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ABSTRACT The upcoming fifth generation (5G) of wireless networks is expected to lay a foundation of
intelligent networks with the provision of some isolated artificial intelligence (AI) operations. However,
fully intelligent network orchestration and management for providing innovative services will only be
realized in Beyond 5G (B5G) networks. To this end, we envisage that the sixth generation (6G) of wireless
networks will be driven by on-demand self-reconfiguration to ensure a many-fold increase in the network
performance and service types. The increasingly stringent performance requirements of emerging networks
may finally trigger the deployment of some interesting new technologies, such as large intelligent surfaces,
electromagnetic–orbital angular momentum, visible light communications, and cell-free communications,
to name a few. Our vision for 6G is a massively connected complex network capable of rapidly responding
to the users’ service calls through real-time learning of the network state as described by the network edge
(e.g., base-station locations and cache contents), air interface (e.g., radio spectrum and propagation channel),
and the user-side (e.g., battery-life and locations). The multi-state, multi-dimensional nature of the network
state, requiring the real-time knowledge, can be viewed as a quantum uncertainty problem. In this regard,
the emerging paradigms of machine learning (ML), quantum computing (QC), and quantum ML (QML)
and their synergies with communication networks can be considered as core 6G enablers. Considering these
potentials, startingwith the 5G target services and enabling technologies, we provide a comprehensive review
of the related state of the art in the domains ofML (including deep learning), QC, and QML and identify their
potential benefits, issues, and use cases for their applications in the B5G networks. Subsequently, we propose
a novel QC-assisted and QML-based framework for 6G communication networks while articulating its
challenges and potential enabling technologies at the network infrastructure, network edge, air interface,
and user end. Finally, some promising future research directions for the quantum- and QML-assisted B5G
networks are identified and discussed.

INDEX TERMS 6G, B5G, machine learning, quantum communications, quantum machine learning.

I. INTRODUCTION
Research interests in data-driven adaptive and intelligent
methods have strongly reemerged in recent years [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Irene Amerini.

This renewed interest has emerged in part due to the advance-
ments in classical computing methods and partly due to
the tremendous potential of parallelism offered by Quantum
Computing (QC) and related quantum technologies. These
advents in computing methods have led to the considera-
tion of deploying Machine Learning (ML) as a potential
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alternative to the conventional logic-based approaches.
ML is not only believed to have a strong potential in
the network operations spanning from autonomous man-
agement and service classification but also in addressing
the re-configurability demands of the future systems. These
data-driven learning and quantum-powered computing meth-
ods have a strong potential in realizing the ambitions of a
service-driven fully intelligent 6th Generation (6G) commu-
nication network. In the emerging paradigm of increasing
human and machine inter-connectivity, a significant prolif-
eration in the number of network nodes and data traffic is
expected [3], [4].

Towards provisioning this massive connectivity and effi-
ciently processing the voluminous data available at the
user and network sides of the Beyond 5G (B5G) net-
works, this paper proposes a novel framework based on
QC-assisted ML and Quantum ML (QML) as enabling tech-
nologies. Specifically, in the next subsections, we discuss
notable recent studies on B5G networks, and also survey
recent works on ML and Quantum communications for B5G
networks. The major contributions of this work are then
presented.

A. WHY B5G NETWORKS?
The 5G wireless networks have recently started to be
deployed in some parts of the world but the goal of a fully
intelligent network furnishing everything as a service and
rendering a completely immersive user experience remains
elusive. With 5G reaching its limits in the next decade or so,
the design goals for its successor have already begun to be
explored in the literature.

The research community is currently discussing the vision
for 6G communication networks under different labels such
as B5G, 5G+, and 6G. In this context, a few articles dis-
cussing the vision and open challenges for 6G have recently
appeared in the literature, for example, see [5]–[9]. The
authors in [5] have discussed various performance require-
ments and potential technologies for 6G. In [6], a vision
for 6G communications was presented and its perceived
requirements were discussed based on an extrapolation of
the evolution trends of previous mobile network generations,
i.e., 1G through 5G. Recently, [7] provided an overview of
the limitations of 5G networks in the context of meeting
the growing network performance demands. The authors also
discussed some revolutionary new technologies to meet these
demands in 6G networks. It has been speculated in [7] that
5G will reach its performance limits within 10 years of its
launch, and 6G will be required to deliver further increases
of 100× and 50× in the individual and the downlink data
rates, respectively. The authors in [8] havemotivated the need
for 6G through a gap-analysis between the original ambi-
tions and maturing 5G networks. Moreover, the authors also
presented a vision of future services and technologies based
on a new communication infrastructure. The authors in [9]
have pointed out some drawbacks of emerging 5G commu-
nication networks, and they have also discussed interesting

6G communication trends that can potentially address these
shortcomings.

The 6G networks are widely projected to provide an
increase of 100× in volumetric spectral and energy efficiency
(in bps/Hz/m3) relative to the 5G networks and they will have
a very complex structure incurred from massive connectivity.
The global mobile data traffic is forecasted to grow 55%
annually between 2020 and 2030 [10]. This growing traffic
will be generating 5, 016 ExaByte (EB) data per month,
by the year 2030. This tremendous amount of data may be
harnessed, with strong processing and learning capabilities,
to manage the network at different levels. To this end,ML and
QC methods can play a significant enabling role.

B. MACHINE LEARNING FOR B5G NETWORKS
ML is a subbranch of Artificial Intelligence (AI) in which
machines learn, perform, and improve their operations by
exploiting the operational knowledge and experience gained
in the form of data [1]. Based on the nature of available data
and explicitness of the learning objectives, ML is usually
classified into three major paradigms, i.e., supervised, unsu-
pervised, and reinforcement learning. In this regard, authors
in [11] have reviewed the history of these ML paradigms and
their compelling applications in communication networks.
The authors have also reviewed theML prospects for the opti-
mization of various performance metrics including data-rate,
latency and reliability in the context of cognitive radios, het-
erogeneous networks, Internet of Things (IoT), andMachine-
to-Machine (M2M) communications.

