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ABSTRACT Optical character recognition (OCR) has become one of the most important techniques in
computer vision, given that it can easily obtain digital information from various images on the Internet of
Things (IoT). However, existing OCR techniques pose a big challenge in the recognition of the Chinese
uppercase characters due to their poor performance. In order to solve the problem, this paper proposes a
deep learning-aided OCR technique for improving recognition accuracy. First, we generate a database of the
Chinese uppercase characters to train four neural networks: a convolution neural network (CNN), a visual
geometry group, a capsule network, and a residual network. Second, the four networks are tested on the
generated dataset in terms of accuracy, network weight, and test time. Finally, in order to reduce test time
and save computational resources, we also develop a lightweight CNN method to prune the network weight
by 96.5% while reducing accuracy by no more than 1.26%.

INDEX TERMS Optical character recognition (OCR), convolution neural network (CNN), visual geometry
group, residual network, capsule network, pruning network.

I. INTRODUCTION

Optical character recognition (OCR) is a technology that
uses computer software to automatically recognize optical
characters in the applications of internet of things (IoT).
It is essentially a form of image classification. It is one of
the most important techniques in computer vision and has
attracted a large amount of attention across different appli-
cations [1], [2].

Wang et al. put forward a set of algorithms for license
plate segmentation and recognition, and obtained high char-
acter recognition accuracy [3]. Inoue er al. proposed a
method of combining classifiers using nonlinear discriminant
analysis to improve the accuracy of hand-written charac-
ter recognition [4]. Kokawa et al. proposed a Japanese text
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classification method based on the language features, which
can greatly improve the accuracy of the text classification [5].
Using Poisson foil and an edge-enhanced maximum stable
extreme value area for text recognition, the text area can
be accurately separated from the image, which improves the
reliability of recognition [6]. Text recognition can be applied
not only to images, but also to a wide range of applications
in video [7]. The main method of text recognition from video
involves dividing the video into individual frames. When it
comes to the recognition of Arabic text, the authors in [8] pro-
posed an effective end-to-end trainable hybrid architecture.
Their model is able to recognize Arabic text in high accuracy.

Existing OCR techniques perform very well in the recog-
nition of English words as well as Arabic numerals. However,
the accuracy of these techniques is not high for recognizing
Chinese characters due to different language families [9]. It is
hard to develop related techniques due to the fact that Chinese
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characters are very similar. As a result, conventional methods
cannot achieve high recognition accuracy.

OCR is an important part of pattern recognition while deep
learning has good performance in pattern recognition. Deep
learning is therefore considered to be an effective method
for handling big data and improving identification perfor-
mance. Recently, it has been successfully applied in different
applications [10], [11]. In [12], a deep learning-aided non-
orthogonal multiple access (NOMA) scheme was proposed to
improve achievable rate and access performance. The system
uses the long short-term memory (LSTM) network for the
NOMA system and trains the LSTM network with data under
different channel conditions so that the proposed scheme can
automatically detect channel characteristics while ensuring
its robustness. The authors proposed a deep learning-aided
super-resolution channel estimation and direction-of-arrival
estimation technique by using a deep neural network (DNN)
for both offline and online learning [13]. In addition, pilot
allocation is also an important part in multiple-input multiple-
output techniques. A new deep learning-based pilot design
scheme was proposed in [14], which uses a multi-layer per-
ceptron to infer the optimal pilot allocation scheme. The
Internet of Things (IoT) has high requirements for energy and
resource efficiency, and it is impossible to directly implement
edge computing on the [oT [15], [16]. In order to improve
the spectrum efficiency of the IoT, NOMA technology was
introduced to solve the problem of energy-saving resource
allocation, and a recurrent neural network (RNN) was intro-
duced to optimize resource allocation [17].

The algorithm of typical OCR
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FIGURE 1. The framework of a typical OCR. Firstly, we enter the image
into the system. Then, image preprocessing is performed, and the original
image is subjected to tilt correction and the like. Next, locate the text area
and identify the text. Finally, the system outputs the result of the text
recognition.

