superfluid systems [5]. The idea of
Josephson junctions as the principal building block of qubits
was proposed by [6], and its compact mathematical descrip-
tion can be found in [7]. Indeed, such quantum computers
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can be realized on ion trap systems or on superconducting
circuits [8], [9].

However, the Josephson junction suffers from fundamental
scaling limitations since its dimensions are limited by the
superconducting coherence length that is a measure of the
Cooper pair size. For conventional, low-temperature super-
conductors, such as Nb, it is usually in the range of few
thousand angstroms, thus, two orders of magnitude greater
than the channel length in current CMOS transistors. Fur-
thermore, the system cost of ion traps or Josephson junctions
is inherently very high due to the need of cooling the whole
structure down to, for example, ∼15mK.

On the other hand, the past few decades have witnessed the
unprecedented progress in the scaling of CMOS transistors
down to several nanometers. This aggressive miniaturization
has brought along a number of challenges, but also some
interesting solutions. New materials and properties, innova-
tive architectures and designs require sophisticated tools for
the simulation and analysis of these structures [10]–[12].
As they are reaching atomic dimensions, quantum phenom-
ena should now be taken into consideration.
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FIGURE 1. (a) Series of CCD-like devices which form an electrostatically
controlled qubit structure of 8 quantum wells/dots. (b) Equivalent
quantum dot representation. (c) Eight-potential well structure with UL
and UR denoting the height of the potential function at the left and right
edges, respectively, and UBMi denoting the height of the middle barrier.
The total length is NL, where N is the number of wells. The length of the
barrier is a and the length of each well is w . (d) Schematic representation
of two neighbor dots, Da and Db, with electron transfer between them.
One can manipulate the height of the potential barrier between the wells
by applying a voltage pulse, V (t), facilitating occupancy oscillations of
quantum state. (UBM is the barrier height and c0 is a constant.).

We surmise that operating qubits at the 4K temperature
of liquid helium would bring the total cost down signifi-
cantly. There are active discussions regarding the realiza-
tion of qubits that are compatible with CMOS and cryo-
CMOS technologies [13]. Such qubits fabricated in silicon
can be realized using electrostatically controlled quantum
dots of various geometries [14], [15]. Electron transport can
be achieved by employing a structure similar to that of
charge-coupled devices (CCD), as shown in Fig. 1(a) [12].
A quantum-well-based coupled single-electron spin-qubit
was studied in [16]. Recently, new approaches to Si/SiGe-
based qubits were also proposed by various groups [17]–[20].
Other CMOS compatible realizations of qubits may be
inspired by single-electron devices [21]–[23]. The behavior
of single electrons in various nanostructures can be spotted
using atomic force microscope [17] which has its importance
for the development of single electron devices. Furthermore,
the purity of silicon crystalline structure (as well as interface
between the silicon and silicon-dioxide) has been constantly
improving over the past decades to the point that it is now just
below the level of military-grade plutonium. This is dictated
by the need of being able to reliably manufacture billions of
nanometer-size transistors on a single silicon die. In addi-
tion, the recent developments in Fully Depleted Silicon-on-
Insulator (FD-SoI) and FinFET technologies further isolate
the MOS device structures from the silicon substrate. This
should improve decoherence and dephasing of MOS-based
qubits. As a final point on CMOS qubits: Even though the
decoherence time might still be shorter here than with the

currently leading approaches, the CMOS quantum gates
could compensate it with expected delays of orders-of-
magnitude shorter due to the superior performance of
nanometer-scale CMOS technology (e.g. cut-off frequency,
fT , in 16-nm FinFET is 750GHz).
The functionality of classic voltage-controlled gates and

their operation, when implemented as quantum gates, need
to be studied both in the framework of electrical circuit engi-
neering and in the framework of time-dependent modeling
of quantum state dynamics. It requires the development of
theoretical models of charge-induced CMOS quantum dots
behaving like single-electron transistors, as well as the devel-
opment of effective cryogenic models of CMOS circuits com-
bined with experimental confirmation of predicted operation
modes [13].

In this work, we discuss realistic aspects when constructing
electrostatic qubits that are based on electron position in a
multiple-dot system. The proposed scheme can change the
quantum computing hardware paradigm as it moves away
from the conventional spin-based qubits that must be cooled
down to 15mK. It utilizes a nanoscale CMOS technology at
temperatures in a range of 4 kelvins [13]. At these tempera-
tures, most charge carriers in semiconductors are frozen, but
it is possible to maintain the functionality of CMOS devices
by inducing a quantum state inside quantum wells formed by
metallic gates operating under certain DC and AC voltages.
The presented research is expected to have its importance
in the construction of non-spin based quantum computers
or hybrid semiconductor classical-quantum computers. The
latter appears to have high potential of being commercially
implemented in the near future.

The paper is organized as follows. Section II summa-
rizes state-of-the-art in quantum technology and qubits.
In Section III, we start presentation of the problem with a
Schrödinger formalism, providing an insight into the physics
of the system and giving tools to capture the most gen-
eral characteristics from first principles. Leveraging the fact
that the Schrödinger equation has an analytical solution in
the approximation of a piece-wise potential, we provide a
methodology to solve this problem by an example of an
eight-well system. As a further development of the prob-
lem, we also provide a tight-binding methodology for the
same system as an alternative to the Schrödinger formalism.
In Section IV, we present the main results in the behavior of
a semiconductor qubit obtained by employing the method-
ology of Section III. We draw conclusions on qualitative
behavior, such as occupancy oscillations, delocalization and
dephasing. In Section V, as one of the developments of this
work, we derive a time-dependent semi-analytical numerical
scheme, which allows one to capture the dynamics in the case
of a time-dependent Hamiltonian. Purely numerical schemes
are well developed for the time-dependent Schrödinger equa-
tion [24], [25]. In the proposed scheme, however, the evo-
lution of the system in time is described in terms of the
probability amplitudes of contributing quantum states, which
are determined numerically, whilst the spatial eigen-functions
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are determined analytically for each time step. This provides
the advantage of tracking the system dynamics by knowing
its eigen-functions at each time instance under the adiabatic
assumption [26].

As a very illustrative example of this semi-analytical tech-
nique, we present in Section VI.A a case of a weak electro-
static interaction between two electrons confined in separate
potential wells. In such a picture, their interaction can be seen
as a perturbation to the initial dynamics of two electrons. This
allows us to demonstrate a first signature of quantum corre-
lation in electrostatically interacting quantum systems after a
strong quantum measurement is applied to one of the parti-
cles. The same system is also studied with a non-pertubative
tight-binding method in Section VI.B. We show that the pro-
posed scheme gives qualitatively the same results. However,
it includes entangled states in a straightforward way and it can
be expanded to many-particle problems and larger systems
of such structures. Comparing both approaches, we note that
although one of the greatest advantages of the Schrödinger
formalism is the ability to capture spatial properties of the
wave-function, as the system grows large and its complex-
ity increases, the Schrödinger formalism becomes compu-
tationally expensive in the case of many-body interaction.
The introduced tight-binding approach, while not capable
of providing some details, allows for an effective numerical
implementation and can easily accommodate the electron
interaction as well as some many-body phenomena.