ML can potentially assist big data analytics to real-
ize self-sustaining and proactive wireless networks [12].
Various potential applications of big data analytics and ML
in enhancing the performance of communication networks
have been pointed out in [4], [13]. For example, ML tech-
niques can be significantly advantageous in addressing the
access congestion problem in emerging ultra-dense IoT
networks [14]. Furthermore, the scope of employing super-
vised and unsupervisedMLmethods across different layers of
communication networks have been discussed in [15]. How-
ever, the success of data-driven learning solutions is directly
linked to the availability of sufficiently large amounts of data
and a robust processing capability. Also, the available state-
of-art in ML is isolated in terms of ML techniques as well
as their operations across different layers of the protocol
stack of communication networks. To this end, one of the
objectives of this paper is to provide a detailed classification
of existing ML techniques along with their applications in
B5G communications networks.

On the other hand, Deep Learning (DL) adopts an intensive
system structure for representing and learning correlational
structures in the available data by proceeding in a super-
vised, unsupervised, reinforcement, or hybrid fashion. For
example, an Artificial Neural Network (ANN) with mul-
tiple (deep) transmissive hidden layers is referred to as a
Deep Neural Network (DNN). The training and processing
of data through conventional ML algorithms, executed on
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conventional Central Processing Units (CPUs) with a limited
number of cores, has a limitation of large processing delays.
The recent advances in parallel computing capabilities and
distributed learning methods have enabled the deployment
of data-driven DL approaches to complement the conven-
tional model-based approaches. For example, the revisited
learning algorithms for exploiting the numerous amount of
available processing cores in advanced Graphics Process-
ing Units (GPUs) has demonstrated a remarkable perfor-
mance gain. Furthermore, the advanced Tensor Processing
Units (TPUs) have demonstrated a tremendous parallel pro-
cessing potential with manifold speed-ups and power effi-
ciency in executing ML algorithms. These advances have
demonstrated a profound impact of DL-based solutions
across various multi-dimensional signal processing applica-
tions, e.g., medical image processing, natural languages pro-
cessing, and wireless communications, to name a few.

A comprehensive survey on the role of DL in mobile and
wireless communication networks is presented in [16], where
various DL platforms, architecture, and libraries suitable for
applications in communication networks are indicated. Also,
the motivation behind the use of DNNs in designing and oper-
ating the future wireless networks is extensively discussed
in [17]. The accuracy of the estimated or prior-available
statistics of radio propagation channels is of vital importance
in enhancing the capacity of wireless communication links.
The concept of auto-encoding an end-to-end communication
system within a DNN for jointly optimizing the operations of
both transmitter and receiver sides to best counter the channel
impairments has recently emerged with a strong potential.
For example, a DNN-based end-to-end learning system is
proposed in [18], where a channel agnostic learning based
system is proposed for learning the channel output through
a conditional Generative Adversarial Net (GAN).

Bringing intelligence to the physical layer of the commu-
nication systems can empower smart estimation of param-
eters, mitigation of interference, and the management of
resources [19]. As an example, DL capabilities can be utilized
for channel estimation and symbol detection in Orthogo-
nal Frequency-Division Multiplexing (OFDM) systems [20].
Furthermore, DL has also received significant research inter-
ests in dynamic allocation and management of radio resource
for vehicular communications (i.e., vehicle-to-vehicle (V2V),
vehicle-to-everything (V2X), etc), where high nodes mobil-
ity impose high dynamicity in the channel characteristics.
For example, a Deep Reinforcement Learning (DRL) based
decentralized resource allocation mechanism can be utilized
to support highly dynamic communication applications [21].

Massive Multiple-Input Multiple-Output (M-MIMO) sys-
tems and millimeter-Wave (mmWave) spectrum exploit-
ing high spatial resolution and multi-gigahertz bandwidth,
respectively, are believed to have an important role in
addressing the capacity demands of future communication
networks [12], [22]. One of the potential applications of
employing DL methods in such mmWave M-MIMO sys-
tems is the estimation of radio channel quality [23], which

is essential for the design of transmission techniques such
as beamforming. Also, the potential of deploying DL for
various other tasks across all the communication layers has
also received notable attention [21], [24]–[26], e.g., intelli-
gent localization, radio identification, routing, channel track-
ing, routing, and caching. The integration of DL capability
with the smart city infrastructure can help in effective utiliza-
tion of the available big data for accomplishing the dream of
the cognitive smart world of the future [27].

However, DL methods lack an efficient mechanism for
prior evaluation of the best choice of training algorithm, size
and structure of DNN, and parameters setting that suits the
model/problem under consideration. The hit-and-trial snoop-
ing along a very large set of possibilities in structure, size,
algorithm, and parameter-value makes the deployment of DL
not only cumbersome but it can also lead towards the loss
of balance between underfitting and overfitting. To this end,
this paper provides a review of the existing related works,
identifies the potential issues and discusses emerging DL
methods including DNN, deep transfer learning, and deep
unfolding.

C. QUANTUM COMMUNICATIONS FOR B5G NETWORKS
In the quest to meet the rapidly increasing demands of fast,
reliable, secure, intelligent, and green communications; the
demand for a high computational capability of the systems
has also increased expeditiously. The inherent parallelism
offered by the fundamental concepts of quantum mechanics
and the prospects demonstrated through recent results of QC
technology clearly indicate a definite potential to outperform
the conventional computing systems [28]. This immense
power of QC comes from the fundamental concepts of quan-
tum superposition, quantum entanglement, or the no-cloning
theorem [29]. The parallel processing of multi-dimensional
large-sized data can be conveniently realized through QC in
large tensor product spaces. The QC-assisted communica-
tions is another new research area, which is envisioned to hold
promise for achieving extremely high data rates and link secu-
rity in future 6G and beyond communications [30]. To this
end, the reliable communication rate of quantum channels for
amalgamated noiseless classical communication, quantum
communication, and entanglement resources have begun to
be investigated in the literature [31], [32].

