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ABSTRACT Reducing energy loads while maintaining the degree of hotness and coldness plays an essential
role in designing energy-efficient buildings. Some previous methods have been proposed for predicting
building energy loads using traditional machine learning methods. However, these traditional methods
suffer from overfitting problems, which leads to inaccurate prediction results. To achieve high accuracy
results, an ensemble learning approach is proposed in this paper. The proposed approach uses an extreme
gradient boosting (XGBoost) algorithm to avoid overfitting problems and builds an efficient prediction
model. An extensive experiment is conducted on a selected dataset of residential building designs to evaluate
the proposed approach. The dataset consists of 768 samples of eight input attributes (overall height, relative
compactness, wall area, surface area, roof area, glazing area distribution, glazing area, and orientation) and
two output responses (cooling load (CL) and heating load (HL)). The experimental results prove that the
proposed approach achieves the highest prediction performance, which will help building managers and
engineers make better decisions regarding building energy loads.

INDEX TERMS Building energy loads, residential buildings, prediction, ensemble learning, extreme
gradient boosting.

I. INTRODUCTION
Achieving energy efficiency in general means using as little
energy as possible while providing optimal, comfortable and
healthy lighting, cooling, heating and other operations that
are crucial to the building’s occupants [1]. Making functional
buildingsmore energy efficient creates various environmental
and economic benefits-costs for building operation, in addi-
tion to reducing its production of infamous greenhouse gas
emissions. In many developing and developed countries,
energy efficiency is considered the most effective tool to
address and overcome ever-rising energy demands [2].

Thorough and detailed understanding of how energy
distribution in building structures works, and how project
parameters can influence energy consumption is essential to

The associate editor coordinating the review of this manuscript and
approving it for publication was Rui Xiong.

achieving reduced energy demands and consumption. Sophis-
ticated simulation algorithms provide reliable and accurate
frameworks for evaluating building energy distributions, and
they can significantly help project designers appreciate the
extreme importance of weather and building parameters [3].
However, a less desirable aspect of these simulations is that
they can lead to many complex scenarios that will demand
further debate and decision making, and they can, therefore,
result in a very time-consuming process that does not fit well
into the entire project cycle [4]. To simplify this process and
avoid unnecessary drawbacks, energy demand predictions
can be handled by machine learning methods (ML), which
require a conveniently short amount of time to create an
accurate model of complete buildings and are becoming a
preferred choice in the field of preliminary estimation [4]–[6].
ML methods have proved their efficiency for solving many
problems in several applications [7]–[9].
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Although some of the most important factors for energy
consumption reduction in cold and hot climates are undeni-
ably the building layout and orientation, designers sometimes
find themselves limited by highly specific characteristics of
the planned structure or unusual shape, orientation and size
of the construction plot. Specifically, designed buildings with
unconventional orientation must be appropriately modified
with proper insulation and windows to be energy-efficient
while also withstanding harsh weather conditions they will
face [10]. Energy savings can also be highly influenced by
natural light and natural ventilation. Considering access to
natural daylight and choosing the composition of walls wisely
in regards to different available materials is an additional
method of influencing the overall energy performance of the
building.

Climatic conditions inside residential construction, in gen-
eral, can be affected by the use of various heating and air
conditioning technologies [11]. These technologies, however,
are often directly responsible for increased energy consump-
tion. An alternative option is to create sophisticated energy-
efficient designs for buildings that can produce and maintain
ideal indoor conditions without an increased need to use
heating and cooling equipment [12].

To evaluate building energy efficiency during the design
phase of the project, its cooling and heating loads need to
be analyzed and estimated based on the structure’s physical
specifications. Other factors that should be considered are
occupation, level of activity, purpose and global location of
the designed building. To make these estimates and simu-
lations as accurate as possible, an intelligent selection of
computational tools is essential. For example, [13] created a
three-dimensional model considering the architecture, venti-
lation, heating, and occupancy of the building’s architecture.
The final model considered two stages of calibration and
recognized energy savings as high as 20 to 27% monthly.