II. STATE-OF-THE-ART OF QUANTUM TECHNOLOGY
AND QUBITS
Quantum mechanics introduces the superposition of states
and massive parallelism together with non-local correla-
tions that are all absent in the classical physics [27], [28].
However, these phenomena occur only at a time scale
that is limited by decoherence times (T1 and T2 in [29]).
Decoherence processes are naturally incorporated in non-
equilibrium Green functions as pointed out in [30]. In addi-
tion, the desired quantum phenomena can be sustained only
under specific thermodynamic conditions and only for cer-
tain confining potentials. Therefore, on one hand, a quantum
system intended to implement a qubit needs to be maximally
decoupled from the outside world in order to keep its unique
quantum features, such as quantum coherence. On the other
hand, an observer must be able to interact with the quantum
system, which brings the need for a ‘‘not-so-small’’ inter-
action between the qubit and a classical or semi-classical
interface.

All the existing qubits impose certain trade-offs between
their technical parameters and their ease of implementation
and further scalability. A first option is to choose a sys-
tem which is maximally decoupled from the external world.
Trapped ions are seen as such systems since they are con-
fined and suspended in free space using strong magnetic and
electric fields. Observations of a relatively large number of
entangle trapped ion qubits have been already made [31].
As indicated by many experimentalists, it impossible at this

TABLE 1. Quantum technology in various physical systems.

stage of technology to implement complicated topologies of
electromagnetic confinement fields that would be ‘stable’.
For this reason, there are a limited number of trapped ion
configurations, with the most common configuration being
an in-line arrangement. The decoherence time of trapped
ions is more than promising, within a range of seconds,
which makes it four orders of magnitude greater than the
decoherance time provided by any other quantum technology
available so far. Just as other quantum processors, trapped-ion
quantum processors [32] need to be cooled down to extremely
low temperatures. Since the trapped ions can be arranged in
a limited number of stable configurations, it is difficult to
miniaturize them or scale them up.

The construction of qubits and quantum gates can be based
on two-spin states of an electron or two-polarization states
of a photon [27], [28]. Moreover, in addition to solid-state
or superconducting spin qubits [S in Table 1] [33], [34],
the position of an electron itself can be seen as a candidate
for a qubit implementation. In this case, one can use solid-
state devices and structures to manipulate them. For instance,
the presence or absence of an electron in a quantum dot
can be seen as the two states of a qubit. Such systems are
known as charge (electrostatic) qubits [C in Table 1]. In par-
ticular, the semiconductor implementation of a charge qubit
can be achieved through a single electron device [35]–[38].
In superconductor, one can use a Cooper pair box [40],
[41] that has some features of the semiconductor position-
based qubit as it is also controlled by electric field and
relies on charge quantization. However, the electron-electron
interaction is quite strong in comparison with the spin-spin
interaction. For this reason, it is observed that charge qubits
have a shorter decoherence time (since it is inversely pro-
portional to the strength of interaction) and it has motivated
the most of scientific community to move towards spin-based
qubits.

Quite recently, steady progress has been shown in super-
conducting technologies where the decoherence time is
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increasing, as pointed out by IBM Q-Experience or by
Google. Fundamental modeling of decoherence processes
can be achieved with the use of non-equilibrium Green func-
tions [42], [43] and Keldysh contour, but it is only possible
when one knows the exact Hamiltonian terms involved in
the decoherence processes. In the case of superconductors,
a flux qubit is controlled by a magnetic field (similarly to the
spin-based qubit), or a Cooper pair box, which is a charge
qubit, is controlled by an electric field. A compact mathe-
matical description of basic superconducting qubits can be
found in a phenomenological picture drawn by Nori [43] or
in a more microscopic and mathematically compact picture
in [7].

So far, the most successful quantum technology in terms
of the decoherence time (excluding the ion traps which suf-
fer from limited feasibility) is a combination of spin tech-
nologies and electron charge (see [S] and [C] references
in Table 1). However, it is observed that spin-based qubits
proposed in [16], [45] have a longer decoherence time than
charge-based qubits [C]. This is, again, due to the fact that
the electron-electron interaction cannot be screened out at
short distances and is stronger than the spin-spin interaction,
thus resulting in shorter decoherance times for charge qubits.
To mitigate this, the use of hybrid spin-charge superconduct-
ing qubits, e.g. transmons, was proposed to suppress the 1/f
noise as one of the main causes of decoherence[46]. A review
of superconducting technologies can be found in[47], and
a description of recent semiconductor technologies is given
in[48].

The details on current quantum technologies are given
in Table 1 which presents currently used semiconducting and
superconducting qubits, as well as ion traps.

III. MATHEMATICAL STATEMENT OF THE PROBLEM
A. PRELIMINARY VIEW
The system under study consists of multiple quantum wells
(acting as quantum dots) in which an electron can transi-
tion between two neighboring wells. The structure can be
directly implemented in CMOS [2] and, especially now,
in nanometer-scale CMOS with options to further isolate the
devices through an insulating layer (e.g. FD-SoI) or by raising
them (e.g. FinFET). When all the wells are arranged in series,
they form an array similar to a CCD. A charge carrier (an
electron or hole) can flow between two neighboring wells,
which are controlled by applying a voltage waveform V (t)
that would lower or increase the gate bias at specific times.
A representative visualization of such a geometry is shown
in Fig. 1(a), and the corresponding quantum dot representa-
tion is shown in Fig. 1(b). Figure 1(c) depicts an equivalent
model of the potential arrangement for this system, which
can be considered as a series of piece-wise potential wells
that might have discrete translation symmetry as in an atomic
crystal lattice. In this paper, we will first focus on the state
development of one electron, which can tunnel between any
two selected potential wells, L (left) and R (right), in an
eight-well system. In this picture, a quantum well can trap

a single electron. An imposer (e.g., a CMOS gate) is placed
between the two wells, enabling the manipulation of the
heightUBM of the corresponding potential wall that separates
the two wells L and R, as shown in Fig. 1(d).

By applying a voltage pulse at the separating wall, one can
lower the barrier between thewells to initiate quantum tunnel-
ing. In this case, the electron displays occupancy oscillations
(known in the literature as Rabi oscillations in the case of a
time-dependent Hamiltonian [48]). The maximum amplitude
of oscillations will be achieved when the frequency of the
external driving field matches the frequency of tunneling,
ω0. In a simplified approach, for the time period when the
potential remains constant, the electron quantum state |ψ〉
can be represented as the solution of the one-dimentional
(1D) time-independent Schrödinger equation for a piece-wise
square-well potential. Furthermore, the full time-dependent
wave-function |9|2 oscillates with a frequency ω0, which is
determined by the applied voltage, the geometry of the struc-
ture and the properties of the material. It should be noted that
possible fluctuations of the potential barriers (both fast and
slowly varying), in the most general case of a time-dependent
Hamiltonian, can alter the Rabi frequency. The dependence of
ω0 on the imposer voltage will be shown to be exponential,
and, therefore, very sensitive to minute variations of its value.
It should also be noted that a key element in the performance
of quantum dots is decoherence time since the stability of
state superposition is an essential requirement for quantum
operations. Environmental coupling is the major factor, albeit
not the only one that affects the decoherence. The isola-
tion of such a system, operation at cryogenic temperatures,
and small dimensions of the devices (smaller transistors are
expected to interact less with the environment) must all be
embraced.

