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ABSTRACT Autonomous robotic exploration of an unknown environment is a key technology for robot
intelligence. In order to improve the efficiency of it, we propose a strategy based on frontier point opti-
mization and multistep path planning in this paper. In the frontier points’ optimization section, we present a
random frontier points’ optimization (RFPO) algorithm to select the frontier point with the highest evaluation
value as the target frontier point. The evaluation function of frontier points is defined by considering
information gain, navigation cost, and the precision of the localization of the robots. In the path planning
section, we propose a multistep exploration strategy. Instead of planning the global path from the current
position of the robot to the target frontier point directly, we set a local exploration path step size. When
the robot’s movement distance reaches the local exploration path step size, we reselect the current optimal
frontier point for path planning to reduce the possibility that the robot may take some repetitive paths. Finally,
the relevant experiments are carried out to verify the effectiveness of this strategy.

INDEX TERMS Autonomous exploration, random frontier points optimization algorithm, frontier point
evaluation function, multistep path planning.

I. INTRODUCTION
Autonomous robotic exploration [1], [2] is a major research
issue in robotics. The primary goal is to make robots
to acquire the most complete and accurate map of an
environment in a finite time without human intervention.
Many existing map exploration strategies are based on fron-
tier [3]–[7], [9], which is the boundary between unexplored
space and known space. The idea of frontier-based explo-
ration strategy is to direct robots to unknown regions to com-
plete exploration missions, thus the autonomous exploration
task can be divided into three general steps: generation of
frontier points, selection of the frontier point with the highest
evaluation value, path planning to the selected frontier point.

Generation of frontier points is the premise of frontier-
based exploration strategy. In existing research, some frontier
points generation algorithms are based on the edge detection
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and region extraction of digital image processing technol-
ogy [3], [4]. In order to extract frontier edges, the entire map
has to be processed, and as themap expands, processing it will
consume more and more computational resources. This has
led to research on efficient detection of frontier edges. Keidar
and Kaminka [5] proposes an algorithm for frontier detection
based on processing only the new laser reading data. In the
study by Senarathne et al. [6], he presents an approach to gen-
erate frontier points by tracking intermediate changes to grid
cells and considering only the updated grid cells for the final
frontier generation operation. Umari and Mukhopadhyay [8]
apply the Rapidly-exploring Random Tree (RRT) algorithm
to frontier points generation. Due to the randomness of the
RRT algorithm, the generated frontier points are unevenly
distributed.

The selection of target frontier points is the key to effi-
cient exploration. Frontier-based strategy is first introduced
by Yamauchi [9]. The exploration strategy used is to iden-
tify all the frontier regions in the current map and then
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drive robots to the nearest frontier point. This method has
two shortcomings for the exploration task. First, it treats all
frontiers equally. Secondly, it is limited to one source of
information: finding new terrain. So many different frontier
points selection algorithms are proposed. Simmons et al. [10]
and Moorehead et al. [11] present the frontier point selection
function by combining information gain and exploration cost
to select the target frontier point. Carlone and Lyons [12]
uses the mixed-integer linear programming (MILP) model to
obtain the optimal frontier point for autonomous exploration.
The work by Mei et al. [13] proposes an algorithm to choose
the next target frontier point for the robot to explore based on
orientation information. The team of Laguna university and
Bonn university [14] propose a novel exploration strategy that
exploits background knowledge by considering previously
seen environments to make better exploration decisions. Gau-
tam et al. [15] uses K-means algorithm to cluster frontier
points and assigns these frontier points to the robots using
a Hungarian method.