The emerging solutions for enhancing the link capac-
ity in future communication systems, e.g., power domain
multiple access supported by Successive Interference Can-
cellation (SIC), have very high run-time computational
power demands; thus there is a clear scope for exploiting
QC. An example of multi-objective space exhaustive-search
demanding problem in communications is to determine the
optimal data-packet routes in multi-hop communication net-
works. A quantum-assisted solution to the above problem
has been presented in [33], where an evolutionary quantum
Pareto optimization algorithm has been proposed. Further-
more, the extension of classical turbo codes to quantum turbo
codes with error correction for frequency selective channels
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TABLE 1. A high-level classification of the surveyed literature on ML, QC, and QML.

has been proposed in [34]. Some examples of recent efforts
on quantum-aided solutions for localization, multi-objective
routing and load balancing, channel estimation and decod-
ing, and multi-user transmission are discussed in [35]–[37],
and [38], respectively. Moreover, [30] is a recent survey on
the existing efforts on employing QC in solving various opti-
mization problems encountered in different layers of wire-
less communication systems. Nevertheless, there is a need
to conduct a comprehensive review of the recent studies on
QC-assisted communications and pure quantum communica-
tions in order to draw a clear picture of the current state of
understanding about these topics.

D. CONTRIBUTIONS OF THIS WORK
The advantages offered by QC and ML methods have col-
lectively emerged into an exciting interdisciplinary frame-
work of QML [39]. In this emerging framework, the ML
techniques benefit from exploiting the quantum speedups,
whereas the quantum devices’ uncertainties can be resolved
with assistance from ML techniques [40]. By combining
the established merits of quantum mechanics in producing
counter-intuitive statistical patterns, and those of ML tech-
niques in recognizing statistical patterns in data, the QML
framework can generate and recognize statistical data pat-
terns that are beyond the capabilities of classical computing
or MLmethods alone [41]. The research community has only
recently begun to explore the applications of QML across var-
ious engineering disciplines, see e.g., [42], [43]. This nascent
QML framework, having strong synergies with superimposed
signals and enmeshed links, can find significant application
in communication networks. To the authors’ best knowledge,
this work is the first to explicitly investigate the deployment
of the QML framework for future communication networks.

Previous works have separately characterized ML, QC,
QML, and communication networks, see e.g., [1], [28], [29],
[39]–[43], and [2], [3], [22], respectively. In the literature,
the stand-alone application of ML and QC to future com-
munication networks has been intensively studied, as sum-
marized in Table 1, see e.g., [11]–[13], [15]–[17], [19], [21],
[24], [26], [27] and [30]–[38], respectively. However, to-date
there is no investigation of the joint deployment of QC and
ML for future communications, either using QC-assisted ML
or the QML framework. This work aims at bridging this

gap by conducting a thorough review of QC, ML, and QML
in the context of 6G and beyond communication networks.
Specifically, the main contributions of this work are listed as
follows:
• A review of the 5G target services and their enabling
technologies is provided. Moreover, the major open
challenges and enabling technologies envisioned for
B5G communication networks are elaborated.

• The state-of-the-art of ML, including DL, is thoroughly
reviewed in the context of increasingly stringent perfor-
mance requirements of future communication networks.
Moreover, various use cases and potential challenges
in the application of DL methods to B5G networks are
identified.

• The state-of-the-art of quantum communications,
including QC-assisted communications, is comprehen-
sively reviewed. Also, some open research problems in
generalization, scalability, and algorithm-parallelization
for QML-based communication networks are identified.

• A novel QC-assisted ML and QML-based framework
for 6G communication networks is proposed. In the
proposed framework context, various potential enabling
technologies for 6G at network-infrastructure, network-
edge, air interface, and user-side are also discussed
thoroughly.

• To stimulate future research activities in the context of
the proposed 6G framework, various research problems
and some exciting future directions are also identified.

The rest of this paper is organized as follows. In Sec. II,
the target services and technology innovations offered by 5G
communication networks are identified. Moreover, the open
research challenges and performance requirements of B5G
communication networks are discussed. In Sec. III, the fun-
damentals ofML (including DL) and taxonomy of its applica-
tions in communication networks are thoroughly discussed.
Sec. IV elaborates the fundamentals and state-of-the-art of
quantum communications, QC-assisted communications, and
QML-based communications. Sec. V proposes a novel frame-
work for 6G and beyond communication networks. Detailed
discussions on various exciting future research directions,
potential enabling technologies, and open research problems
in the context of the proposed framework are also conducted.
Finally, the conclusions are drawn in Sec. VI.
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FIGURE 1. Evolution of land mobile radio communication networks across several generations.

Conventions: Quantum communications refers to the com-
munication systems which are purely based on the quantum
mechanics concepts. QC-assisted communications refers to
the conventional communications exploiting quantum speed-
ups. ML-assisted communications refers to communications
exploiting ML methods (including DL). QC-assisted ML
refers to conventionalML systems exploiting quantum speed-
ups. QC-assisted ML based communications refers to the
conventional communications exploiting both ML methods
and QC speed-ups. QML-based communications refers to the
communications exploiting the nascent framework of QML.

II. 5G AND BEYOND COMMUNICATION NETWORKS
The 5G mobile communication networks is envisioned to
enable new services to everything at all-time through ultra-
fast, low-latency, and ultra-reliable communication links.
These networks are not only an evolution of existing net-
works, as shown in Fig. 1, but also they introduce revolu-
tionary new communication technologies aimed at providing
an immersive user experience. The preliminary 5G stan-
dardization efforts have matured through 3rd Generation
Partnership Project (3GPP) Release 15 [44], which includes
specifications for both the non-standalone and standalone
operation of the 5G New Radio (NR). Further investigations
and field trials are in progress [45] and the 5G standardiza-
tion is expected to conclude with 3GPP Release 16 in the
year 2020.Meanwhile, the commercial deployment of 5GNR
in non-standalone mode has already begun in major cities
around the globe.