In this work, we perform a direct calculation of ω0 for
an electrostatic structure of a particular geometry. In such
a scenario, |ψ〉 can be expressed as a superposition of two
states, which can be denoted as |0〉 and |1〉. Such a quantum
bit is based on the electron’s position, i.e., in a two-well
system |0〉 can denote the state where the electron is localized
in the left well, and |1〉 when it is localized in the right
well.

B. SELECTION AND JUSTIFICATION OF THE MODEL
1) AIM OF MODELLING
Using the model presented in this section, we aim to achieve
the understanding of the system from first principles. Hence,
we start the model development from the Schrödinger for-
malism. This model is not intended for precise simulations,
but rather for capturing the most significant and important
physical phenomena.

For all simulations in this paper, unless stated otherwise,
we will use parameters presented in Table 2. We use either
a two-well case (mostly as an illustrative example) or an
eight-well case (as an example of a realistic coupled-dot
structure).
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TABLE 2. Parameters used in simulations.

FIGURE 2. 2D view of the two-well structure: (a) double-well potential in
the (x, y ) plane and (b) 2D equivalent lattice.

2) FROM 2D TO 1D MODELLING: JUSTIFICATION OF MODEL
REDUCTION
We begin by justifying our choice of the 1D Schrödinger for-
malism. In this section, we show that the presented formalism
can capture the major physical effects in a correct fashion.

Due to the geometry of the system, see Fig. 1, where two
dimensions (length andwidth) dominate over the third dimen-
sion (depth), one may consider to use the 2D Schrödinger
equation. The 2D potential function to be used is shown
in Fig. 2(a). The wave-function |ψ(x, y)〉 of an electron
injected into such a potential is subject to the 2D steady-state
equation:

Ĥ |ψ〉 = Ê |ψ〉 (1)

where Ĥ = p̂2

2 m∗e
+ U (x, y) is the Hamiltonian operator,

which is the sum of kinetic and potential energies, U (x, y)
is the potential energy, p̂ = −ih̄( ∂

∂x +
∂
∂y ) is the momentum

operator, m∗e is the effective electronic mass and Ê is the
matrix with eigen-energies of the system.

When solving such an equation, the system can be repre-
sented as a 2D lattice of unit cells interconnected by bonds
(see Fig. 2(b)) where k , kx and ky denote the directional wave-
numbers). As long as the structure can be assumed uniformly
periodic in the x-direction, and by assuming that the length
of the structure L is significantly longer than the width d

FIGURE 3. (a) Probability density
∣∣ψ(x, y )

∣∣2 of the ground state from the
numerical solution to the 2D Schrödinger equation with a two-well
piece-wise potential. (b) Comparison of the probability density

∣∣ψ(x)
∣∣2 of

the ground state calculated from four different models: 2D Schrödinger
equation with the reduction to the x-dimension (orange line), 1D
Schrödinger equation with a piece-wise potential using a shooting
method (dashed red line), 1D Schrödinger equation with a smooth
potential using a shooting method (green line) and analytical solution to
the 1D Schrödinger equation with a piece-wise potential (blue line).

(i.e., the structure can be approximated by a 1Dwire, which is
the case as the number of potential wells in series increases),
the eigen-function in the y-direction can be expressed in
the form of plane waves [49], [50]. This is clearly visible
from the numerical solution to the 2D Schrödinger equation
shown in Fig. 3(a). (Many schemes can be used to solve
such an equation numerically, e.g. the relaxation variational
numerical method [51], the shooting method [52], etc.). We
also pre-impose a symmetry of the system in y-direction (i.e.
a periodic behavior ofU (y)), e.g. by assuming the occurrence
of a large number of parallel strips, as depicted in Fig.2. Look-
ing from an another analysis perspective and by assuming a
small variation of ψ(x, y) across the nanowire, one can make
a transition from the 2Dwave-functionψ(x, y) to its effective
reduced 1D version by applying an integration with respect to
the y-dimension:

ψ(x) = A
∫
d
ψ(x, y)dy (2)

where A is a normalization coefficient and d is the width of
the device.

Another insight into a possible reduction of the system
with respect to the y-dimension can be provided by solv-
ing the transmission problem with use of the probabilistic
current:

J (r, t) =
ih̄
2m∗e

[ψ(r, t)∇ψ∗(r, t)− ψ∗(r, t)∇ψ(r, t)]

(3)

In our case, the transfer of electron occurs strictly along the
x-axis, so we are interested only in the Jx component of
the current. As one injects an electron into the first well of
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FIGURE 4. Example of an effective electric potential profile between two
wells calculated with Laplace equation (blue line) and its square
piece-wise approximation (red line).

the chain, a single-electron detector ‘‘catches’’ it at the end
of the chain during the measurement after the electron is
controllably transferred along x-spatial dimension [53].
Figure 3(b) compares the wave-function ψ(x) of the

ground state in the x-direction obtained from four different
models: numerical solution to the 2D Schrödinger equation
projected onto the x-direction (2), 1D Schrödinger equa-
tion with a piece-wise potential solved using a numerical
technique, 1D Schrödinger equation with a smooth potential
solved using a numerical technique, and 1D Schrödinger
equation with a piece-wise potential solved using an analyti-
cal method. Themost important conclusionwe draw from this
comparison is that in case of the thin semiconductor nanowire
neither the reduction from 2D to 1D nor approximating the
potential by a piece-wise function will result in a significant
error. Again, since we are interested in the electron transfer
along the x-axis, we conclude that the use of the 1D model
with a piece-wise potential is justified.

3) FROM SMOOTH TO PIECE-WISE POTENTIAL FUNCTION:
JUSTIFICATION OF POTENTIAL FUNCTION CHOICE
At this stage it is also useful to briefly discuss the piece-wise
approximation for the potential function. This approximation
implies that instead of a smooth potential function seen by an
electron in such a structure, we use its piece-wise simplifica-
tion shown in Fig. 4.

We remind the reader that Fig. 3(b) shows the probabil-
ity density |9(x)|2 of the ground state for the four models
discussed in the previous subsection, with two of them uti-
lizing the piece-wise potential approximation. This approx-
imation does not pose any noticeable issues or solution
inaccuracies.

Yet, there is a significant benefit in using the piece-wise
potential function in the Schrödinger equation. It allows one
to obtain analytical solutions to the equation. Additionally,
in such a case, we know precisely the shape of wave-functions
|ψ(x)〉, i.e. their space distribution.Moreover, wemust obtain
and incorporate them in a time-dependant numerical scheme
which will provide their evolution in time (as will be done in
a later section).