In the path planning section, Bircher et al. [16] and
Ellips and Hossein [17] present an algorithm which gener-
ate a search path for robots based on the RRT algorithm.
Lauri and Ritala [18] formulate the problem as a partially
observable Markov decision process (POMDP) with an
information-theoretic objective function, and solve it apply-
ing forward simulation algorithms with an open-loop approx-
imation. By sampling the local environmental information,
the forward simulation is performed to calculate different
information gains of each path to determine the choice of the
exploration path. Stachniss et al. [19] proposes an algorithm
which uses a highly efficient Rao-Blackwellized particle fil-
ter to represent the posterior about maps and poses. It trades
off the cost of executing an action with the expected infor-
mation gain and takes into account possible sensor measure-
ments gathered along the path taken by the robot. Sometimes,
robots will go to the place where they have gone before to
reduce the uncertainty. In the study by Elhoseny et al. [20],
he proposes a Genetic Algorithm (GA) based path planning
method in order to work in dynamic and complex environ-
ments with obstacles. In the study by Senarathne et al. [21],
he augments the traditional frontier-based exploration strat-
egy to include a probabilistic decision step that decides
whether further motion on the planned path to the next sens-
ing location is desirable or not. If the motion is not desirable,
it is cancelled and a new sensing location is selected as the
next sensing task.

In this paper, we present a strategy based on frontier points
optimization and multistep path planning. In order to get the
best frontier point, we propose a Random Frontier Points
Optimization (RFPO) algorithm. This algorithm optimizes
the random frontier points generated by the RRT algorithm.
Combining this algorithm with the frontier points evaluation
function, we can obtain the current optimal frontier point.
And one primary problem is how to evaluate the frontier
points. In this paper, we consider three factors: information
gain at the frontier point, navigation cost and the accuracy

of robot positioning. Taking these factors into account, we
define a frontier points evaluation function to evaluate all
frontier points. In the process of robot’s path planning to the
optimal frontier point, we propose the strategy of multistep
exploration. According to the map size, we define a local
exploration path step size. When the robot’s movement dis-
tance reaches the local exploration path step size, the current
optimal frontier point is recalculated and reselected for explo-
ration. Thismay prevent the robot from taking some repetitive
paths.

The organization of this paper is as follows. Section II
introduces the optimal frontier point extraction, including
three parts: generation of frontier points, frontier points eval-
uation function, RFPO algorithm. Section III describes the
strategy of multistep exploration. In section IV, we carry
out relevant experiments to verify the effectiveness of our
strategy. Finally, the paper is concluded in Section V.

II. OPTIMAL FRONTIER POINT EXTRACTION
A. GENERATION OF FRONTIER POINTS
In this paper, we use the SLAM algorithm GMap-
ping [25], [26] to build a 2D occupancy grid map. In the
occupancy grid map, grid cell has three states: free, occupied
and unknown. Frontier points in an occupancy grid map are
defined as the boundaries between grids categorized as free
and unknown.We generate frontier points in themap by using
the RRT [27] algorithm. The advantage of this algorithm is
that the spanning tree is simple to build and it can quickly
traverse unexplored areas in the space, which is especially
suitable for systems that contain obstacles. In addition, for
a closed environment, the RRT algorithm provides com-
pleteness, which can guarantee that the robot will explore
all regions and build a complete map in the process of
autonomous exploration.

At first, initializing the rapidly exploring random tree.
Once the tree is initialized, we insert the current position of
the robot pcurrent as the root node of the tree. We denote the
frontier points as pi, where i is the subscript to distinguish
different frontier points. The new point prand is generated
randomly on the map. Find out the closest node pnearest that
already exists in the current tree to the newly generated point.
Connect these two points to get a straight line, move a length
of η from point pnearest to point prand alone this line to get
a new point pnew. η represents the growth rate of the tree.
The tree will grow quickly when η is set large, but it will
not reach some small corners. On the contrary, when η is
set relatively small, it can reach the corner but the speed of
generating frontier points will decrease. In order to maintain
the balance between the two factors, we set it according to the
map size. If there are no obstacles on the lines between pnearest
and pnew, the corresponding points and edges are added to the
tree. Otherwise, the generated point is discarded. At the same
time, if the newly generated point lies in the unknown region,
the point is considered as a frontier point. It will be marked
in the map, and then we stop the growth of this tree. Using
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FIGURE 1. Generation of frontier points. White areas represent free space,
gray areas represent unknown region, black areas represent obstacle,
blue lines represent spanning tree, green points represent frontier points.

the current robot’s position as the new root node, we build a
new rapidly exploring random tree to generate frontier points.
One example of frontier points generation is shown in Fig.1.