A. 5G TARGET SERVICES
In the following, we elaborate on some of the major target
services of 5G and discuss the technology innovations envi-
sioned to materialize them. Some of these technologies are
radically novel, whereas others may not have matured in time
to be included in the 5G standards.

1) ENHANCED MOBILE BROADBAND
The 5G networks are aimed at providing a 1000-fold
increase in the aggregate throughput and a 10-fold increase
in the individual link throughput relative to the 4th Gen-
eration (4G) wireless networks [46]. The target through-
put of up to 20 Gbit/s in the downlink and 10 Gbit/s in
the uplink enable services such as ultra high definition
video streaming, augmented reality, and TI. At the physi-
cal layer, the technology innovations to support these data
rates include communications in the mmWave frequency
band [47], wherein the large bandwidth can support high data
rates; M-MIMO whereby the number of antenna elements
at the Base Station (BS) is much larger in proportion to
the serviced users [48] such that multiple data pipes can
be established over the same time and bandwidth resource.
Finally, theUltra-DenseNetwork (UDN) strategy [49], which
entails an aggressive deployment of multiple small-cells
within a macro-cell, can also provide increased data rates to
its associated users who are typically in close proximity of
their small cell BS and enjoy favorable wireless propagation
conditions.
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2) ULTRA RELIABLE LOW LATENCY
COMMUNICATIONS (URLLC)
The provision of URLLC is a novel service paradigm offered
in 5G networks. Both the reliability aspect, with packet
error rates ≤ 10−5, and end-to-end latencies ∼1ms aim
at supporting new use cases such as factory automation,
autonomous driving, e-health, building automation, and smart
cities, to name a few [50]. To enable these and other ser-
vices, the 5G network infrastructure is based on the revo-
lutionary novel concepts of Network Function Virtualization
(NFV) [51] and end-to-end Network Slicing (NS) [52]. In the
NFV approach to network design, many network services
such as network address translation, domain name service,
and caching are decoupled from propriety hardware and
implemented in software that runs on off-the-shelf hardware.
The NS concept allows multiple logical networks or slices
to operate on a shared physical infrastructure. Each network
slice has dedicated resources for computation and storage as
well as data-traffic isolation from the other slices to create a
true end-to-end virtual network. With NFV and NS, the phys-
ical network resources can be optimized to provide URLLC
services for safety critical applications such as vehicular
communications or remote-robotic-surgery. Another infras-
tructure evolution to support low latency communications is
edge-computing architectures including Mobile Edge Com-
puting (MEC) [53]. In the MEC paradigm, many of the data
processing tasks are moved to the cellular BS or similar
edge node, which also has the ability to cache content,
thus minimizing the service time to its proximal network
users.

3) MASSIVE MACHINE TYPE COMMUNICATION (mMTC)
With the advent of the IoT, a very large number of low-rate
low-power devices require an internet connection. These
devices may be typically used for environment sensing
and utility metering applications and only require inter-
mittent communications with small data payloads [3]. The
mMTC service aims at providing internet connectivity to
such devices. While many of the 5G mMTC service com-
ponents have been developed as part of the previous 3GPP
releases, those services that need URLLC will require the
5G Core network deployment. The mMTC service is enabled
by the flexible combination of NFV and NS, which may
provide automated network functions to the mMTC devices
without incurring heavy operational expenditures for the
mobile service provider. Also, the Non-orthogonal Multiple
Access (NOMA) scheme in 5G is seen as an enabler of
mMTC connections by allowing grant-free uplink connec-
tions to the energy constrained mMTC devices and saving
them the control signaling overhead [54]. One promising
architecture to support mMTC as well as URLLC services
is a collaborative edge-cloud framework which can utilize
the benefits of both the cloud-computing and edge-computing
towards handling a large amount of data and providing timely
feedback to the end-users, respectively [55].

4) TACTILE INTERNET (TI)
The IoT enables the interconnection of smart devices and
the TI can be viewed as an evolution of the IoT to enable
the real-time control of the IoT [56]. The TI allows for
a real-time interaction of humans and machines that sup-
ports haptic input with audiovisual feedback to control the
machine operation in real-time. Some representative exam-
ples include remote-controlled robotics for hazardous or
difficult-to-access scenarios in the manufacturing industry
and tele-diagnosis and remote-robotic-surgery in the health-
care industry. The low end-to-end latency required by these
services can be enabledwithMEC,which is also supported by
intelligent predictive content caching at the edge node [56].

B. BEYOND 5G: OPEN CHALLENGES
AND EMERGING TECHNOLOGIES
While 5G networks have introduced many technology inno-
vations, the network’s stringent performance requirements
have also raised new design considerations. Below, we list
some of these challenges and discuss how they may be
addressed by some emerging technologies that can feature in
the evolution towards 6G communication networks.

1) THROUGHPUT
Following the evolution trends of previous mobile network
generations, the bit/s throughput targets in 6G networks are
expected to increase by an order of magnitude relative to
those of 5G. Additionally, the virtual reality applications
once matured will require much higher data rates than those
promised by 5G. For these reasons, individual user data rates
of up to 100 Gbit/s are envisioned for 6G [7]. These high
bit-rates can be supported in 6G by a large communication
bandwidth, which is available in the higher range of the
mmWave band between 100 GHz and 300 GHz. Also, large
portions of free spectrum are available in the tera Hertz (THz)
frequency band. Owing to the large propagation losses when
communicating in these bands, the mmWave and THz com-
munications in 6Gwill be typically employed for high bit-rate
short-range communications. The visible light communi-
cations (VLC) using data-modulated white light-emitting
diodes (LEDs) as transmitters and photo diodes as receivers,
is another enabling technology that can support extremely
high bit-rates in Line-of-Sight (LoS) connections [57]. These
Gbit/s links are made possible by the fact that the optical
spectrum’s bandwidth is significantly larger than that of the
radio spectrum, and moreover, it is free to use. Furthermore,
another promising technology to enhance the spectral effi-
ciency of future wireless networks is full-duplex technology,
which enables the concurrent sensing and transmission or
concurrent transmission and reception over the same radio
frequency channel [58].