C. COUPLED QUANTUM DOTS IN THE SCHRÖDINGER
FORMALISM
Having justified the benefits and applicability of the 1D
Schrödinger equation, we shall now use it to show the elec-
tron’s behavior and transport in a system ofN quantumwells.
We note that for specific numerical simulations presented in
later sections, we take N = 8.
The system of N wells can be represented by a double

square-well potential (DWP) of total length NL, as shown
in Fig. 1(c), where a is the individual barrier width andUL ,UR
and UBMi are the barrier heights for the left, right and middle
barriers, respectively.

By introducing the dimensionless position ξ = x/L and a
new unit of energy E0 = h̄2

m∗e
(which has the meaning of the

ground energy in an infinite potential well of length L), one
can write equation (1) in a dimensionless form:

−
∂2

∂ξ2
ψ(ξ )+ [U (ξ )− E]ψ(ξ ) = 0 (4)

Studying the case of eight wells, the potential function spans
the space over the range ξ ∈ [−4, 4], and the system is
symmetrical with respect to the origin (assuming xi = 0 for
the middle barrier).

While it is pedagogical to assume that UL = UR = ∞
for simplicity [54], here we will not consider infinite barriers
at the edges, assuming, therefore, UL ,UR 6= ∞. This will
allow us to account for various configurations that can occur
in the considered quantum dot structure. The wave-function
for large potential barriers is expected to decay exponentially
in the classically forbidden regions at |ξ | > N/2. However,
as one gradually lowers the barriers, the probability for an
electron to escape the potential well increases. We denote
this probability as the ‘‘leakage" (δLK) of the wave-function.
This ‘‘leakage’’ can potentially have a significant impact on
the performance of the system under study. For the system of
Fig. 1(d), U (ξ ) is a piece-wise function:

U (ξ ) =



UL ξ ≤ −N/2
0 −N/2 < ξ < −N/2+ w
...

UBMi −a/2 ≤ ξ ≤ a/2
0 a/2 < ξ < a/2+ w
...

UR ξ ≥ N/2

D. TOWARDS THE DESCRIPTION OF COUPLED QUANTUM
DOTS AND INTERACTING ELECTRONS IN THE
TIGHT-BINDING FORMALISM
One great advantage of the Schrödinger formalism is that it
captures the spatial distribution of the wave-function and its
geometrical dependencies for a given system from first prin-
ciples. However, it is not optimal for many-particle systems
since it is computationally expensive.
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FIGURE 5. Occupancy evolution in a double-well system constructed with
the Schrödinger formalism (dots) in comparison to tight-binding
formalisms (lines). The two methodologies are equivalent.

For structures with interacting electrons, or in the most
general case many interacting particles, a tight-binding for-
malism shall be proposed [55], [56]. At the core of this
approach is the assumption that each particle, while inter-
acting with others, stays confined to its own potential. Our
ultimate goal is to introduce the tight-binding formalism for
multiplicity of interacting electrons bound to their two-well
potentials.

In this section, we begin with a simplified problem and
show how to treat one electron in a two-well potential in
the tight-binding formalism. Later on, we will expand it
to describe the two-body interaction with a non-pertubative
approach. We shall highlight here that we consider a two-
well system as an illustrative example. In the tight-binding
formalism, the original two-well system is seen as a two-state
system, as shown in Fig. 5. As defined before, the state |10〉
corresponds to the localization of an electron in well 1 (with
well 2 being empty), and |01〉 corresponds to the localization
of an electron in well 2 (with well 1 being empty).

The Hamiltonian of such a system can be written as:

H =
[
Ep1 ts,1→2
ts,2→1 Ep2

]
(5)

where ts is the tunneling (hopping) term between the two
states and Ep is the potential energy. In such a notation,
the wave-function can be expressed as a superposition of the
two states:

|ψ〉 = a |10〉 + b |01〉 (6)

where a(t) and b(t) are the occupancy coefficients in the
Wannier-position basis {|10〉,|01〉}.

Utilizing the tight-binding formalism with the piece-wise
potential function introduced in this section and the tunneling
rate between the two states, we plot in solid lines in Fig. 5
the occupancy of states |10〉 and |01〉 over time. For compar-
ison, we indicate in dots the occupancy oscillations obtained
from the 1D Schrödinger formalism. We observe the classic
occupancy (Rabi) oscillations, which are typical for two-
state quantum systems. We also note that these oscillations
are identical in both (i.e. Schrödinger and tight-binding) for-
malisms, which shows the validity of tight-binding formalism
in the context of position-based qubits.

IV. ELECTRON TRANSFER AND OCCUPANCY
OSCILLATIONS FROM THE SCHRÖDINGER EQUATION
A. METHODOLOGY OF SOLUTION
Equation (4) can be written as d2

dξ2
ψ − β2ψ = 0, with

β =
√
U (ξ )− E . The general form of the solution to such a

second-order differential equation is a family of plane waves:

ψ(ξ ) = cr0 exp(ikξ )+ c
r
1 exp(−ikξ ) (7)

where cr are constants (the superscript r denotes different
regions of the piece-wise well profile) and k = 2π/λ is the
wave-number. The wave-function is subject to the boundary
conditions ξ →±∞, ψ(ξ )→ 0, or

ξ < L, cLR1 = 0, ψLR(ξ ) = cr0 exp(kξ )

ξ > L, cRR0 = 0, ψRR(ξ ) = cr1 exp(−kξ ) (8)

where the sub-index in the wave-function denotes the cor-
responding region of the potential well: e.g., ψLR is the
wave-function in the LR region of Fig. 1(d). In addition,
the solutions in the regions Li and Ri can be simply written
as a superposition of sinusoidal functions since we assumed
U = 0 there:

ψLi,Ri (ξ ) = cLi,Ri0 cos(βξ )+ cLi,Ri1 sin(βξ ) (9)

The continuity conditions on the wave-function ψ(x) and
its first derivative determine the coefficients crk . For each
boundary of N -potential well, one can write two continuity
equations:

ξ = −N/2 : ψLR = ψL1,
d
dξ
ψLR =

d
dξ
ψL1

...

ξ = −α/2 : ψLi = ψMi ,
d
dξ
ψLi =

d
dξ
ψMi

ξ = α/2 : ψMi = ψRi ,
d
dξ
ψMi =

d
dξ
ψRi

...

ξ = N/2 : ψRN = ψRR,
d
dξ
ψRN =

d
dξ
ψRR (10)

By rearranging the system of equations (10) into canonical
form Aξ = 0, where A is the matrix of coefficients crk ,
we demand Det(A) = 0 for the system to have non-trivial
solutions. The latter equation gives us the (normalized) eigen-
energies εj of the Hamiltonian operator. Then, with known
εj, the coefficients crk can be calculated by solving the sys-
tem (10) of continuity equations, including the normaliza-
tion restriction for the coefficients of each wave-function,
i.e.,

∑
k

∣∣crk ∣∣2 = 1. Due to technicalities, exact solutions
of Schrödinger equation for a finite many-well system (as,
for example, for the eight rectangular wells here) are usually
omitted in the literature but are presented in this work due
to their importance for the implementation of interacting
quantum dots. As it will be discussed and demonstrated
later, an analytical solution can allow one to determine the
intrinsic features of a given geometry, and more specifically,

49268 VOLUME 7, 2019



P. Giounanlis et al.: Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots

FIGURE 6. Eigen-functions of an eight-well system for the first eight
energy levels: (a) even solution, and (b) odd solution for the first energy
level split; (c)–(d) are those of the second energy level split; (e)–(f) and
(g)–(h) are those of for the third and fourth energy level splits,
respectively.

to explicitly calculate the ‘‘leakage’’ of the wave-function
(i.e., the presence of wave-function solutions in classically
forbidden regions). The determination of the latter property
will be used later in modeling the delocalization of a quantum
state confined in such structures.