B. FRONTIER POINTS EVALUATION FUNCTION
Frontier points evaluation function is the basis for the selec-
tion of frontier points. We evaluate the frontier points from
the following three factors: information gain at the frontier
point, navigation cost and the precision of the localization of
the robots. Among these factors, information gain is defined
as the area of unknown region expected to be explored for
a given frontier point. At present, the calculation method of
information gain can be divided into two categories: one is to
measure the undetected space size in the visible region of the
target frontier point directly [22], and the other is based on
the information entropy method, which was first proposed by
Bourgault [23], [24]. In this paper, we calculate the informa-
tion gain by the first method. Taking the frontier point as the
circle center, we form a circle with the radius of the laser’s
detection distance. Frontier point detection circle is shown
in Fig.2. The information gain is quantified by counting the
number of unknown cells in this circle. Navigation cost is
defined as the expected distance to be traveled by a robot to
reach a frontier point. The Euclidean distance from the robot’s
current position to the target frontier point is calculated to
represent it. In addition, the accurate map depends on the
robot’s accurate estimate of its own pose. And the robot can
locate itself more accurately if there are more line features
or other features (such as breakpoint, corner, polylines) can
be detected within the detection range of the target frontier
point. In order to be consistent with the calculation unit of
information gain, we use the area of obstacles in the frontier
point detection circle to represent it. It is quantified by count-
ing the number of occupied cells in the circle. Based on the
above factors, we assume that when the robot has reached the
target frontier point pi at time t , the information gain is It ,
the navigation cost is Ct , the area of obstacles is Ft , and the

FIGURE 2. Frontier point detection circle. The yellow point represents
frontier point, the gray area in the circle represents the information gain.

following frontier points evaluation function is defined:

E (pi(t)) =
α (It − It−1)+ γ (Ft − Ft−1)

β (Ct − Ct−1)
(1)

where α, β, γ are the weights of information gain, navigation
cost and the area of obstacles. These weights are used to
adjust the importance of different factors. Its value can be set
according to different tasks and environments. If the explo-
ration task requires the exploration to be completed as quickly
as possible, increase the value of α and decrease the value of
γ ; if the exploration task focuses more on the accuracy of
the map, decrease the value of α and increase the value of
γ . β usually takes 1 to represent the gain value under the unit
navigation cost.We use the frontier points evaluation function
to evaluate all the frontier points. The point with the highest
value is selected as the target frontier point.

C. RANDOM FRONTIER POINTS OPTIMIZATION
ALGORITHM
Because the generation of frontier points part is always run-
ning throughout the exploration process, we will get many
frontier points as the exploration task is executed. However,
due to the randomness of the RRT algorithm, the distribution
of these frontier points is uneven. Therefore, we need to
optimize the generated frontier points. Borrowing the idea
of GSO [29], [29] algorithm, we propose the RFPO algo-
rithm. The GSO algorithm is a new type of bionic swarm
intelligent optimization algorithm. It simulates the natural
phenomenon that the fireflies with high luminance values
will attract fireflies with low luminance values to move to it,
making all fireflies concentrated in a better position so as to
realize optimization of the problem.

In the RFPO algorithm, we consider each frontier point as
a firefly and use the value of the frontier points evaluation
function E (pi(t)) as its absolute brightness value Li(t):

Li(t) = E(pi(t)) (2)
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If the absolute brightness value of firefly i is greater than
the absolute brightness value of firefly j, the firefly j will
be attracted by firefly i and moves to it. The magnitude of
this attraction is determined by the relative brightness value
of firefly i to firefly j. The brightness intensity of firefly i at
the location of firefly j is defined as the relative brightness of
firefly i to firefly j. The greater the relative brightness value
is, the greater the attraction is. Therefore, in order to model
the attraction of frontier point i to frontier point j, we must
first model the relative brightness of frontier point i to frontier
point j. Considering that the relative brightness of firefly
decreases with distance increasing, the relative brightness
value of frontier point i to frontier point j is defined as:

Lij(t) = Li(t)e
−r2ij (3)

where rij is the distance from frontier point i to frontier
point j. Assuming that the attraction of firefly i to firefly j
is proportional to the relative brightness of firefly i to firefly
j, the attraction of frontier point i to frontier point j can be
calculated by (4) below:

Aij(t) = ρLij(t) (4)

where ρ is the coefficient of attraction and for all frontier
points, the different value of ρ have the same effect, so we
can take ρ = 1.