Simulation tools are very helpful and even genuinely inter-
esting, but their operation requires extensive and multidisci-
plinary knowledge of the user, which can limit its convention-
ality in the design phase of the project cycle. Moreover, these
tools can be significantly costly with results varying accord-
ing to the particular software that is being used. To accurately
determine specifications with the greatest influence on the
building’s energy efficiency, properly adjust the structure’s
design and install appropriate systems with optimized param-
eters, it is crucial to build these models using accurately
computed heating (HL) and cooling loads (CL).

To overcome these potential drawbacks, there is an alter-
native solution: development of an effective substitute model
that is able to accurately estimate a building’s energy demand
with the input of only a few factors. If this predictive algo-
rithm can precisely estimate the results of sophisticated simu-
lationmodels, this model can replace simulation software and
predict the energy performance of buildings in various con-
ditions without demanding large amounts of detailed input
information. In this particular context, the literature recog-
nizes and describes several different initiatives to develop

surrogate models for the prediction of buildings’ energy
demands.

By implementing detailed thermal parametric simulations,
the authors in [14] analyzed the effect of morphological
specifications defining the shape of residential structures on
their heating load. On the basis of empirical experiments
conducted by [15]–[17], a detailed statistical examination
was performed to gain in-depth knowledge about the output
and input variables and their underlying properties. With
the same dataset collected by [17], the authors in [18], [19]
used artificial intelligence (AI) techniques in the process of
predicting buildings’ energy demands. In [20], the authors
created several regression models to estimate the anticipated
heat load of a residential single-family section in a moderate
climate each month. Work in [21] developed a forecasting
model that combines principal component analysis (PCA) to
extract the essential features, and a weighted support vector
regression model to predict cooling demand.

Kwok et al. [22] simulated the overall cooling demand of
a commercial building with offices located in Hong Kong
by implementing an artificial neural network model. This
type of online energy estimate for buildings using genetic
algorithms and neural networks can also be employed in var-
ious applications. Among some other potential alternatives
are agent-basedmodels [23], graphical approaches [24], data-
driven models [25] and genetic algorithms or other similar
bioinspired techniques [26].

Østergård et al. [27] compared various metamodeling
methods of supervised learning. They recognized the sixmost
renowned and used techniques, although they did not agree on
any of them as being the best. The techniques they reviewed
were treated as the most promising candidates for the devel-
opment of quick meta-models that would be able to cope with
the computational obstructions caused by the exploration
of the design space, sensitivity analyses and optimization
of the design. For their comparison, these authors worked
with the best practices found in the literature. The authors
tested them on 13 various problems with variations in com-
plexity and dimensionality, and they used nine sizes of the
training data. Each technique is suitable for a specific situ-
ation. The authors, therefore, considered the performance of
thesemeta-models on three different scenarios varying in user
interaction and time consumption requirements.

Although applying these techniques to predict buildings’
energy loads has often been successful, each one has limi-
tations. Inaccurate predictions, the tendency to insignificant
descriptors and high dimensionality, low interpretability of
the created models and low efficiency of computation are just
some of the flaws that can possibly obstruct achieving optimal
results with these methods. One of the methods known as
a decision tree, for example, seems to operate quite suffi-
ciently when it works with criteria that were stated up front.
However, its ability to provide precise predictions is rather
weak, which has led to the development of several methods,
including whole tree ensemble, to overcome its weaknesses.
One of these methods has led to the creation of a trustworthy
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ML tool known as random forest. The purpose of random
forest is centered on classifying compounds as seen in [28].
With regards to this context and the no free lunch theorem
stating that there is nothing such as an ultimate algorithm
that resolves every problem, we offer herein the results of
the XGBoost (extreme gradient boosting) model, another
ensemblemethodwith impressive results in predicting energy
loads, especially in regard to residential structures.

XGBoost works as an effective version of the GBM (gra-
dient boosting machine), and it is able to adjust its scale
when needed [29]. It has been proven in various recent
ML contests [30], [31] due to its simplicity and precise-
ness on prediction and classification problems. Aside from
emphasizing how various alternatives can widen our perspec-
tive and insight into the data in comparison to focusing on
a single method, we aim to demonstrate in our work that
XGBoost is not only an absolutely competitive alternative to
the energy predictive methods but also has a comprehensive
set of descriptors, mostly in cases of significantly imbalanced
class distribution.