For each energy level εj, there is a corresponding eigen-
function ψj(ξ ), and their set gives us the state |ψ〉. Any
superposition of these functions c0 |ψ〉 (where c0 is a row
vector of constants obeying the normalization rule) also gives
a quantum state. The time-dependent function can then be
expressed as follows:

9(ξ, τ ) = e−iεjτ c0j ψj (11)

where the repeating index implies summation. In Fig. 6,
we plot the eigen-functions for the first eight energy lev-
els in an eight-well system, where we have assumed a
lowered barrier in the middle of the structure. Notice that
for this geometry the ground state is a symmetrical solu-
tion, whilst the first excited state is an anti-symmetrical
solution (this property is denoted often as ‘‘parity’’).
These two first solutions have nearly identical wavelengths

FIGURE 7. Example of a maximally localized wave-function for the
system of eight coupled wells that can be obtained with the use of a
linear transformation.

and therefore close (but not equal) energies. This is due to
the fact that in the 1D case, the degeneracy of energy is
not possible [57], [58]. In the same manner, each symmet-
rical eigen-function, which corresponds to a given eigen-
energy, comes with an anti-symmetrical one with a slightly
higher eigen-energy. Depending on the available energy of
the electron, more eigen-energies and eigen-functions can
be involved in the state’s superposition, with the number of
bound eigen-energies for the system being determined from
the Bargmann’s theorem [59].

We note that the set of eigen-functions |ψ〉 does not cor-
respond to localized states of an electron injected in such
a structure. However, their superposition can indicate the
electron’s location. To show that a localized state can be
constructed using the eigen-functions, we apply the unitary
transformation 0:

|φ〉 = 0T |ψ〉 (12)

which gives a set of normalized orthogonal functions |φ〉 =
φj representing localized states. The transform0 can be deter-
mined by solving a maximization problem, i.e., by maximiz-
ing

∫
w |ψ(x)|

2 dw in a given well. We note that 〈φi|φj〉 = δi,j.
At this point, it is helpful to refer to a theory of maximally
localized wave functions in systems with discrete translation
symmetry that is known as Wannier function theory [60].
However, our methodology also covers the cases of perturbed
potentials, systems with perturbed translation symmetry and
systems with a lack of translation symmetry.

As we begin with the analysis of an isolated quantum
system, its time evolution can be obtained by applying the
unitary time evolution operator, Û , to an initial state, |ψ, t0〉
at time t0. Then,

|ψ, t0; t〉 = Û |ψ, t0〉 (13)

or equivalently, in the |φ〉 basis:

|φ, t0; t〉 = Û0T |ψ, t0〉 = 0T Û(0T )−1 |φ, t0〉 (14)

In Fig. 7, the resulting localized function for the middle
well (w4) in an eight-well system is visualized. However,
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we should mention that the localized states are not placed
in the potential wells ideally, and the corresponding wave-
functions are not vanishing immediately in the neighboring
regions. Depending on a given geometry, the leakage of the
wave-function into the classically forbidden region can be
lager or smaller. Additionally, for some geometries, these
localized functions might not be possible to construct with
high accuracy. We will model delocalization processes in our
system with the use of localized states that are due to the
‘‘leakage’’ of the wave-function, that is the presence of wave-
function in classically forbidden regions, taking advantage of
the Schrödinger formalism.

Finally, the frequency ωO of occupancy oscillations
between the nth and mth energy levels is given by the for-
mula [61]:

ωnmO =
(En − Em)

h̄
=
h̄(εn − εm)

m∗e
(15)

B. MODELING DELOCALIZATION PROCESSES
One of the main issues related to the performance quality of
quantum information processing systems is the property of
information density scaling and qubit operational time [62].
Delocalization of the wave-function can result in a loss of
information depending on the geometry of the structure at a
given qubit implementation.

In this section, we visualize the delocalization phe-
nomenon as a result of diffusion processes intrinsic in the
Schrödinger equation. It can be partly represented as a ‘‘leak-
age’’ of thewave-function outside of the qubit region. Assum-
ing a system of one electron performing oscillations of occu-
pancy between M neighboring wells which define the qubit
in a structure of N -wells (with M < N ), we define the
probability of finding the electron outside the M -wells at a
given instance t0 as Pesc(t0), and the probability of finding the
electron inside the M wells as Pins(t0). Then, the probability
for the electron to be found inside the M wells after time t
will be equal to the initial Pins(t0) minus the accumulated
probability of escaping Pesc(t) =

∫ t
t0

∫
outside |ψ(x, τ )|

2 dxdτ ,
with Pins + Pesc = 1 at any time instance. Note that the
probability for the electron to return is disregarded in this
model. In Fig. 8, the delocalization simulated for an eight-
well system is visualized where P1 is the probability of the
electron presence in w4 and P2 is the probability of the
electron presence in w5. We highlight though that such strong
tendency to delocalization is due to the fact that we take into
account up to eight lowest eigen-energies. For this reason,
this is somewhat an extreme example shown to demonstrate
the delocalization process.

C. MODELING DEPHASING PHENOMENA
Charge noise is the main effect of dephasing in quantum sys-
tems that are based on the manipulation of single electrons.
In the simple case where the decay rate can be characterized
by a unique relaxation time, dephasing can been seen as an

FIGURE 8. Delocalization visualized for an eight-well system.

exponential decay with time:

〈eiφnm(t)〉 = e−0φnm t = e−
t
T2 (16)

where 0φnm is a ‘‘dephasing’’ rate and φnm(t) =

−
1
h̄

∫ t
0 ε(t

′)dt ′ is a fluctuating phase over the frequency
ωnm0 [63], [64]. In our system such a problem can arise when
the potential profile, i.e. the effective potential field, is not
constant but fluctuates with time. To control the qubit and
perform quantum logic operations one has to apply valid
voltage pulses which will allow to manipulate angles in a
Bloch sphere. In such a case, the applied effective field can
be treated as a controlled ‘constant’ component U0 and a
fluctuating component u(t) which represents the noise [65].

In the Gaussian approximation, the phase φnm(t) accu-
mulated by the stochastic quantity u(t) is the sum of many
uncorrelated contributions. Hence, for quantum dot devices
which are dominated by low-frequency charge fluctuations,
T2 can be expressed as [37], [67]

T2 = πS(0) (17)

where S(ω) is the power spectrum of noise. By adopting
the flicker noise model, and using an example of an FD-SoI
device of [66], we obtain Fig. 9 for the geometry of our struc-
ture. From a practical perspective, with a qubit operational
time on the order of tens of ps in this technology, several
hundreds or even a thousand of operations could be realized
within the window of decoherence time.