For each frontier point, there is a perception radius r .
Its value should be set according to the perception sensor
range. In this range, every frontier point will find the other
frontier points whose absolute brightness value is larger than
themselves to form their own neighborhood set Ni(t):

Ni(t) = {rij ≤ r;Li(t) < Lj(t)} (5)

After determining the neighborhood set, the probability
that the frontier point moves to other frontier points in its
neighborhood set is calculated as follow:

Pij (t) =
Aij(t)∑

k∈Ni(t) Aik (t)
(6)

In order to select a target point to move to in the neigh-
borhood set, we use the method of roulette. The roulette
is made [30] based on the probability values calculated
above. Once the target frontier point pj has been determined,
the movement of the frontier point pi is calculated by the
following (7):

pi (t + 1) = pi (t)+ s

(
pj (t)− pi (t)∥∥pj (t)− pi (t)∥∥

)
(7)

where pi (t) , pj (t) represent the current position of the fron-
tier point, and pi (t + 1) is the position of the frontier point
i after the movement. s represents the movement step size,
and its value can be determined according to the sensor mea-
surement range. Setting the iteration variable m, we will get
one or more local convergence points when the optimization
iteration ends.

The generation of frontier points and the movement of
the robot are performed simultaneously. When the robot’s
movement distance smove is less than the local exploration
path step size sfixed , the RRT algorithm is working to generate
frontier points. Once the robot’s movement distance smove
reaches the local exploration path step size sfixed , we remove
the frontier points that are no longer at the frontier and the
frontier points that robot cannot arrive. Then we optimize
all the frontier points and select the frontier point with the
highest evaluation value from the optimization result as the
target frontier point. Fig.5 in section IV shows the effect of
optimization. The entire procedure for extracting the optimal
frontier point is described in Algorithm 1:

III. MULTISTEP EXPLORATION STRATEGY
Path planning is also crucial to the efficiency of autonomous
exploration. In this paper we propose a multistep exploration
strategy. After obtaining the current optimal target frontier
point according to the above steps, we do not plan the global
path from the current position of the robot to the optimal
target frontier point directly. Instead, we define a local explo-
ration path step size sfixed for multistep path planning. The
reason why we define sfixed is that: in the process of robot’s
movement, some new frontier points will be generated, some
old frontier points will become invalid, and the new gener-
ated frontier point may be superior to the current optimal
target frontier point. This may cause the robot to take some
repetitive paths. Therefore, we define a local exploration path
step size. Each time when the movement distance of the robot
reaches the step size, we clear the invalid points, and all the
remaining frontier points are reoptimized and reselected so
as to avoid this situation from happening. Within each local
exploration path step size, we use the dynamic approach [32].
The dynamic window approach is used for robot local path
planning to avoid obstacle.

In the dynamic window approach, it is necessary to know
the motion model of the robot in order to simulate the corre-
spondingmotion trajectory of the robot according to the given
velocity. In this paper, we use the differential drive robot
which has linear velocity and angular velocity. Assuming
that at time t the pose of the robot is [xt , yt , θt ]T , the given
velocity pair is [vt ,wt ]T , and the window time is 1t . Then
the calculation model is as follows:

xt+1 = xt −
vt
wt

sin θt +
vt
wt

sin (θt + wt1t) (8)

yt+1 = yt −
vt
wt

cos θt −
vt
wt

cos (θt + wt1t) (9)

θt+1 = θt + wt1t (10)