This paper is organized in the following sections. In the
second section, we describe the dataset, appliedMLmethods,
implemented a model selection procedure and the measure-
ments for performance that were used. Our third section aims
to validate and analyze the overall performance of each of
the models and compare the simulation results. Additionally,
this section contains a discussion considering each method’s
performance and identifies their limits and strengths. The last
section in this paper presents the conclusion.

II. PROPOSED ENSEMBLE LEARNING APPROACH
The proposed ensemble learning approach uses the XGBoost
algorithm [32], which consists of R regression trees
{T1(xi, yi). . . . ,TR(xi, yi)}, where xi is a training dataset of
instances of energy predictors for predicting the energy load
responses, yi.
Let us assume that one tree of R regression trees gives an

actual score of each leaf, which represents the output, the
scores of prediction for each tree, Ti is cumulated to obtain
the final prediction score as given below:

ŷi =
R∑
r=1

fr (xi) , fr ∈ S (1)

where fr is an independent tree with scores of each leaf, and S
represents all trees in R. The objective function to regularize
and optimize the learning process is computed as:

Obj (2) =

n∑
i

l
(
yi, ŷi

)
+

R∑
r

� (fr ) (2)

The term l in the above equation is a differentiable loss
function to measure the difference value between the actual
yi and predicted ŷi. The term � is a regularization term
that penalizes the model complexity to avoid the overfitting

problem, which is computed as:

� (f ) = ϕT +
1
2
ϑ

T∑
j=1

s2j (3)

where T represents the leaf count and s is the leaf score. ϕ

and ϑ , represent controlling constants for the regularization
degree to avoid overfitting problems.

For the XGBoost training phase, a dataset of energy loads
with vectors of predictors and their responses in XGBoost is
as follows:

Algorithm 1 Training Algorithm of the XGBoost Model
Input: Vectors of energy load predictors (Vn), number of

trees (R);
Output: XGBosst trained model;
1. For each predictor (vi),

1.1. vi← Sort(vi);
1.2. pi← Split_best (lowest_gain(vi));
// Compute tree depth by optimizing the objective
function and choosing the descriptor of the best
splitting point

2. Tree_depth← Optimizes (ObjTraFunc← Choose
(descriptor (pi));

3. Repeat (1 and 2) until Tree_depth ==
Max_tree_depth;

4. Tree_leaves← Prediction_score (Tree_depth);
5. Bottom-up_Prune_negative_nodes (Tree_leaves);
6. Repeat steps (1-5) until cumulative training covers all

trees in R;

In cumulative training, the prediction ŷi at step (t) can be
calculated as:

ŷ(t)i =
R∑
r=1

fr (xi) = ŷ(t−1)i + ft (xi) (4)

As a result, Eq. (2) is as follows:

Obj(2)(t) =
n∑
i

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+� (ft) (5)

By Taylors expansion, the loss function is changed to the
second order as follows:

Obj(2)(t) =
n∑
i=1

l
(
yi, ŷ

(t−1)
i

)
+ gift (xi)+

1
2
hif 2t (xi)

+� (ft) (6)

where: gi = ∂ŷ(t−1)i
l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ(t−1)i

l
(
yi, ŷ

(t−1)
i

)
are the order statistics of the first and second loss functions,
respectively.

The objective function with no constants at step t is:

Obj(2)(t) =
n∑
i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+� (ft) (7)
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To expand the regularization term, the objective function is
calculated as:

Obj (2)(t)

=

n∑
i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+ ϕT +

1
2
ϑ

T∑
j=1

s2j

=

T∑
j=1

∑
i∈Ij

gi

 sj +
1
2

∑
i∈Ij

hi + ϑ

 s2j

+ ϕT (8)

where Ij = {i|p (xi) = j} is the sample set of leaf j; for a given
tree structure p (xi), the optimal weight, s∗j of a given leaf and
its optimal objective function are computed by Eq. (9) and
Eq. (10) as:

s∗j =
Fj

Hj + ϑ
(9)

Obj∗ = −
1
2

T∑
j=1

F2
j

Hj + ϑ
+ϕF (10)

where Fj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi.
The splitting step uses the following equation to score a

leaf node.