D. OCCUPANCY OSCILLATIONS AND THEIR FREQUENCY
Figure 10 presents a cycle of occupancy oscillations con-
sidering an eight-well system with a lowered barrier in
the middle. Starting from a localized state in the left well
(w4) [see Fig. 10(a),(e)], the time-dependent wave-function
|9(ξ, τ )|2 oscillates between the fourth (w4) and the fifth
(w5) wells. In Fig. 10(A1), four energy levels are considered.
Figure 10(b) shows the electron’s transition from the left to
the right well. Figure 10(c) shows a state where the electron is
localized inw5. Finally, Fig. 10(d) shows a transition instance
from the right to the left well. The corresponding probabilities
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FIGURE 9. Dephasing evolution for a system of 8-wells for 1/f noise
profile extracted from [66].

for the particle to be found in each of the two middle wells
is given in Fig. 10(A2). An equivalent plot is also given
considering the first eight eigen-energies [see Fig. 10(B1)].
As one considers more frequencies, the dynamics of the sys-
tem become more complex. The overall behavior is periodic
(as shown in snapshots (e)–(h) in that figure), and one can see
that the probability of the wave-function is skewed. However,
the transition between the two wells is still taking place [see
Fig. 10(B2)]. We should note that there is always a small
probability for an electron to escape to yet another well.

In principle, in the most general case, all the possible
combinations for a given energy spectrum, or equivalently
all the possible frequencies, can be found in the system
transitions from one well to another. Figure 11(a) visualizes
all the possible present frequencies in an eight-well system,
considering the first eight eigen-energies. One can see that
their values converge to a fixed discrete spectrum with an
increasing gap as UBM increases. However, in practice, not
all of these frequencies will have the same impact on the
dynamics of the system since the contribution of each eigen-
function and eigen-energy to the construction of a localized
wave-packet (which is the initial state that one assumes before
beginning a given simulation) is of different magnitude.
In particular, in this implementation, the two first energy
levels are of greater significance. Figure 11(b) presents the
calculated frequency fO12 = ωO12/(2π ) when only the two
first eigen-energies (one for the symmetrical and one for the
corresponding asymmetrical solutions) from expression (15)
are drawn. One can see that there is an exponential depen-
dence of the frequency on the height of the modified barrier
UBM. In an application featuring similar dimensions to these
used in the simulations, where the electron operates in the
first two energy levels, the oscillation of occupancy will be in
the range of 5–20 GHz (line f012 ).

We note that UBM has a very strong impact on the electron
transport between two quantum dots. Therefore, an accurate

FIGURE 10. Occupancy oscillations in an eight-well system. (A1) only the
first four energy levels are considered, with snapshots taken at four
different instances of time: (a) electron is localized in the left well;
(b) electron wave-function is distributed in both wells; (c) electron is
localized in the right well; (d) electron wave-function is distributed in
both wells again. (A2) Probability oscillations between the two middle
wells; (B1) (e)-(h) the first eight energy levels are considered.
(B2) Probability oscillations between the two middle wells.
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FIGURE 11. (a) Frequencies of occupancy oscillations fOij
as a function of

the height of the modified potential barrier UBM in an eight-well system.
The frequencies converge to a fixed discrete set with an increasing energy
gap between them as UBM increases. One can recognize the similarity of
the obtained picture with the formation of energy band structures in
solid-state crystals. It is the confirmation that the wells controlled
electrostatically are indeed artificial atoms. (b) Frequency of occupancy
oscillations fO12

between the two first energy levels as a function of the
height of the modified middle potential barrier UBM separating the two
middle wells in an eight-well system. As expected, the frequency
decreases exponentially with UBM.

calculation of the frequency fO is essential for the design
and implementation of quantum dots. Additionally, the iso-
lation of the system from the environment is of significant
importance, since fluctuations of the surrounding environ-
ment might affect the quantum state occupancies and char-
acteristic energy levels [68]. Moreover, it shall be noted that
there are internal dynamics of noise coming from a thermody-
namic ensemble, in which the quantum dots are placed. These
dynamics are an inherent property of any physical system.

V. TIME-DEPENDENT PREDICTOR-CORRECTOR
SEMI-ANALYTICAL NUMERICAL SCHEME
Let us describe a general time-dependent semi-analytical
numerical scheme for the system, assuming an arbitrary num-
ber of bound states, k . The methodology can be expanded
straightforwardly in the case of a continuous energy spectrum
of the Hamiltonian. However, for the system under study,
we are only interested in the bound states. We will use this
scheme in the next section to analyze interaction between
electrons.

Starting from the time-dependent Schrödinger equation:

ih̄
∂ |ψ(t)〉
∂t

= Ĥ (t) |ψ(t)〉 = E(t) |ψ(t)〉 (18)

one can write a discretized expression in time by using the
first-order finite-difference approach:

|ψ〉n+1 =
∣∣ψn〉
+
−i1t
h̄

Ĥn ∣∣ψn〉
=
∣∣ψn〉
+
−i1t
h̄

Ên
∣∣ψn〉

(19)

where n is the time index and Ên is the eigen-value matrix.
The state of the system |ψ〉 at any time instance n can be
written as: ∣∣ψn〉

=

∑
k

cnk
∣∣ψn

k
〉

(20)

where
∣∣ψn

k

〉
are the eigen-functions of the Hamiltonian Ĥn.

TheHamiltonian can be expressed in a spectral representation
as:

Hn
=

∑
k

Enk
∣∣ψn

k
〉 〈
ψn
k

∣∣ , (21)

where En0 , E
n
1 , etc., are real-valued numbers and

∣∣ψn
0

〉 〈
ψn
0

∣∣,∣∣ψn
1

〉 〈
ψn
1

∣∣ are the projectors for the corresponding Hamilto-
nian eigen-states. Then, plugging (20) and (21) into (19),
while omitting the summation symbols, we get:

cn+1k |ψk 〉
n+1
= cnk

∣∣ψn
k
〉
(1+�Enk ) (22)

where� = −i1t/h̄. At any time instance n, the Hamiltonian
Hn and the corresponding eigen-functions and eigen-energies
can be calculated from the analytical methodology provided
in Section IV-A. Therefore, one needs to calculate the evolu-
tion of coefficients ck . By multiplying both sides of (22) by
〈ψm|

n+1 we get:

cn+1m = cnk
〈
ψn+1
m

∣∣∣ψn
k

〉
(1+�Enk ). (23)

Notice, that the orthogonality of the eigen-functions applies
only at the same time instance, i.e.,

〈
ψn
m

∣∣ψn
k

〉
= δm,k but〈

ψn+1
m

∣∣ψn
k

〉
6= δm,k . This scheme is not stable since the modu-

lus of the wave-function,
√
1+�2 E2

k , increases with time
step. However, one can write a predictor-corrector scheme
by introducing a calculation of the wave-function in half
time-step. First, the predictor coefficients, cn+1m,p , can be found
from (23). Next, the corrector coefficients will be given from
the expression:

cn+1m = cnk
〈
ψn+1
m

∣∣∣ψn
k

〉
(1+

�

2
Enk )+

�

2
En+1m cn+1m,p (24)

The general form of this predictor-corrector scheme can be
written as follows:∣∣∣ψn+1

〉
(1−

�

2
En+1) =

∣∣ψn〉 (1+ �
2
En) (25)

and one can see that assuming such small 1t , in order for
En+1 ≈ En, it preserves the norm. In other words, this
scheme is stable for a sufficiently small time step. For struc-
tures where the eigen-energies do not change significantly
with time, which is the case of the system under study,
the suggested methodology can provide an accurate approxi-
mation of the time evolution.

