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ABSTRACT This paper presents a polarized random Fourier feature kernel least-mean-square algorithm
that aims to overcome the dimension curve of the random Fourier feature kernel least-mean-square
(RFFKLMS) algorithm. RFFKLMS is an effective nonlinear adaptive filtering algorithm based on the kernel
approximation technique. However, random samples drawn from the distribution need more dimensions
to achieve better-generalized performance because they are independent of the training data. To overcome
this weakness, a kernel polarization method is adopted to optimize the random samples. Polarized random
Fourier features demonstrate a clear advantage over a method without using the polarization method.
The experimental results in the context of Lorenz time series prediction and channel equalization verify
the effectiveness of the proposed method.

INDEX TERMS Kernel adaptive filtering, kernel polarization method, polarized random Fourier features,
random Fourier features.

I. INTRODUCTION
Kernel adaptive filtering (KAF) has been proposed to solve
various nonlinear signal processing problems [1]. Kernel
least-mean-square (KLMS) is a robust and relatively low-cost
method that demonstrates excellent performance in nonlinear
filtering [2]. However, the growth of the weight network
creates a burden of computation complexity. The quantized
kernel least-mean-square (QKLMS) algorithm, which pro-
vides an appropriate time/space trade-off with good online
performance, was proposed to successfully limit network
size growth [3]. Recently, it was verified that the explicit
kernel mapping mechanism can effectively overcome the
growing sum problem of the KLMS algorithm in root [4].
A reduced Gaussian kernel least-mean-square (RGKLMS)
algorithm was proposed based on a Taylor series expansion
of the Gaussian kernel function [5]. Furthermore, the random
Fourier feature kernel least-mean-square (RFFKLMS) algo-
rithm also demonstrated promising performance in kernel
adaptive filtering and attracted wide attention [4], [6].

However, random Fourier features (RFF) face a trade
off between accuracy and computational cost for limited-
dimension features. The current idea for solving this problem
is to achieve a smaller approximation error with a kernel
function. Quasi-random sampling is a promising solution
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in theory, but the smaller approximation error of a ker-
nel function unfortunately does not result in more accurate
performance in all cases [7]. The fastfood algorithm has
been proposed to speed up computations of random Fourier
feature [8]. A Fourier online gradient descent (FOGD) algo-
rithm that applies the random Fourier features for approxi-
mating kernel functions was proposed to make the large scale
online kernel learning task more efficient [9].

Aiming at the generalization performance of RFFKLMS in
various supervised learning scenarios, the kernel polarization
method is adopted as a metric of random sample parameters
of RFF. The kernel polarization method as a universal kernel
optimality criterion proposed by Baram, can measure the
consistency between the kernel function and learning task
and demonstrated advantages over Euclidean distance [10].
A pre-processing strategy based on kernel polarization is
given, in this paper, for evaluating the random samples
of RFFKLMS. The optimized RFF is called the polarized
randomFourier feature (PRFF). Furthermore, a polarized ran-
dom Fourier feature kernel least-mean-square (PRFFKLMS)
algorithm is developed to effectively scale down the dimen-
sion of feature spaces with respect to RFFKLMS. Numerical
simulations are utilized to demonstrate the effectiveness of
the proposed algorithm.

The rest of the paper is organized as follows. Section 2
reviews the related works on RFFKLMS algorithm.
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Section 3 proposes the PRFF and the PRFFKLMS algorithm
for kernel adaptive filtering. A performance evaluation is dis-
cussed in Section 4, and the proposed methods are compared
with state-of-the-art methods. Finally, section 5 concludes
this paper.

II. A REVIEW OF RFFKLMS
Before the introduction of the main results in Section III,
a brief review of RFFKLMS algorithm is presented. The
RFFKLMS algorithm overcomes the weight network growth
drawback of KLMS [6] and enables kernel adaptive filtering
for real-time applications. The main reason is using the RFF
to approximate the Gaussian kernel function :exp(− ||x−y||

2σ 2
),

which is supported by Bochner’s theorem from harmonic
analysis:
Theorem 1: (Bochner’s theorem) A continuous,

translation-invariant kernel k(x, y) = k(x − y) is positive
definite if and only if the kernel is the Fourier transform of a
nonnegative measure.

From Bochner’s theorem, we can obtain that the Fourier
transform of an appropriately scaled shift-invariant kernel is
a probability density [11].