2) NETWORK CAPACITY
Traditionally, the cell-densification strategy has been
the prime enabler of increasing network capacity.
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However, shrinking the cell-size (e.g., tiny-cells) also requires
suitable management of the increased inter-cell interfer-
ence to the cell-edge users. With the rise of smart cities,
mMTC, and mobile users on land as well as airborne,
cell-densification through static BSs alone cannot meet the
exponential growth in capacity demands. This problem can be
alleviated by hybrid cellular networks employing Unmanned
Aerial Vehicles (UAVs) as mobile BSs [59]. These UAV BSs
can not only offload the data-traffic of the static BSs but they
can also relocate dynamically to provide a more favorable
propagation channel to the edge users. Also, the increasing
demands on the frequency resources can be addressed by
sharing the mmWave band between satellite and terrestrial
communication networks to give a more global mobile
coverage [60]. This 3-Dimensional (3-D) nature of the 6G
coverage specifications has led to volumetric descriptions
of spectral efficiency requirements in bps/Hz/m3. The intro-
duction of mobile BSs and dynamic spectrum sharing have
opened up the possibility of employing ML tools to optimize
these new network parameters such as route optimization for
the UAV BSs [59] or efficient spectrum sharing [61].

3) ENERGY EFFICIENCY
Increasing the mobile network’s energy efficiency helps to
reduce both its operating expenditures and its carbon emis-
sions. To this end the design efforts for 5G networks have con-
sidered energy-efficient approaches to network deployment
and resource allocation, including new technologies such
as M-MIMO and ultra-dense heterogeneous networks [62].
The energy efficiency is traditionally defined as the bit-rate
supported per Joule of energy consumed by the communi-
cation link. Therefore, if the 6G networks aim to provide
more throughput and capacity than 5G networks at simi-
lar transmission power levels, then this requires a matching
increase in the energy efficiency of 6G networks relative to
that of the 5G networks. One promising approach is the use
of programmable smart surfaces comprising reconfigurable
planarmeta-materials [63]. These surfaces can be used to coat
walls or other structures and then programmed for the desired
interaction with impinging electromagnetic waves to provide
beam-steering for Signal-to-Noise Ratio (SNR) maximiza-
tion or radiation absorption to reduce interference etc. The
ML algorithms can be exploited to learn the wireless environ-
ment and formulate the appropriate configuration for desired
objectives. Also, for conserving device battery life and for
powering UAVBSs for uninterrupted operation, the paradigm
of wireless power transfer, energy-harvesting and simultane-
ous wireless information and power transfer [64], [65] may
also feature prominently in the 6G standardization efforts.

4) BACKHAUL AND ACCESS NETWORK CONGESTION
The 6G backhaul traffic will require very low latency optical
fiber-equivalent access networks to support the high data rates
and quality of service requirements on 6G fronthaul commu-
nications. The backhaul congestion issue can be alleviated
in part by deploying storage and computation resources at

edge nodes in a MEC architecture [53], which can ensure
low latency services to the node’s proximal users. Moreover,
ML-based proactive content caching at the edge node can also
be exploited to avoid backhaul congestion and further reduce
the service latency [66], [67]. For the backhaul access net-
work for indoor scenarios, wireless optical communications
in visible light spectrum may be explored [68]. For outdoor
scenarios, mmWave communications with low earth orbital
satellites may provide backhaul service to the static as well
as mobile UAV BSs [69].

Besides the congestion in the backhaul networks, con-
gestion in the Random Access Networks (RAN) is another
challenging issue to be addressed in the emerging ultra-dense
wireless networks. For example, the RAN congestion in
ultra-dense IoT networks may arise due to various reasons
including the massive number of short-packet transmissions,
huge signaling overhead per data packet, and very dynamic
and sporadic nature of device transmissions [70]. In this
direction, it is necessary to investigate suitable transmis-
sion scheduling, peak traffic minimization and access control
techniques in the access networks of beyond 5G systems.

5) DATA SECURITY
An enormous amount of user-data is propagated and stored
on mobile networks in the form of geo-tagged voice and text
messages as well as mobile application activity logs. Secur-
ing this data from eavesdroppers and its un-authenticated
use are of prime importance. In order to secure the 6G
communication links, physical layer security schemes [71]
may be deployed in tandem with conventional cryptography
schemes. Also ML-based schemes for cyber-security [72]
and quantum encryption [73] are promising approaches to
be explored for securing communication links in future
6G networks.

The foregoing discussions suggest that the 6G communi-
cations will leverage robust learning capability at different
network layers to perform diverse tasks such as network
management, radio resource allocation, data security, and
manipulation of smart surfaces to name a few.

III. MACHINE LEARNING FOR COMMUNICATIONS
ML is conventionally thought to have its application justified
in the situations, where there is no exact mathematical model
of the system available, a sufficiently large amount of training
data is available, the system/model under study is stationary
(slow varying) along time, and the numerical analysis is
acceptable. The ML techniques have recently gained sig-
nificant attention for the provision of data-driven solutions
to various challenging problems in communication systems.
The deployment of ML in communications is rapidly gaining
popularity; in particular, to build self-sustaining and adap-
tive networks capable to meet the dynamic reconfigurability
demands of the future devices and services. Furthermore,
ML has a strong potential to replace the conventional mathe-
matical mode- based algorithmic solutions, given the avail-
ability of adequate data and computational power. In the
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TABLE 2. Taxonomy of ML applications across different protocol layers of a communication network.

following, we present the basics of ML and then discuss the
scope of deployingML at different layers, ends, and the types
of communication networks.