In addition, a DNN was proposed to improve the perfor-
mance of character recognition. In [18], Nawaz et al. created
an effective hand-written dataset with a set of classes suit-
able for deep metric learning. Joshi et al. developed a deep
learning-based method for improving the recognition accu-
racy and efficiency of hand-written Gujarati characters [19].
In [20], Rajnoha et al. used a deep learning method to clas-
sify hand-written characters and achieved an accuracy of
90.04%. In [21], Wiraatmaja et al. proposed an increased
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OCR technique with the aid of a deep convolutional denois-
ing autoencoder. In [22], the proposed deep learning model
achieved better accuracy on poor quality text images and
an overall reduction of 21.5% in error rate compared to the
existing OCR technologies.

Traditional networks of deep learning that are used to
recognize characters have huge network weight and thus their
computational burden is very high. To solve these problems
and accelerate the development of edge computing, we con-
sider pruning the networks. Some typical applications of
deep reinforcement learning (DRL) in network slicing are
described in [23], and the possible challenges of DRL in net-
work slicing resource management are discussed. Kato et al.
proposed a heterogeneous computing platform based on deep
learning and intelligent routing development [24]. Compared
to existing deep learning methods, the proposed methods can
ensure more stable network performance when the network
topology changes.

To enable the successful application of deep learning
in edge computing, [25] proposed a pruning method for
developing a light deep learning network. In deep networks,
the output of most neurons is zero, meaning that most are
useless. These inactivated neurons are often redundant and
can therefore be removed without affecting the accuracy of
the deep network. Re-training after network pruning can
achieve the same high accuracy as the original while greatly
reducing the network weight [26].

This paper proposes a lightweight neural network-based
method for Chinese text recognition. The proposed method
can greatly reduce network sizes and achieve high accuracy.
The rest of this paper is organized as follows. Section II
introduces four typical deep neural networks: the convolu-
tion neural network (CNN), visual geometry group (VGG),
residual network (ResNet), and capsule network (CapsNet).
Section III provides the method of Lightweight CNN and
discusses its performance. Finally, Section IV provides a
summary of the present paper.
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FIGURE 2. The dataset of all special Chinese uppercase characters. The
penultimate pattern represents a special symbol, and the other fifteen
patterns are all Chinese characters. The numbers and the English words in
the second and fourth lines indicate the meaning of the corresponding
Chinese characters and the special symbol.

II. NETWORKS OF DEEP LEARNING

Deep learning is an important division of machine learning
and has been successfully applied in many fields such as
speech recognition and natural language processing (NLP).
In this section, we will train four networks to recognize
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15 kinds of Chinese uppercase characters and a special sym-
bol. Both the test set and the verification set have 480 images.
We made data enhancements to the datasets, including rotat-
ing, cropping, and denoising the original image before enter-
ing the network.

A. CONVOLUTION NEURAL NETWORK
The CNN is the most famous network of deep learning and
is widely applied in computer vision and NLP. It is a class of
feedforward neural network with convolutional computation
and deep structure [27].

For general large-scale image classification problems,
a CNN can be used to construct hierarchical classifiers,
and can also be used in fine classification recognition to
extract discriminant features of images for other classifiers to
learn. It enjoys excellent performance in image classification
and has some advantages over traditional technologies like
good adaptive performance and high resolution. It integrates
the feature extraction function into the multi-layer percep-
tron via structural reorganization and reducing the weight,
and omits the complicated image feature extraction process
before recognition.

TABLE 1. CNN network parameters.

Layer Output Shape Parameter
Input (48,48, 1) 0
Conv2D (44, 44, 128) 3328

Max Pooling (22,22, 128) 0
Conv2D (22,22, 64) 73792
Conv2D (22,22, 64) 36928

Average Pooling (11, 11, 64) 0
Flatten (7744) 0
Dense (1024) 7930880
Dropout (1024) 0
Dense (1024) 1049600
Dropout (1024) 0
Dense (16) 16400

A CNN consists of three main parts. The first part is
the input layer. The second part consists of a combination
of convolutional layers and pooling layers. The third part
consists of fully-connected layers [28]. The convolutional
layer is the core component of a CNN. It consists of multiple
filters. The parameters of each filter are optimized using a
backpropagation algorithm. The purpose of convolution is to
extract the features of the input image.

There are two main types of pooling operations. One is
average pooling and the other is max pooling. The pooling
layer will continuously reduce the dimensions of the data,
the number of parameters, and the amount of calculation.