By the above robot motion model, we can calculate the
corresponding motion trajectory according to different veloc-
ities. We choose multiple sets of different velocities within a
limited range according to the robot’s own velocity limit and
environmental constraints, and simulate the robot’s motion
trajectory. Then we redefined the trajectory evaluation func-
tion to evaluate the multiple generated trajectories, and select
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Algorithm 1 Optimal Frontier Points Extraction
Input: map
Output: goalpoint
1: tree← InitialzeTree (η)
2: tree← InsertNode (pcurrent ,∅)
3: InitializeGSO (ρ, r,m, s)
4: while True do
5: while smove < sfixed
6: prand ← Random
7: pnearest ← Nearest(tree, prand )
8: pnew←Move(pnearest , prand , η)
9: if ObstacleFree(pnearest , pnew) then
10: tree← InsertNode(pnew,(pnearest , pnew))
11: if UnknowRegion(pnew) then
12: PublishPoint(pnew)
13: tree← InsertNode(pcurrent ,∅)
14: end if
15: end if
16: end while
17: Clear Valid Points
18: if Number(p) = 0 then
19: break
20: end if
21: sett = 1
22: for t ≤ m do
23: for i = 1 to Ndo
24: Li (t) = E(pi(t))
25: end for
26: for i = 1 to Ndo
27: Ni (t) = {rij ≤ r;Li (t) < Lj (t)
28: for each jεNi(t) do
29: Lij(t) = Li (t) e

−r2ij

30: Aij (t) = ρLij(t)
31: Pij (t) =

Aij(t)∑
k∈Ni(t)

Aik (t)
32: end for
33: j = Roulette(Pik (t) , k ∈ Ni(t))
34: pi (t + 1) = pi (t)+ s

(
pj(t)−pi(t)
‖pj(t)−pi(t)‖

)
35: end for
36: t = t + 1
37: end for
38: return goalpoint =Max(E (p))
39: end while

the trajectory with the highest score to be performed by the
robot. Considering the following factors in the process of
autonomous exploration and map building: new information
gain 1I , new observed area of obstacles 1F , angular devia-
tion 1θ and distance 1l between simulated pose and target
pose, the nearest distance1d between the simulated pose and
the obstacle, we define the following evaluation function:

R (v,w) = ε1I + ϕ1F − φ1θ − µ1l + σ1d (11)

where ε, ϕ, φ, µ, σ are the weights of the above factors.
In order to eliminate the influence of different calculation

FIGURE 3. Selection of optimal exploration trajectory.

units in (11), each part must be normalized first. For example,
we normalize the nearest distance between the simulated pose
and the obstacle as follow:

normal_d(i) =
1d(i)∑n
i=11d(i)

(12)

where i represents the trajectory to be evaluated, n is all the
trajectories we generated by sampling.

The physical meaning of the evaluation function is: in
the process of the robot’s local exploration and navigation,
the robot is required to avoid obstacles in real time and
arrive the target frontier point as quickly as possible, and
more unknown regions can be explored along the motion
trajectories. For robots, the features such as lines, break-
point, corner, polylines can help it to locate more accurately.
Therefore, the more features that can be observed along the
trajectories of the robot, the more accurately the robot will
locate itself, and the map will be more accurate. As shown in
the Fig.3 below, the yellow point is the target frontier point.
We simulate a number of trajectories at different velocity sets
(only some of the trajectories are shown in the Fig.3). Accord-
ing to our defined trajectory evaluation function, we select
the trajectory with the highest score, it is marked in red in
the following Fig.3. It can be seen that the robot performs
the red trajectory can reach the target frontier point quickly.
At the same time, the trajectory has a certain safety distance
from the wall, and the wall border can help the robot to locate
itself more accurately.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
Experiments are carried out to evaluate the performance of
the strategy that we propose using the simulation map and
the real map. The results are compared with other strate-
gies. All strategies used for comparisons are developed as
ROS components [33] in C++ using ROS libraries on a
computer with Intel core i7 3.60GHz processor and 8GB of
RAM running Ubuntu 14.04. The ROS gmapping package
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TABLE 1. Parameter value.