A. FUNDAMENTALS AND TAXONOMY OF APPLICATIONS
The taxonomy of applications of different types of learning
at different layers of communication systems, along with the
available big data at different ends and layers of the network,
are highlighted in Table 2. The ML techniques including
supervised, unsupervised, and reinforcement learning have
various applications in solving several problems across dif-
ferent protocol layers of communication systems, which are
discussed in the sequel.

1) SUPERVISED LEARNING
In supervised learning, the coefficients of intermediate stages
are learned by exploiting the prior available set of inputs
paired with their corresponding desired outputs. ML can
potentially exploit the domain knowledge as well as the train-
ing data examples to learn the required behavior and perform
the requisite operations. An ideal application of supervised
ML can be pronounced as the scenario in which the true joint
distribution of input and output parameters is available, which
may be extracted from the available domain knowledge.
However, there may be scenarios where the mathematical

model or true distribution is not known; e.g., an accurate
propagation channel model for Body Area Networks (BANs)
is not available. In such learning problems, given the test
data examples, a model from different classes of models
(generative or discriminative) can be exploited to approx-
imate the distribution for performing the learning process.
Supervised learning is typically used for the classification and
regression nature problems; while the typical examples of its
implementation structure can be stated as ANNs, k-Nearest
Neighbor (kNN), and Support Vector Machine (SVM).

A bank of ANNs is proposed for symbol decoding in
MIMO-OFDM systems in [74]. The available information of
transmitted (training/pilot symbols) and the corresponding
received symbols at the physical layer of a communication
system can be paired together to supervise the learning of
ANNs for symbol decoding [74]. Supervised learning for
channel compensation in vehicular communications may be
challenging, where shortage in training data and/or time is
imposed by the mobility of the nodes; this is because higher
mobility causes higher Doppler spread which further causes
reduction in the coherence-time and this eventually leads
to fast variability in the channel statistics. For such fast
time-varying channels, a hybrid learning method is proposed
in [75], to assist in estimation and tracking of the channels.
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Another application of supervised learning at the phys-
ical layer for downlink communications can be optimal
power allocation and interference cancellation. Applications
of supervised learning are not only limited to the physi-
cal layer, but ML also has various popular applications in
the network, application, transport, and other layers. Satel-
lite links offer the advantage of global network coverage;
however, the very high link latency limits its popularity.
ML has a popular application in intelligent caching, which
can help in reducing the latency in satellite links. Intelli-
gent media/contents prediction has various other applications
for enabling low latency communication in remote regions;
e.g., intelligent caching and transfer caching at the nodes level
in aeroplanes and ships for mesh-networks based airborne
internet and oceanic broadband applications [76], respec-
tively. Another potential scenario, where supervised ML can
play an important role, is in determining the users association
with BSs on the basis of contents/media demand. For land
mobile radio communications, echo-state (supervised learn-
ing principle) neural network for proactive caching in Cloud
Radio Access Networks (CRAN) to predict the contents’
demand and users’ mobility patterns (to predict user associ-
ation) at the BS is proposed in [77]. The proposed learning
method is shown to enhance the network sum effective capac-
ity by about 30% compared to the baseline random caching
approaches.

2) SEMI-SUPERVISED AND UNSUPERVISED LEARNING
In semi-supervised learning, a small amount of annotated
training data is available while most of the data is unlabeled;
whereas, in unsupervised learning, no annotated training data
is available. In unsupervised learning, the collection of avail-
able input data samples are exploited to train the system
while no prior information of the desired system response
is available. For example, at the physical layer, the received
noisy data symbols can be used to train a system by clus-
tering the sample points in the decision space for generat-
ing effective nonlinear decision boundaries for mapping of
the symbols according to the constellation maps. Semi- and
un-supervised learning is typically used for clustering and
classification natured problems. The implementation struc-
tures of such learning methods can be named as: k-Means
Clustering (kMC), Principal Component Analysis (PCA),
and maximum likelihood learning, etc.

Unsupervised learning can potentially be applied for per-
forming the wide range of tasks related to points clustering,
features extraction, features classification, distribution esti-
mation, and distribution specific samples generation. At the
physical layer in highly dynamic scenarios of vehicular com-
munications, where less coherence-time limits the available
time and data for supervising the learning of channel equal-
izer; semi-supervised and unsupervised learning can make
their way for assisting the channel equalization and tracking
operations. The selection of encoding/precoding schemes for
performance optimization is another potential application of
unsupervised learning. Subsequently, at the higher layers,

there are various potential applications of unsupervised
and semi-supervised learning for grouping/pairing/clustering
of nodes/points for optimal allocation of network/radio
resources. Moreover, various potential applications for data
analysis include: social networking trends analysis at the
network side, phone-apps data analysis at user and networks
side, ranking of web resources, data flow prediction, net-
work state prediction, data dimensions reduction, spatial and
temporal data analysis, data mining, malware detection and
classification.

3) REINFORCEMENT LEARNING
Reinforcement learning is realized on the basis of a feed-
back performance indicator (termed as a reward) conceived
from the environment after computing a specific output for
a specific observation by adaptively converging to the ideal
behavior through maximization of the reward (performance).
This learning technique can be termed as a compromise
between supervised and unsupervised learning, where the
prior understanding of the ideal system performance provides
indirect supervision while there is no available direct train-
ing data paired with the desired output. Typically, reinforce-
ment learning is used for control and classification problems;
whereas, some notable algorithm examples can be stated as
Q-Learning (QL) and Markov decision process.