The detailed parameter of the CNN network is listed
in Table 1. Each node of the fully connected layer is con-
nected to all nodes of the previous layer to combine the
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features extracted from the front. Due to its fully connected
nature, the parameters of the fully connected layer are most
common. The number of parameters is 9,110,928. The weight
of the CNN is 106,820 KB and its accuracy is 98.96%.
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FIGURE 3. CNN confusion matrix. There are thirty images tested for each
character. The horizontal axis represents the result of the system
prediction, and the vertical axis represents the true label of the image.

B. VISUAL GEOMETRY GROUP

The VGG is a deep convolutional network developed by
the computer vision group of Oxford University and Deep-
Mind. A VGG and CNN are not much different in principle.
According to network structure, a VGG is divided into six
different classes. Each structure contains five sets of convo-
lution layer. Each convolution layer uses 3 x 3 convolution
kernels. Each group of convolutions are accumulated after a
2 x 2 maximum pooling, followed by three fully connected
layers [29].

The VGG increases the depth of the neural network and
uses a small convolution kernel. It has a great effect on the
final classification and recognition effect of the network when
itis used to capture details of images. However, the VGG con-
sumes more computing resources and uses more parameters
than a CNN, resulting in more memory usage. Most of the
parameters come from the first fully connected layer of the
VGG.

When training a high-level network like a VGG, we can
first train the low-level network, and initialize the high-level
network with the weight obtained by the former. In this way,
we can accelerate the convergence of the network with less
consumption of computational resources. The weight of the
VGG is 157,358 KB and its accuracy is 97.92%.

C. RESIDUAL NETWORK

It is generally believed that the deeper the network layer
is, the higher the features are extracted, and the better the
final effect. However, the main problems encountered by deep
learning for network depth are gradient disappearance and
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FIGURE 4. VGG implemented convolution operation with a

3 x 3 convolution kernel. Each parallelogram represents a pixel. The
5 x 5 matrix is convoluted by a 3 x 3 convolution kernel and becomes
a 3 x 3 matrix. After another convolution, it becomes a 1 x 1 matrix.
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FIGURE 5. VGG confusion matrix. VGG has errors when predicting
characters 1, 3, 6 and 8.

gradient explosion. The traditional corresponding solution is
the initialization and regularization of data. Although this
solves the problem of gradient, when the depth is deepened,
it will bring another problem which is the degradation of
network performance. The depth is deepened, and the error
rate is increased [30].

The ResNet is a new deep convolutional network pro-
posed in 2015. Upon its birth, it won the championship of
image classification, detection, and positioning in ImageNet.
A ResNet is easier to optimize and can increase accuracy by
adding considerable depth. The core is to solve the side effects
caused by the increase in depth, which can improve network
performance by simply increasing the network depth.

Some vector data of the previous layer is combined with
the data that has been compressed as the following input
data. Introducing more dimensional features, the network can
learn more to improve accuracy. A ResNet is used to handle
the degradation problem. It can solve the gradient problem
and improve the performance of the network. When the per-
formance of the ResNet reaches a bottleneck, the redundant
network layer makes an identity map. The weight of the
ResNet is 40,185 KB and its accuracy is 99.17%.
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FIGURE 6. Residual unit. This residual unit often requires more than two
layers, and the single-layer residual block does not improve.
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FIGURE 7. ResNet confusion matrix. ResNet has errors when predicting
characters 1, 2 and 8.

D. CAPSULE NETWORK

The CNN does not consider the relative positional factors of
the object when identifying it. Assuming that the CNN can
recognize human faces, it will give the answer of human face
as long as there are two eyes, a nose, two ears, and a mouth
on an image, even if they are randomly arranged. The reason
is that the CNN’s pooling layers reduce parameters, avoid
overfitting, and discard location information [31].

A CapsNet will solve this problem by taking the location
information of the object into account. It replaces the scalar
output of each neuron in the CNN with a vector output.
A CapsNet uses the size of the vector modulus to measure the
probability of occurrence of an entity. The larger the modulus,
the greater the probability. The weight of the CapsNet is
3,458 KB and its accuracy is 99.38%.

IIl. LIGHTWEIGHT CONVOLUTION NEURAL NETWORK

The storage and computation of neural networks on embed-
ded devices has become a huge challenge due to storage space
and power constraints. In general, the deeper the number
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FIGURE 8. CapsNet connection relationship. Each capsule nerve unit in
the previous layer is connected to each unit in the latter layer.
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FIGURE 9. CapsNet confusion matrix. CapsNet has errors when predicting
characters 3 and 6.

of layers of the neural network and the more parameters,
the more accurate the conclusions are. However, accurate
results mean more computing resources are consumed. For
mobile devices, speed and accuracy are of equal importance.
In order to solve the problem, pruning technology came into
being.