VI. TOWARDS TWO-ELECTRON INTERACTION
In the last section of the paper we illustrate how to describe
the electrostatic interaction between two electrons, which is
essential for the construction of quantum gates. The model
under study here is as follows. There is a system of two
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double-well cells, each containing one electron. The two cells
are separated by some distance. We assume that the electrons
are confined to their respective cells. In the first approach,
one can treat the Coulomb interaction between the electrons
as a perturbation to the effective potential of each confined
particle. As we shall see, this pertubative interaction will be
sufficient to enforce the particles to occupy a certain state.

Following the logical flow of the paper, we begin by
introducing the Schrödinger formalism first, thus capturing
physics from first principles. This allows us to track the
evolution of each particle in terms of the spatial distributions
of their probability densities. However, as a trade-off, we note
that the Schrödinger formalism for the two electrons has a
perturbative nature.

In order to validate the perturbative interaction in the
Schrödinger formalism, we then develop another model using
the tight-binding approach. While the tight-binding formal-
ism does not allow to track the spatial distribution of the
electrons’ wave-functions, it can be easily re-scaled to a large
number of interacting particles. In addition, the tight-binding
formalism is not perturbative. Having the two different mod-
els of interaction, we can make comparisons which conclude
that their behaviors are qualitatively very similar. Hence,
depending on the task at hand—fast calculations of many-
particle problems or more detailed calculations of probability
densities—the more appropriate model can be used.

A. INTERACTION MODEL BETWEEN TWO PARTICLES IN
TWO DOUBLE QUANTUM WELLS IN THE SCHRÖDINGER
FORMALISM
In this section we demonstrate the applicability of the time-
dependent predictor-corrector numerical scheme through a
preliminary simplified description of weak interaction and
quantum correlation between two particles. For this purpose,
we will consider two electrons trapped in two separated dou-
ble wells at a given arbitrary distance [see Fig. 12(a)], such
that their Coulomb’s interaction is significantly weaker than
the potential of each double well. In a simplified view, this
can be imagined as two classical charged balls attached to
springs and interacting electrostatically. Such particles will
oscillate in a way that minimizes their electrostatic energy
so that they exhibit anti-correlation in their positions. In our
system, instead of the springs, we have a confining potential
landscape in which the electron wave-packet moves. We can
transfer this picture to a quantum situation where each of
oscillating balls will have, for example, a superposition of two
eigen-modes referring to two energy eigen-values for each
interacting particle. The anti-correlation of oscillations is
expected to occur both in classical and quantum pictures. It is
therefore expected that we might obtain entangled states in
our system when we consider the interaction of many qubits
implemented by electrons sitting in certain quantum dots.
This is significant as it opens up a possibility of implementing
the position-based qubits in CMOS.

In the above case, the mutual electron-electron interac-
tion should not change the electrons’ occupancy oscillations

FIGURE 12. (a) Two interacting particles trapped in their respective
double-wells. (b) Time evolution of the two interacting particles: Initially,
the two particles do not interact and then start evolving from the same
initial conditions and with the same phase. After we initiate the
interaction, their relative probabilities to be found in the neighbouring
wells of the respective double-wells are anti-correlated and we observe a
phase-shift. When we force particle #1 to exist on the second well of
Double-Well L (w2L), particle #2 is eventually localized on the second
well of Double-Well R (w2R ).

dramatically as they are governed by the local confining
potential. However, the perturbative electron-electron inter-
action will synchronize the oscillations in a way that they
will minimize the global potential energy of electrostatic
interaction. At the first stage, we will ignore the occurrence of
spin and assume the bosonic system of two particles. There-
fore, we will implement the Hartee mean field approach [69]
where the occurrence of many bodies is represented by their
effective field (effective potential). Assuming a weak mutual
interaction between electrons, we can factorize their many-
body wave-function as follows:

ψ(x1, x2, t) = ψ(x1, t)ψ(x2, t). (26)

The factorization of the two-particle wave-function
ψ(x1, x2, t) by the two one-particle wave-functions ψ(x1, t)
and ψ(x2, t) means that the two particles are essentially
independent and their mutual interaction has a perturbative
nature. It is quite straightforward to extend this scheme to N
perturbatively interacting particles. In this model, the Hamil-
tonian of the system can be written as H (t) = H1(t)+ H2(t)
where H1(t) is the Hamiltonian of particle #1 and H2(t) is
that of particle #2. Then, each particle is described by a time-
dependent Hamiltonian where the effective potential energy
will be the potential of the double-well with a small correction
due to the presence of the field of the other particle. We can
now write an iterative algorithm, which describes the system
dynamics as follows:
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1) Assume a system of two particles [see Fig. 12(a)].
Particle #1 is trapped in a double-well (in this example
denoted as left double-well (Double-Well L)) and parti-
cle #2 is trapped in a second double-well (in this exam-
ple on its right denoted as Double-Well R)). Initially,
the two particles do not interact, displaying occupancy
oscillations. Particle #1 is described with the Hamil-
tonian: H1(x1, t) = − h̄2

2m∗1
∂2

∂x21
+ Ueff1(x1, t). Particle

#2 is described with the Hamiltonian: H2(x2, t) =
−

h̄2
2m∗2

∂2

∂x22
+ Ueff2(x2, t). These expressions are dimen-

sionless, and Ueff(x, t) is the effective potential. For
indentical particles, m∗1 = m∗2 = m∗.

2) After an arbitrary time, when two particles are at a
far distance (the average position of each particle is
separated by a large distance), initiate their Coulomb
interaction.

3) Calculate the effective potential of particle #1 due to
the field of particle #2 as: Ueff(x1, t) = U1(x1) +∫
∞

−∞
kee−

|ψ2(x2,t)|2

|x1−x2|
dx2, where U1(x1) is the static

potential due to double-well 1, ke is the Coulomb’s
constant, and e− is the electronic charge.

4) For the calculated effective potential, consider the
Hamiltonian H1(t) and perform a time step for a
given arbitrary small time dt for particle #1 with the
predictor-corrector numerical scheme to evaluate the
wave-function ψ(x1, t + dt).

5) Calculate the effective potential of particle #2 due to
the field of particle #1 in the same manner.

6) Evaluate the time evolution of particle #2 with the
predictor-corrector method.

7) Repeat 1-6.

In Fig. 12(b), we visualize the implementation outcome of
this algorithm. Initially, the two particles exist in their respec-
tive wells. We initiate occupancy oscillations for the same
initial conditions and without considering any interaction.
Next, we suddenly activate their Coulomb interaction. This
results in a clearly visible instantaneous phase-shift between
the probability evolution of the two particles. In particular,
they will be anti-correlated. After that, we force particle #1 to
stay in w2L . Then, the probability of particle #2 to be found
in w1R decreases, i.e. particle #2 will be likely found in w2R.