FIGURE 4. Experiment environment. (a) Simulation environments; (b) real
environments; (c) occupancy grid generated for the simulation
environments; (d) occupancy grid generated for the real environments.

is used for generating the map and localizing the robot in our
experiments. And the ROSNavigation stack is used to control
and direct the robot towards exploration goals. In addition, the
system parameters are shown in Table 1.

For the simulation environment, we use Gazebo simula-
tor [34] to build a closed space, which contains some rooms
and obstacles, as shown in Fig.4 (a) below. Considering the
influence of the changes in map size, different map sizes
(20∗20m, 40∗40m, 60∗60m) are used. The robot’s radius is
0.2m and the laser sensor’s range is set to 10 m. Fig.4
(c) represents the 2D occupancy grid map built in simulated
environment with the size of 20∗20m.
In the real environment, we use the baffle to build a

space of 10m∗10m, as shown in Fig.4 (b) below. The
mobile robot platform used in the experiments is the EAI-
BOT Dashgo-D1. It is equipped with a Hokuyo UST-10LX
2D laser sensor (10m detection range and 270◦ filed of
views). Fig.4 (d) is the 2D occupancy grid map built in real
environment.

FIGURE 5. (a) Frontier points generated before optimization; (b) frontier
points generated after optimization.

B. THE RESULT OF FRONTIER POINTS OPTIMIZATION
Before the autonomous robotic exploration, let the robot take
a turn first to get a local map. In the local map, we generate
frontier points using the RRT algorithm, as shown in the
following Fig.5 (a). Due to the randomness of RRT algorithm,
the positions of the frontier points are all random. It can be
seen that some frontiers have a lot of frontier points, some
frontiers only have few frontier points. Moreover, on each
frontier of the map, the distribution of frontier points is also
uneven. Fig.5 (b) is the frontier points generated using our
proposed algorithm. As shown in the Fig.5 (b), after the
optimization, the number of frontier points has been greatly
reduced, and the frontier points on each frontier are basi-
cally uniformly distributed. The yellow point is the opti-
mal frontier point in the current situation which is calcu-
lated according to the frontier points evaluation function we
defined.

C. THE RESULT OF MULTISTEP EXPLORATION STRATEGY
In this subsection, we compare the effects of different path
planning strategies. As shown in Fig.6 (a) and Fig.6 (b), the
robot directly plans the path from the current position to the
target frontier point and search for the next target frontier
point until the previous target frontier is reached under the
traditional global path planning strategy. This strategy will
lead to a problem: new frontier points will be generated dur-
ing the exploration process, and the position of these frontier
points may be better than the current target frontier point.
The situation that robot chooses new frontier point to explore
after it has reached the previous target frontier point may
cause the repetition of robot’s exploration path, making the
exploration distance to increase. However, in the multistep
path planning strategy, every time the movement distance of
the robot reaches the local exploration path step size sfixed ,
we recalculate and reselect the optimal frontier point to pre-
vent this kind of situation from happening. It can be seen from
the following Fig.6 (c) that before the robot reaches the target
frontier point in Fig.6 (a), the current optimal frontier point
has changed. Therefore, the robot has planned a new path.
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FIGURE 6. The result of multistep exploration strategy, the red triangle represents the starting point, the yellow point represents target frontier point.
(a) Move to the target frontier point; (b) move to the next target frontier point; (c) move to the target frontier of the multistep path planning.

FIGURE 7. The exploration trajectory of each strategy in the simulation map of 40∗40 m. (a) The exploration trajectory of RANDOM
strategy; (b) the exploration trajectory of NEAREST strategy; (c) the exploration trajectory of GREEDY strategy; (d) the exploration
trajectory of UMARI strategy; (e) the exploration trajectory of RFPO strategy.

The result is that the path length in Fig.6 (c) is obviously
shorter than the Fig.6 (a) and Fig.6 (b).