Gain =
1
2

[
F2
left

Hleft + ϑ
+

F2
right

Hright+ϑ
−

(
Fleft+Fright

)2
Hleft + Hright+ϑ

]
−ϕ

(11)

The first, second and third terms in Eq. (11) represent the
score of the left leaf, the right leaf and the original leaf where
ϕ represents the regularization term of the additional leaf.

III. EXPERIMENTAL DESIGN
In this section, we explain the experiment and results. First,
the dataset used in the experiment will be described, and then
the performance metrics used for evaluating the proposed
approach will be stated. After that, the procedure of model
training and testingwill be declared. Finally, the experimental
results will be compared with the state-of-the-art learning
approaches and discussed in more detail.

A. DATASET DESCRIPTION
This study evaluated a dataset available in work conducted
by Tsanas and Xifara [16] and used in Duarte et al. [33].
The dataset was collected by using a simulation of several
buildings created with Ecotec software. This software is an
analytical tool for environmental matters and is fully com-
patible with general building information modeling software
such as Autodesk Revit Architecture. It performs a com-
plex preliminary analysis of building energy demand and
performance with a wide selection of analytical functions
and an interactive, highly visual display that enables the
user to present gained information directly within the con-
text of the model (YANG; HE; YE, 2014). The dataset is
formed by two output and eight input variables, which can
be seen in Table 1. Based on a model of an elementary

FIGURE 1. Building areas space definition.

TABLE 1. Parameter initialization of the XGBoost model.

cube (3.5 × 3.5 × 3.5 m), we derived a modular geometric
system. To recreate various shapes of the buildings, eighteen
elements were used, as shown in Figure 2. For the simu-
lations, a set of twelve distinctive shapes (Figure 3) was
selected to represent different relative values of compactness
(see Table 1).

We used relative compactness (RC) to illustrate buildings
of various types. RC can be calculated by Eq. (1):

RC =
6V2

3A− 1
(12)

where V represents the building volume, and A represents the
building surface area. Figure 1 illustrates the details of the
roof area, floor area, wall area and overall building height.

In these experiments, the four most distinctive orientations
were selected: south, north, west and east. Three glazing
areas to floor area ratio percentages were used: 40%, 25%
and 10%. In addition, the experiments simulated five con-
trastive models of glazing distribution:
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FIGURE 2. Eighteen cubical elements were used to generate simulated shapes.

FIGURE 3. Variation of relative compactness coefficient.

a) Uniform: 25% glazing of each of the faces;
b) North: 55% of the north+ 15% of each remaining face;
c) East: 55% of the east + 15% of each remaining face;
d) South: 55% of the south+ 15% of each remaining face;
e) West: 55% of the west + 15% of each remaining face.

In addition, no glazing areas were simulated. Finally, every
building was rotated so that it would face all four distinctive
directions. On the basis of this setup, the experimental dataset
consisted of (12 × 3 × 5 × 4 + 12 × 4 = 768) samples
of different buildings. Detailed parameters of the inputs and
outputs in this study can be reviewed in Table 1.

Our simulation assumed the buildings are located in
Athens, Greece. Each of the building’s blocks is inhabited
by seven individuals engaging in sedentary activity, and their
mean consumption totals were 70W. The indoor environment
of the buildings was defined as follows: humidity: 60%,
clothing: 0.6 clo, airspeed: 0.30 m/s, level of lighting:
300 lux (similar to 5 x 9 W LED lamps when consider-
ing luminous efficacy of one such lamp to be 80 lm/W
and the aforementioned parameters of the modular cubes).
Internal heat gains (latent and sensitive) were expected to
be 5 W/m2 and 2 W/m2, respectively. The considered air

infiltration rate reached 0.5 and 0.25 air charger per hour with
sensitivity to the wind. This is an Ecotec parameter that is able
to modify the rate of air infiltration based on the actual speed
of the wind.