B. INTERACTION MODEL BETWEEN TWO PARTICLES IN
TWO DOUBLE-QUANTUM-WELL SYSTEM IN THE
TIGHT-BINDING FORMALISM
The Schrödinger formalism, as already mentioned, provides
a continuous-space representation of the wave-function.
However, for an electron transport in discrete lattices
of structures of different materials and moving towards
multiple-interaction particle problems is computationally
inefficient. In this section we will describe a non-perturbative
tight-binding approach for the system of two interacting
quantum double-dots interacting via Coulomb forces (see
Fig. 13). This approach can be extended in a straightforward
way to many-particle problems.

FIGURE 13. Two interacting double-wells in the tight-binding formalism.
One double-well is labelled as Left (L) while the other as Right (R). There
are two electrons, each occupying their respective double-well cell and
interacting through Coulomb’s force.

FIGURE 14. Evolution of four quantum states for two non-interacting
electrons (dashed blue line) and two interacting electrons (solid red line)
in two double-well cells described by the tight-binding formalism.

The wave-function of the two-electron system under study
is now presented as follows:

|ψ(t)〉 = a1(t) |10〉L |10〉R + a2(t) |10〉L |01〉R
+ a3(t) |01〉L |10〉R + a4(t) |01〉L |01〉R (27)

To understand this notation, refer to Fig. 13. For example,
the function |10〉L |10〉R denotes the state where particle #1
is found in well #1 of the left double-well and particle #2
is found in well #1 of the right double-well. The relevant
coefficients of the four orthogonal states are denoted as ak
with k = 1, . . . , 4 and

∑
k |ak |

2
= 1.

The Hamiltonian operator in matrix representation in this
case becomes

Ĥ =


Ep11 tRs2→1 tLs2→1 0
tRs,1→2 Ep22 0 tLs2→1
tLs,1→2 0 Ep33 tRs,2→1
0 tLs,1→2 tRs,1→2 Ep44

 (28)

where Ep11 = ELp1 + E
R
p1 + E

LR
C11, Ep22 = ELp1 + E

R
p2 + E

LR
C12,

Ep33 = ERp1 + ELp1 + ELRC21, Ep44 = ERp2 + ELp2 + ELRC22.
In the expression for potential energy, Ep denotes the bottom
of the potential well (can be set to zero), and Ec denotes
the strength of Coulomb’s interaction. Off-diagonal elements
in this matrix contain the tunneling-rate (hopping) terms ts
describing the transitions between the wells. In the tight-
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binding model, it is more convenient to write the set of linear
differential equations on the coefficients a(t) = (ak (t))T :

ih̄
da(t)
dt
= Ĥ a(t) (29)

that can be solved easily, either analytically or numerically.
Plugging in the coefficients a(t) in Eq. (27), one obtains the
evolution of the states in this system. Figure 14 shows the
time evolution of the four eigen-states of the system. This
simulation begins from the state |10〉L |10〉R and the two par-
ticles experience quite complex occupancy oscillations. For
comparison, the occupancy oscillations of the two electrons,
each in their respective double-well potential, in the case they
do not interact, are shown in the same figure by the dashed
lines.

The interpretation of the two-particle system, described by
the combined wave-functions, may not seem very straight-
forward as in the case of the Schrödinger formalism. For
example, the localization of particle #1 in the left double-well
cell is described not only by the state |10〉L |10〉R, but also by
the state |10〉L |01〉R. Hence, the probability of such a state is
given by |a1|2 + |a2|2.
At this stage, it would be interesting to compare the

results that follow from the tight-binding formalism with
the results we obtained from the Schrödinger formalism.
In the Schrödinger formalism, Fig. 13 shows the dynamics
of particle #1 when particle #2 is situated in well #1 of the
right double-well (or equivalently, as shown in simulations
of Fig. 12, the dynamics of particle #2 when particle #1 is
situated in well #2 of the left double-well). As expected,
we observe that particle #1 tends to be in well #1 of the
left double-well, as far away from particle #2 as possible
in this geometry (or in the case that particle #1 is situated
in well #2 of the left double-well particle #2 tends to be in
well #2 of the right double-well).

In the tight-binding formalism, in order to observe a sim-
ilar result, we plot the probability of particle #2 to occupy
well #1 of the right double-well. We expect that in this case
it would be more likely for particle #1 to occupy well #1 of
the left double-well (again, be as far away as possible) and
less likely to occupy well #2. Figure 15 shows the evolu-
tion of the occupancy of well #1 by particle #2. The occu-
pancy of well #1 by particle #1 is clearly correlated with
particle #2 while the occupancy of well #2 is clearly anti-
correlated. This means that, as shown in Fig. 15, it is more
likely to find the two electrons far away apart and least likely
to find them in the closest wells. This result is in complete
agreement with the result we obtained in the previous section
using the Schrödinger formalism.

We conclude that the two models of interaction,
the Schrödinger formalism and the tight-binding formalism,
are consistent with each other. However, they accentuate dif-
ferent physical aspects of the system. While the Schrödinger
formalism provides more insight into the physics of the
system, the tight-binding formalism is much more convenient
to describe interaction between many-particles.

FIGURE 15. (a) Correlation between the occupancy of well #1 by
particle #2 in the right double well and the occupancy of well #1 by
particle #1 in the left double well (i.e. state

∣∣10
〉
L

∣∣10
〉
R ).

(b) Anti-correlation between the occupancy of well #1 by particle #2 in
the right double well and the occupancy of well #2 by particle #1 in the
left double well (i.e. state

∣∣01
〉
L

∣∣10
〉
R ). If particle #2 is found in well #1 of

the right double-well, the most likely configuration for particle #1 is to be
in well #1 and the least likely is to be in well #2.

VII. CONCLUSIONS
This study presents a methodology to model electrostatically
controlled quantum dots and confirms that they indeed can
be seen as artificial atoms and potentially used to construct
quantum bits (qubits). The positional-based qubit structure
appears amenable to the nanometer-scale CMOS technology
which features a very low level of impurities, thus promot-
ing longer decoherence times, and can further isolate the
qubits via FD-SoI and FinFET technological options. The
system can be treated analytically for the case of time-
dependent Hamiltonians by solving the Schrödinger equa-
tion with a piece-wise 1D potential, or by employing a
tight binding method. This allows to find the dynamically
changing Schrödinger wave-packet, its eigen-wave-functions
and eigen-energies of the system. Consequently, we can
compute the frequency of occupancy oscillations and the
temporal dependence of decoherence of a quantum state.
The results can allow reducing the delocalization effects
present in quantum structures. Moreover, we provide a semi-
analytical numerical scheme, demonstrating phenomenolog-
ically that quantum correlation is possible for such a system
with only a weak electrostatic interaction of two electrons.
We also develop a non-pertubative tight binding method for
the electron-electron interaction which can be extended, in a
straightforward way, to multiple-electron systems.
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