D. COMPARSION WITH OTHER STRATEGIES
We totally perform 200 sets of experiments to compare the
strategy we proposed with other four strategies. The idea
of strategy 1 is to select the frontier point randomly for
exploration which we call it RANDOM. The idea of Strategy
2 is to select the nearest frontier point to the robot and
we use NEAREST to represent it. Strategy 3 uses the idea
of greedy [35] algorithm, so we denote it as GREEDY in

this paper. Strategy 4 is proposed by Umari and Mukhopad-
hyay [8] and we use UMARI to describe it. The strategy
which is proposed by us in this paper is called RFPO. In order
to compare the impact of different map sizes on exploration
strategies, we use 4 different sizes of map for experiments
(a real map and three different sizes of simulation map).
For each map, 50 sets of exploration runs are carried out.
These 50 exploration runs are divided into 5 sets and each
set represents an exploration strategy. In the simulation map
of 40∗40 m, for each strategy, we select an experiment result
from the 10 exploration runs to show the robot’s exploration
trajectories. The results are shown as the Fig.7.
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FIGURE 8. The figure of exploration time when the exploration has finished.

FIGURE 9. The figure of exploration distance when the exploration has been finished.

We made statistics on the exploration time and exploration
distance using the data of the 200 sets of experiments, and
plotted the following figures. Fig.8 shows the exploration
time when the exploration has been finished using differ-
ent exploration strategies in the four different maps, and
Fig.9 shows the exploration distance when the exploration
has been finished using different exploration strategies in
the four different maps. In order to reduce the effect of the
random tree’s growth rate on the experimental results, we set

the corresponding growth rate according to different map
sizes. From the figures we can see that, the larger size of
the map is, the more obvious of the difference in exploration
efficiency between different strategies are. In the simulation
map of 60∗60m, the average exploration time of our proposed
strategy respectively decreased by 26.71%, 7.36%, 5.56%,
1.62% compared with the other four strategies; the aver-
age exploration distance respectively decreased by 31.22%,
15.56%, 14.61%, 8.43%. For the RANDOM strategy, since
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the target frontier point is randomly selected each time,
the robot will take a lot of repeated routes, so the explo-
ration time and the exploration distance will increase. The
NEAREST strategy and GREEDY strategy may cause explo-
ration into a local optimal problem and affect the efficiency of
exploration. Strategy of UMARI directly plans the path from
the robot’s current location to the exploration target point,
which may lead to problems in Fig.6. In our exploration strat-
egy, we optimize the generated random frontier points and
select the point with the largest evaluation value as the target
frontier point in the optimization results. In the path planning
section, the multistep exploration strategy is implemented to
reduce the probability of the robot’s exploration path repeti-
tion. The experimental results show that, whether compared
with the exploration time or the exploration distance, the
effect of the exploration strategy proposed by us performs
better than other strategies, which prove the effectiveness of
our strategy.

V. CONCLUSION
In this paper, an autonomous exploration strategy of robot
based on frontier point optimization and multistep path plan-
ning is presented. This strategy can drive robot to explore
unknown environments and build corresponding 2D occu-
pancy grid maps with a high efficiency without human
intervention. In this exploration strategy, we use the RRT
algorithm to generate the frontier points and propose the
RFPO algorithm to optimize these frontier points. The fron-
tier points evaluation function is defined to select the current
optimal frontier point for exploration. In the path planning
section, we set a local exploration path step size, and reselect
the target frontier point for exploration when the movement
distance of robot reaches the local exploration path step size
so as to reduce the possibility that the robot may take some
repetitive paths.We carry out relevant experiments in the sim-
ulation environments and real environment. The experimental
results verify the effectiveness of our proposed strategy. Since
we currently only use odometer data combining laser sensor
data to build the 2D occupancy grid map, the information
contained in the map is relatively little. Next, we intend to
fuse the visual sensor data into the autonomous exploration.
The advantage of visual sensor data is that it can obtain
more environmental information. These data can be fused to
build a map with richer information for the navigation task
and other related work later. In addition, how to coordinate
the exploration of multiple robots [36] efficiently is also an
important task that we are prepared to do.
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