The RFFKLMS algorithm mainly include the following
steps: Firt, map the input vector into a high-dimensional
feature subspace:

φ(x(i)) =

√
2
D
[ cos(wT1 xi + b1), ..., cos(w

T
Dx(i)+ bD)], (1)

where wi
i.i.d.
∼ N (0, σ 2I ), bi

i.i.d.
∼ u[0, 2π ], D denotes the

dimension of feature mapping vector, and i.i.d. indicates
independent and identically distributed. The further adaptive
filtering process can be represented as

yi = �T
i φ(xi)

ei = di − yi
�i = �i−1 + µeiφp(xi)

(2)

where �i represents the weight vector, ei denotes the error,
and µ is step size. As we can see from Equ.1, the random
parameters of the feature network are generated by random
sampling from a distribution. A strategy to optimize the
selection of random samples is necessary to improve the
performance of the network.

III. PROPOSED PRFFKLMS ALGORITHM
In this paper, we mainly focus on applying the kernel polar-
ization method [10] to optimize the RFF for kernel adaptive
filtering. In essence, the polarization strengthens the corre-
spondence between the kernel proximity of inputs and the
desired output signal. However, RFF method draws samples
from a distribution independent of training data [12]. Gen-
erally, for a specific learning task, an ideal kernel should
induce a feature subspace matching with that to be learned.
Given the known sequence {xi, di}Ni=1, where xi ∈ X is an
m-dimensional input vector for the ith iteration and di denotes
the desired output, the task of kernel adaptive filtering is to

learn the input-output relationship f : X → R under a given
sequence. The input-output relationship can be represented
as:

f (x) =
N∑
i=1

λK (xi, x) (3)

Define a kernel as KP(x, x′) =
∫
P p(w)φ(x,w)φ(x

′,w)dw,
where p(w) is a probability distribution that w draws from,
and φ(x) denotes explicit feature mapping. In order to mea-
sure the kernel similarity between the embedded data induced
by a kernel and that induced by the desired signal, the fol-
lowing kernel alignment problem should be considered for
getting the best kernel evaluation [13]:

maximize
∑
i,j

KP(xi, xj)didj. (4)

Using RFF [11] and approximating (4) as a discrete sum with
samples {wk}

Nw
k=1 ∼ p(w), the problem can be rewritten as:

maximize
∑
i,j

didj
Nw∑
k=1

λkφ(xi, θk )φ(xj, θk ). (5)

where θk = (wk , bk ) denotes the parameter of the kth
dimensional feature parameter. The problem is a joint opti-
mization of {λk , θk}

Nw
k=1, which is obviously not a con-

vex problem. Meanwhile, for commonly used RFF-based
KLMS algorithms [4], [14] in kernel adaptive filtering, sam-
ples {wi}

Nw
i=1 drawn from the distribution p(w) and samples

{di}
Nw
i=1 drawn from a uniform distribution may not be optimal

for the given learning task because of the uncertainty of
random sampling. A set of optimized {θk}

Nw
k=1 is essential to

be obtained before the risk function can be a convex problem
over {λk}

Nw
k=1.

Here, the optimization aim is represented as

maximize
Nw∑
k=1

λk

 N∑
ij

didjφ(xi, θk )φ(xj, θk )

 . (6)

Assume {θk}
N ′w
k=1 satisfy i.i.d. and that there is a subset

{θk}
Nw
k=1 of {θk}

N ′w
k=1 with the largest value of the object

N∑
ij

didjφ(xi, θk )φ(xj, θk ). (7)

that can maximize (6). Then, the problem is transformed into
selecting a subset {θk}

Nw
k=1 that can obtain a higher value

in computing (7) from {θk}
N ′w
k=1. However, direct calculation

of (7) will be too complicated. In order to better solve the
sample selection problem, an evaluation strategy is given as
following.
For i.i.d. samples {θk}

N ′w
k=1, the polarization evaluation func-

tion as a kernel quality measures is defined as

P(x, d, θ ) =
1
N

N∑
i=1

diφ(xi, θ ) (8)
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Then, the optimization object can be rewritten as
N∑
ij

Pi(θk )Pj(θk ) =
N∑
ij

didjφ(xi, θk )φ(xj, θk ) (9)

where Pi(θk ) = P(xi, di, θk ) = diφ(xi, θk ).
Lemma 1: Given N ′w samples {θk}

N ′w
k=1, where k1, k2 ∈

{1, 2, ...,Nw}, let
Nw∑
i=1

P(xi, di, θk1) >
Nw∑
i=1

P(xi, di, θk2) (10)

Then, it is satisfied that
N∑
ij

didjφ(xi, θk1)φ(xj, θk1) >
N∑
ij

didjφ(xi, θk2)φ(xj, θk2)

(11)

The detailed notations of Lemma 1 are exposed in
Appendix A. Furthermore, (6) can be realized by selecting
Nw samples of θ with a higher score of the kernel polarization
functionP(θk ) =

∑Nw
i=1 diφ(xi, θk ) fromN ′w random samples,

where N ′w > Nw. A larger N ′w may benefit to the maximiza-
tion process because of the expansion of search space.