A mixed model with 95% efficiency was applied for
the thermal parameters, and a 19◦ − 24◦ C thermostat
range with 15-20 operating hours during the weekdays and
10-20 operating hours at weekends. The assumption was that
all of the considered buildings were built from the samemate-
rials with the lowest possible U-value. This parameter indi-
cates how well the material insulates heat - a lower U-value
indicates a better insulator. The characteristics applied
(U-values in between the brackets) were floor
(0.860 W/m2K), walls (1.780 W/m2K), windows
(2.260 W/m2K), and roofs (0.500 W/m2K). The remaining
details of the experimental simulations were provided by
Tsanas and Xifara [16].

B. PERFORMANCE METRICS
The performance metrics used to evaluate the proposed
energy prediction model are statistical measures. They are
used to assess the goodness of model to fit the data and
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include the root mean square error (RMSE), the coefficient of
determination (R-squared), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE). A model
fits the data when all error metrics have small values, which
means that the differences between the actual values and
the model’s predicted values are very small and unbiased.
A higher value of R-squared means that the model is able
to correctly fit the data. In other words, the error metrics
measure the ability of the model to properly predict the
energy loads based on the error values. The R-squared simply
describes the correlation between the actual and predicted
energy loads. All mentioned performance metrics are com-
puted using the following equations:

RMSE =

√√√√ 1
N

N∑
i=1

(
yi−ŷi

)2 (13)

R− squared = 1−

∑N
i=1

(
yi−ŷi

)2∑N
i=1 (yi−ȳi)2

(14)

MAE =
1
N

N∑
i=1

∣∣yi−ŷi∣∣ (15)

MAPE = 100%×
1
N

N∑
i=1

∣∣yi−ŷi∣∣
yi

(16)

The actual value of the HL and CL responses of the input
predictors (xi) are denoted by yi, the predicted value of the HL
and CL responses of the input predictors (xi) is represented
by ŷi, and the mean values of the actual responses (yi) are
computed in ȳi.

C. MODEL TRAINING AND TESTING
In the previous subsection, we defined the performance sta-
tistical metrics adopted to examine the goodness of predic-
tion. Now, we describe the procedure used to train and test
the proposed XGBoost model. For training and testing the
model, we follow the 10-fold cross-validation policy to be
fair in comparing the results reported in related works. First,
the energy efficiency dataset is divided into 10 folds; 9 of
them are utilized to train the model, and the remaining fold
is applied for testing. We repeat this step 10 times, each time
a different fold from the dataset is used for testing and the
remaining 9 folds for training. The model training and testing
flowchart is shown in Figure 4.

Through the XGBoost training phase, there are a number
of parameters that need to be tuned for optimal performance.
We use a brute force strategy (grid search technique) to tune
the parameters of the XGBoost model and obtain the best
prediction results. These parameters with their values are
listed in Table 1.

The XGBoost’s parameters used in Table 1 are classified
into two parts: general parameters and booster parameters.
General parameters include silent, which is related to display-
ing running messages (0 means printing running messages,
1 means silent mode), and nthread represents the number

FIGURE 4. Model training and testing flowchart.

of parallel threads used to run XGBoost (default value is
the maximum number of threads available if not set). The
booster parameters are learning_rate, which is the step size
used to update the learning rules and prevent the overfitting
problem; gamma, which represents the loss reduction needed
to construct a split; max_depth, which is the child maxi-
mum depth; n_estimators, which is the; reg_alpha, which is
the L1-regularization of weights; reg_lambda, which is the
L2-regularization of weights; subsample, which is the ratio
used to subsample the training instances for preventing the
overfitting problem, and its range is between 0 and 1; col-
sample_bytree, which is the ratio used to subsample columns
for constructing each tree and occurs once for every boosting
iteration, and its range is between 0 and 1; andminimum child
weight, which is the minimum sum of weights of instances
required for a child.

IV. RESULTS AND DISCUSSION
The numerical results of our experiment are recorded
through the implementation of the proposed approach using
the Python programming language. In the implementa-
tion, the XGBoost model is applied for energy prediction
of HL and CL. Testing the proposedmodel is performed using
a 10-fold cross-validation technique in which the dataset is
divided into 10 folds, and a different fold is used for testing,
and the other folds are used for training. This process is
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FIGURE 5. Actual and predicted energy values of HL.