An agent can be associated with each serving station in
a cellular network to assist in learning the optimal schedul-
ing parameters to enhance the network Quality-of-Service
(QoS) [78]. A promising application of reinforcement learn-
ing at the physical layer of communication networks is power
control and optimization. In this regard, a model-free dis-
tributed reinforcement learning method for power allocation
is proposed [79], in which Channel State Information (CSI)
and QoS indicators are exploited to adapt the transmit power.

4) GENETIC PROGRAMMING
Inspired from biological evolution, genetic programming
evolutionarily evaluates the fitness objectives, given the con-
straints and limitations, to find an optimal solution to the sub-
ject problem. Genetic algorithms are among widely explored
methods for resolving various optimization and estimation
problems at different layers of communication systems. The
Genetic Algorithm (GA) at physical layer of communica-
tion systems has been used for optimal antenna selection
in MIMO systems, power control, and symbol detection in
MIMO systems in [80]–[84], respectively. In [85], a detailed
review of the scope and applications of evolutionary algo-
rithms in wireless communications is presented. For some
communication scenarios, there is no well-defined model
of propagation channel available, a few examples to such
scenarios are Underwater Acoustic Communication (UWAC)
channels, mmWave channels, high mobility (dual-end) chan-
nels, molecular communication channels, etc. This makes
the estimation and tracking of such channels a challenging
task, where any error in channel estimate can significantly
affect the symbol detection performance. The scope of GA
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for estimation of such channels has been investigated in the
literature, see e.g., [84], [86] for GA based estimation of
sparse channels (UWAC), etc. The scope of GA for intelligent
cognitive radio has been encouraged in [87].

5) LEARNING REQUIREMENTS AND CAPABILITY
Model for an ML algorithm can be determined based on the
amount and nature of the data in progression. The appli-
cations with a big amount of prior available training data,
batch-learning algorithms can be applied. Batch-learning
algorithms search through the space of all possible data
knowledge structures while assuming unlimited available
computing time. Such off-line approaches, in which the data
is manually obtained, labeled, and then batch-processed, usu-
ally face the constraint of limited available data in practi-
cal applications. Therefore, the applications with real-time
data processing requirements are not well-suited for such
batch-learning algorithms. On-line training is a suitable solu-
tion for such streaming data applications. However, in online
training, only a limited fixed time is available for processing
each data sample. A typical application of off-line (batch)
and online learning in communication systems can be intelli-
gent caching and channel tracking, respectively.Model-based
learning usually optimizes the performance indexes through
available objectives functions with high computational effi-
ciency. On the other hand, the pure data samples-based
learning exploits all the available data samples to interpo-
late and/or extrapolate the samples, with high memory and
time requirements. A typical application of model-based and
samples-based learning can be symbol decoding and con-
tents demand prediction, respectively. The communication
prospects of learning requirements and capability of differ-
ence ML approaches have been investigated in [13].

B. ARTIFICIAL NEURAL NETWORKS
FOR COMMUNICATIONS
ANN is a biologically inspired data processing structure
which is designed to learn different operations from the
observed data. ANNs are generally used to recognize any
patterns within the input data by passing the data through
different layers of simulated neural connections. An ANN
is composed of connected input, hidden, and output layers
of neurons, where each node (neuron) performs combining
and/or limiting operations and each connection performs
scaling operations. The layers of neurons may be fully con-
nected, partially connected, pooled, feed-forward, recurrent,
etc. With the growing applications of ANNs, the topologies
of connections between the layers of neurons in a network
are rapidly evolving, where a few notable structures can
be named as Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN),
Hopfield Network (HN), GAN, Echo State Network (ESN),
Neural Turing Machine (NTM) etc. These structures define
the flow of data in the network; e.g., in a Feed-Forward
Network (FFN), each neuron is connected only to the neurons
of the following layer, while an RNN allows the connections

from the leading layers to be feedback to the previous layers.
Training of ANNs is the process in which the weights of the
connections between the neurons are learned. The training
of ANNs is usually performed in a supervised learning fash-
ion, where the prior available data labeled with the desired
output is exploited to compute the error for adjustment in
weights. The error can be quantified on the basis of different
metrics, where a natural generic quantifier is Mean Square
Error (MSE). The error can be iteratively propagated back-
wards from output towards the input layer, for quantizing
the error at each layer and then updating the weights. A few
notable training algorithms for ANNs can be named as gra-
dient descent, conjugate gradient, Newton’s method, Quasi-
Newton, and Levenberg-Marquardt, etc.

Deployment of ANNs in communication networks is not
a new idea, instead, ANNs have been deployed to perform
and assist in various operations of communication systems;
e.g., ANN is proposed for symbol decoding forMIMO-OFDM
systems in [74]. Recently, an ANN-based method for pre-
dicting channel features for large-scale multi-antenna BSs
is proposed in [88]. Description of radio propagation chan-
nels characteristics for molecular communications is not
well established in the literature [89]; for such communica-
tion scenarios, an ANN based receiver design is proposed
in [90]. Also, ANNs assisted indoor localization method
exploiting two variants of the fingerprinting approaches
is proposed in [91]. Given the increasing complexity of
the future communication networks, ANNs have a wide
scope of its deployment in performing various diverse tasks,
e.g., planning, optimization, estimation, tracking, controlling,
and maintaining tasks, etc.

The size of an ANN (number of neurons and hidden layers)
and the amount of available data determine its performance
and requisite computational power, as illustrated in Fig. 2.
The generalization of an ANN’s operations, for efficiently
dealing with every new unseen input data sample, needs its
training over a large amount of data (i.e., big data). However,
the major limitation is the available computational power to
deal with big data and deep structured ANNs. As anticipated
in Fig. 2, big data-driven DL can enable the deployment of

FIGURE 2. Performance of Artificial Neural Networks as a function of
Big-Data availability and learning level, i.e., computational complexity.
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ANNs in learning complex (high dimensions, a high number
of features, a high number of classes, etc) statistical structures
and input-output operations of the future communication net-
works. ANNs are considered as the most notable enablers of
DL mechanism [17], in which the understanding of the data’s
distribution and important features are automatically learned
to simulate an effective mapping function.