Pruning is the removal of parameters that do not contribute
much to the output. The neurons of the model are first sorted
according to the order of their contribution to the final result.
Some neurons with low contributions are then discarded so
that the model runs faster and the weight file of the model is
smaller. Therefore, we try to trim the neural network, remove
some unnecessary network neurons, retain the weight param-
eters which are important to the network, and reduce the
parameters in order to reduce the computational complexity
of the model. If too many neurons are removed, there will
be a certain loss in accuracy of the model, resulting in a
large degree of decline in performance. Therefore, pruning
is actually an iterative process. After deleting the neurons,
we must retrain the network.

In deep neural networks, most of the neurons are activated
to zero, and the neurons with O activation are redundant.
Eliminating them can greatly reduce the model size and
the energy computation. We use the Average Percentage of
Zeros (ApoZ) algorithm to measure the number of values
activated by O in each filter as a criterion for evaluating
whether a filter is important.

" g(H(k) = 0)

~M=
M=

~

APoZY = APoZ(HY) = 1)

N xM
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FIGURE 10. Process of the pruning network. The core of pruning is to
prune neurons with APoZ = 0.

TABLE 2. Lightweight CNN network parameters.

Layer Output Shape Parameter
Input (48,48, 1) 0
Conv2D (44, 44, 82) 2132

Max Pooling (22,22, 82) 0
Conv2D (22,22, 3) 2217
Conv2D (22,22, 64) 1792

Average Pooling (10, 10, 64) 0
Flatten (6400) 0
Dense (39) 249639
Dropout (39) 0
Dense (1024) 40960
Dropout (1024) 0
Dense (16) 16400

where Hc(l) is the output of the c-th channel in the i-th layer.
M represents the dimension of the output feature map of HC('),
and N is the total amount of validation images. We calculate
the APoZ of each neuron and then decide which neuron can
be pruned.

The CNN is the most widely used neural network for
deep learning, with millions of parameters and neurons.
In the CNN, the vast majority of parameters are derived from
the convolutional layer and the fully connected layer, where
the parameters of the fully connected layer reach more than
90% of the total. However, instead of every neuron in the
network coming in handy, many neurons are not activated.
Cutting these inactivated neurons has less impact on the
network. In practice, we can iteratively prune the CNN by
synthesizing the requirements of network weights and the
requirements of accuracy.

The detailed parameters of lightweight CNN is listed as
in Table 2. The total number of lightweight CNN parameters
is 313,140. The weight of the Lightweight CNN is 3,727 KB.
Compared with the CNN, with an accuracy rate of 97.7%,
the network weight is reduced by 96.5%. Also the perfor-
mance comparisons of all networks are given in Table 3.
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FIGURE 11. Lightweight CNN confusion matrix. In total 480 images,
lightweight CNN has predicted 11 images wrong.

TABLE 3. Network comparison.

Lightweight
CNN VGG ResNet CapsNet CNN
Accuracy 98.96% 97.92% 99.17% 99.38% 97.70%
Weight

(KB) 106820 157358 40185 3458 3727
Test time in

CPU 1.70 4.86 4731 0.22 1.33
Test time in

GPU 1.40 0.05 12.05 0.05 0.05

IV. CONCLUSION
In this paper, we have proposed a deep learning-aided OCR
technique for improving recognition accuracy for IoT appli-
cations. In order to realize this technique, we trained and
tested a CNN, VGG, ResNet, and CapsNet on a dataset of
Chinese uppercase characters and obtained their accuracy and
test time for comparison. We also pruned the CNN by deleting
the inactivated neurons of the convolution and dense layers.
As a result, the network’s weight dropped by 96.5%, with an
accuracy of 97.70%. It is worth mentioning that the ResNet
and CapsNet achieved an accuracy of 99.17% and 99.38% on
the test dataset, respectively. The test time was an average of
the time for each network to run 20 times on the CPU or GPU.
Applying deep learning to OCR can achieve a high accu-
racy and low processing time. Pruning the deep learning
network can further reduce the system test time and network
weight. In addition, pruning the deep network also helps drive
the development of edge computing [33], [34].
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