TABLE 2. Results of performance metrics for energy predicting of HL.

repeated 10 times. The results of the performance metrics are
the average of those 10 tests. For diversity and reproducibility
of the data samples used in training and testing, we repeated
the experiment 30 times by shuffling the dataset samples with
different random states. We also computed the results of the
performance metrics as the average of the 30 repeated tests.
Tables 2 and 3 show the results of the performance metrics
for the energy prediction of both HL and CL in the 10-fold
cross validation testing mode of the 1-time run.

From both Tables 2 and 3, we can see the stability of the
proposed model for predicting HL and CL in the 10-fold

TABLE 3. Results of performance metrics for energy predicting of CL.

testing mode with a standard deviation (Std.) equal
to 0.00024 for R-squared of HL and 0.00055 for R-squared
of CL. Moreover, the results of other error metrics prove the
ability of the model to predict the energy of both HL and CL.
We can also see the accuracy of the model by visualizing the
actual and predicted values of HL and CL for 10 different
folds of the 1-time run in Figures 5 and 6.

To demonstrate the results of the 30-times run for HL
and CL, Figures 7, 8, 9, and 10 show the relation between
R-squared and MAE and the relation between RMSE and
MAPE. From all figures, we notice that the R-squared values
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FIGURE 6. Actual and predicted energy values of CL.

FIGURE 7. The relation between R-Squared and MAE values for HL
in 30-times run.

FIGURE 8. The relation between RMSE and MAPE values for HL
in 30- times run.

increase when the MAE values decrease, and the values
of RMSE and MAPE are small and close to each other.
Additionally, all values of R-squared are above 0.99, which

FIGURE 9. The relation between R-Squared and MAE values for CL
in 30-times run.

FIGURE 10. The relation between RMSE and MAPE values for CL in the
30-times run.

means that the actual and predicted values of both HL and
CL are almost the same values and that the model works
well.
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FIGURE 11. Comparison results of R-Squared between training and
testing set for HL in the 30-times run of 10-cross validation.

FIGURE 12. Comparison results of R-Squared between training and
testing set for CL in the 30-times run of 10-cross validation.

FIGURE 13. Visualizing the MAE (kW) result for the proposed model
compared to the state-of-the-art models for predicting the energy of HL.

In order to evaluate the effectiveness of the proposed
model against the overfitting, the R-Squared measure is cal-
culated during the 10-fold cross-validation of the 30-times
run between training set and validation set for HL and CL
with different random states. Figures 11 and 12 show a low
variance between the R-Squares of training and testing set.

The main goal of this work is to develop an accu-
rate model for energy load prediction in residential build-
ings. To complete this goal, the accuracy of the proposed
XGBoost model is compared with state-of-the-art models.

FIGURE 14. Visualizing the MAE (kW) result for the proposed model
compared to the state-of-the-art models for predicting the energy of CL.

TABLE 4. Comparison results of the proposed model compared to results
of the state-of-the-art models for predicting the energy of HL.

TABLE 5. Comparison results of the proposed model compared to results
of the state-of-the-art models for predicting the energy of CL.

The performance results of some previous recent approaches
against the proposed approach on the same dataset are visual-
ized in Figures 13 and 14 and summarized in Tables 4 and 5.
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The best result value of each metric is highlighted in a bold-
face font.

The columns of Tables 4 and 5 show the performance
evaluation metrics of the proposed model compared to state-
of-the-art models. The overall results prove that the XGBoost
model significantly outperforms the other models across all
tests in the experiment.

V. CONCLUSIONS
The need to reduce energy loads in residential buildings
requires developing a robust prediction approach. In this
paper, we developed an ensemble learning approach using
an extreme gradient boosting (XGBoost) algorithm. We con-
ducted our experiments on a selected dataset of residen-
tial buildings, which consisted of 768 samples of 8 input
attributes and 2 output responses. Experimental results show
the ability of the proposed approach to achieve a lower
mean square error and a higher accuracy compared with the
state-of-the-art approaches. We suggest applying XGBoost
as a valuable addition to current well-known computational
methods to improve energy load prediction. In future work,
we will apply our proposed model to predict the energy
usage of different appliances towards more effective energy
consumption.
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