The polarization process of the random samples is given as
follows. 1) Draw N ′w-dimensional random samples {wk}

N ′w
k=1

from a distribution p(w) and {bk}
N ′w
k=1 from a uniform distri-

bution [0, 2π ], where integer N ′w can be several times the
required dimension Nw. For kernel adaptive filtering, a Gaus-
sian kernel is usually the default choice. 2) Intercept the first
rN ∈ N+ pairs of training samples {xi, di}rNi=1, where N
denotes the size of the training set, r ∈ (0, 1), and rN ∈ N+.
3) Evaluate N ′w random samples one by one based on the
kernel polarization function (10). 4) Select Nw samples with
the highest score in the evaluation as the polarized samples.

Based on above preprocessing method, a set of polarized
random samples can be obtained for kernel feature mapping.
An input vector x = {x1, x2, ..., xm} is explicitly mapped to a
high-dimensional feature space F under the kernel mapping
mechanism of the RFF [11]. The PRFF vector can be defined
as

φp(xi) =

√
2
D

[
cos(wT1 xi + b1), ..., cos(w

T
Nwxi + bNw )

]
.

(12)

where {wk , bk}
Nw
k=1 denotes the polarized samples. Then,

the output of the adaptive filter can be computed by

yi = �T
i φ(xi) (13)

Meanwhile, update the weight vector

�i = �i−1 + µeiφ(xi) (14)

where, ei denote error vector. Compared with RFFKLMS,
the PRFFKLMS algorithm adds a preprocessing step that
needs anO(rNmN ′w) computation to obtain the evaluation val-
ues and an O(N ′wlog(N

′
w)) computation to select Nw samples

from N ′w samples.

FIGURE 1. Learning curves of the testing MSE in Lorenz time series
prediction.

IV. NUMERICAL SIMULATIONS
To demonstrate the advantages of the proposed PRFFKLMS
algorithm, numerical simulations are conducted. Without a
special mention, the Gaussian kernel is chosen as the default
kernel function.

A. LORENZ TIME SERIES PREDICTION
Lorenz time series is a benchmark problem in nonlinear time
series prediction, and its model can be represented as the
following equations:

dx
dt
= a(y(t)− x(t))

dy
dt
= bx(n)− y(t)− x(t)z(t)

dz
dt
= x(t)y(t)− cz(t), (15)

where the model parameter a, b, and c are set as 10, 8/3,
and 28, respectively [15]. The time delay of the prediction
is chosen as 1, and the time embedding is 5. The number of
generated training samples is 5000, and another 200 samples
are used as the testing set. The time series are corrupted by
white Gaussian noise with zero mean and a variance of 0.01.
The kernel parameter σ of RFFKLMS algorithm is set as 1
because it can get the best MSE performance and all σ value
of comparison algorithms are set the same. The step size
of RGKLMS is chosen as 0.005 to ensure convergence and
the step size of other algorithms are 0.1. The parameter γ
of QKLMS is set to 0.4. The dimension of PRFFKLMS
algorithm is chosen as 100. Taken into account both the
MSE performance of PRFFKLMS and the complexity in
preprocessing stage, the number of candidate samples N ′w is
chosen as 10 times the dimension Nw, and r is set 0.1.
The learning curves of the testing MSE averaged over

100 independent Monte Carlo runs are shown in Fig.1. The
final testing MSE of QKLMS, RFFKLMS (D = 100),
RFFKLMS (D = 1500), RGKLMS (P = 5), RGKLMS
(P = 7), and PRFFKLMS(D = 100) are −14.90 dB,
−15.18 dB, −15.64 dB, −13.54 dB, −13.58 dB, and
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FIGURE 2. The accumulated runtimes of all the compared algorithms in
Lorenz time series prediction.

−15.90 dB, respectively. The accuracy and convergence
speed of the proposed PRFFKLMS algorithm is much bet-
ter than the RFFKLMS algorithm, which demonstrates the
effectiveness of proposed method. Although the accuracies
of PRFFKLMS (D = 100) and RFFKLMS (D = 1500)
are similar, PRFFKLMS demonstrates better coverage speed.
As shown in Fig. 2, after 5000 iterations, the accumulated
runtimes of QKLMS, RFFKLMS (D = 100), RFFKLMS
(D = 1500), RGKLMS (P = 5), RGKLMS (P = 7), and
PRFFKLMS(D = 100) are 0.173 s, 0.055 s, 0.441 s, 0.053 s,
0.063 s, 0.057 s, respectively. The overall performance of
the proposed algorithm is better than that of the RGKLMS
algorithm and RFFKLMS algorithm.

B. TIME-VARYING CHANNEL EQUALIZATION
This example aims to assess the effectiveness of the proposed
method in channel equalization applications. We consider a
time-varying nonlinear channel that is commonly encoun-
tered in a real satellite communication system [16]. The linear
channel impulse response is h = [h0, h1, h2]T , and it’s value
is chosen as h = [0.3482, 0.8704, 0.3482]. The transfer
function of the time-varying channel model is described as

H (z) = (h0 + h0(j))+ (h1 + h1(j))z−1 + (h2 + h2(j))z−2

(16)

where h0(j), h1(j), and h2(j) denote the time-varying coeffi-
cients generated by using a second-order Markov model [17].
The nonlinear channel output is defined by

r(n) = x(n)+ 0.2x2(n)+ v(n) (17)

where v(n) is 20 dB ofwhite Gaussian noise. The time embed-
ding is 5. For all the compared algorithms, 100 independent
runs employing 6000 training samples and 200 test samples
are performed. for QKLMS, RFFKLMS, and PRFFKLMS.
In order to get better accuracy, the kernel parameter σ is set
to be 0.6 for RGKLMS and is set as 2 for other algorithms.
The step size is chosen as 0.06 for RGKLMS to ensure stable

FIGURE 3. Learning curves of the testing MSE in channel equalization.

FIGURE 4. The accumulated runtimes of all compared algorithms in
channel equalization.

convergence and is set as 0.3 for other algorithms. The param-
eter γ of QKLMS is 0.1. The RFFKLMS algorithms with
dimensions of 100 and 1000 are simulated for comparison.
Considering both the MSE performance of PRFFKLMS and
the complexity of preprocessing computation, the number of
candidate samples N ′w is 10 times the dimension Nw, and r is
set 0.2. Both orders P = 5 and P = 7 RGKLMS algorithm
are used as comparison algorithms.

Fig.3 shows that the proposed algorithm has an improve-
ment in terms of both convergence speed and steady-state
MSE. The final testing MSE of QKLMS, RFFKLMS (D =
100), RFFKLMS (D = 1000), RGKLMS (P = 5), RGKLMS
(P = 7), and PRFFKLMS (D = 100) are−12.73 dB,−12.08
dB, −14.51 dB, −13.83 dB, −13.83 dB, and −14.52 dB,
respectively. The learning curve for RGKLMS(P = 5) is the
same with that of RGKLMS(P = 7). As displayed in Fig.4,
after 5000 iterations, the accumulated runtimes of all the algo-
rithms are 0.181 s, 0.069 s, 0.224 s, 0.058 s, 0.063 s, 0.066 s,
respectively. It is found that the proposed PRFFKLMS algo-
rithm improves the computational efficiency compared with
the RFFKLMS algorithm and obtains better accuracy than the
RGKLMS algorithm under similar computation complexity.
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TABLE 1. The final MSEs in time varying channel equalization with different SNR setting.

In order to further evaluate the proposed algorithm in lower
SNR situations, the further simulations with SNR from 12 to
20 dB are conducted. The MSE results of all compared algo-
rithms are shown in Table. 1. In various SNR environments,
the MSE obtained by proposed PRFFKLMS (D = 100)
algorithm can always be less than QKLMS, RFFKLMS (D =
100), RGKLMS (P = 5,7) and almost the same performance
with RFKLMS (D = 1000).

V. CONCLUSION
In this paper, the kernel polarizationmetric of random Fourier
features is proposed and named polarized random Fourier
features. Based on the PRFF, the PRFFKLMS algorithm is
developed for kernel adaptive filtering. The results of an
extensive simulation experiment confirm the effectiveness of
proposed method. As a future work, we will seek to realize
this algorithm in hardware systems and carry out research in
practical application.

VI. APPENDIX: PROOF OF LEMMA 1
If it is satisfied that

Nw∑
i=1

f (xi, di, θ1) >
Nw∑
i=1

f (xi, di, θ2) (18)

then, we have

Nw∑
i=1

Nw∑
j=1

f (xi, di, θ1)f (xj, dj, θ1)

>

Nw∑
i=1

f (xi, di, θ1)

 Nw∑
j=1

f (xj, dj, θ2)


>

Nw∑
i=1

f (xi, di, θ2)

 Nw∑
j=1

f (xj, dj, θ2)

 (19)
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