C. DEEP LEARNING FOR COMMUNICATIONS
DL is a subbranch of ML, in which the system intelligence
is learned through the propagation of input data in massively
connected multiple (deep) layers of the system, performing
combining, limiting (thresholding), and/or other mathemat-
ical operations, in order to compute the output. DL meth-
ods can be supervised or unsupervised or a combination
of both. A DL system automatically learns to model the
high-level abstractions in the given data by extracting impor-
tant features from it. The scope of emerging DL methods in
wireless communication networks is thoroughly investigated
in [17], where the deployment of DNNs in the future wire-
less networks is strongly motivated. Various diverse types of
applications of DL in communication networks have been
indicated in the literature, which includes network planning,
deployment, resources management, operations control, and
maintenance etc. In this context, a DL based framework for
optimization of downlink beamforming is proposed in [92].
Furthermore, a comprehensive survey on the developments of
DL based mobile and wireless networks is presented in [16].
Moreover, a survey on the recent advancements of employing
DL at the physical layer of wireless communication sys-
tems is conducted in [93], where the application of DL at
the physical layer is categorized into blocked or without
blocked structured. Also, introducing DL in emerging 5G
communication networks is surveyed in [54], where DL at
the physical layer of communication systems for introducing
intelligent radio resource allocation mechanism is empha-
sized. In addition, DL for radio resource management in 5G
networks is also suggested in [94], and a users location-aware
DL method for run-time optimal users association for the
maximization of sum-rate in M-MIMO based land mobile
radio cellular networks is proposed in [95]. Another thorough
literature survey indicating various emerging applications of
DL in communication networks is presented in [96]; where
the highlighted applications are: dynamic spectrum access,
joint user association, data caching and offloading, security,
connection preservation, traffic routing, resource sharing,
and power control. There exist various realizations of DL,
e.g., DNN, and Deep Boltzmann Machines etc.

1) DEEP NEURAL NETWORKS
Despite ANNs being promising, the limitation of required
computational power for the training of an ANN cre-
ates challenges for their practical applications. Towards
addressing this. the recent advances in Graphical process-
ing units (GPUs) have provided the initial breakthrough by
speeding up the training process through their ability to

simultaneously perform multiple weight calculations oper-
ations. This has opened a new horizon of possibilities of
deploying more complex structured ANNs. The DNN can
be considered as a typical example of DL, which is an ANN
containing a high number of hidden layers of neurons and a
complex structure of connections between the neurons. The
recent advancements in DNNs has enabled its deployment in
even delay critical applications; which is achieved through
offline training the DNNs and then performing the online
operations (tracking, optimization, etc). An example of such
delay critical applications at the physical layer of communi-
cation networks is optimal beamforming; where the latency
induced by conventional iterative methods makes it outdated
for the future networks. The major concern of required long
training time in ANNs also stands in DNNs. Looking towards
quantum algorithms for training such DNNs may be a futur-
istic solution, while there is a significant amount of research
going on to devise intelligent and efficient learning methods
for exploiting massive parallelism in the DNNs architecture.

DNN has also been investigated for auto-encoding an end-
to-end communication system. A DNN based auto-encoder
for jointly optimizing Bit-Error-Rate (BER) and Peak-to-
Average Power Ratio (PAPR) in OFDM systems is proposed
in [97]. Furthermore, DNN based architectures for symbol
detection inMIMO systems have been proposed in [98], and a
DNN-based localization method exploiting fingerprint-based
and channel measurements for M-MIMO systems has been
proposed in [99]. Moreover, a survey on opportunities and
challenges in deploying DL at the physical layer of wire-
less communication systems has been discussed in [100],
where the scope of DNNs for channel estimation and channel
encoding/decoding tasks has been thoroughly investigated.
The DNN for real-time radio resource management at the
physical layer of communication networks has been proposed
in [101]. Another popular application of DNNs at the phys-
ical layer of communication networks is power control and
optimization [102].

2) DEEP TRANSFER LEARNING
Deep transfer learning is another new direction of research
to reduce the dependence of learning from the required large
amount of data. The study of transferring the knowledge
learned from the available data in a certain context to a new
but similar scenario is referred to as transfer learning. This
learning technique offers the advantage of facilitating the
learning process by reducing the amount of required data,
and relaxes the condition on the training data to be indepen-
dently and identically distributed (i.i.d.) with the validation
data. In this regard, a thorough survey of different transfer
learning methods has been conducted in [103]. Deep trans-
fer learning is another new approach, which combines DL
methods with the transfer learningmethods. A survey on deep
transfer learning methods has been presented in [104], where
the deep transfer learning methods have been classified into
instance-, mapping-, network-, and adversarial-based trans-
fer learning categories. In instance-, mapping-, network-,
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and adversarial-based transfer learning: the instances in
source domain are exploited, mapping of instances from two
domains into a new space with high similarity is exploited,
pre-trained network is partially reused in source domain, and
finding of transferable features is performed through adver-
sarial methods in both the domains, respectively.

3) DEEP UNFOLDING
Unfolding concepts can be used to unfold a neural network
for each iteration of the iterative algorithm into a layered
structure and then unite it together to come up with an opti-
mumANN architecture that can be easily trained for the given
problem, e.g., deep unfolding method in [105]. A detector
design by unfolding iterative calculations into ANN layers for
MIMO decode and forward relay channels has been proposed
in [106]. However, in a generalized sense, determining the
optimal size (number of neurons and layers) of an ANN
for a problem under consideration (with known dimensions)
remains an open research problem.

Today’s wireless communication networks are expected
to experience a fundamental paradigm shift towards smart
and intelligent radio environments [17]. The main question
around the role of DL in such communication networks is not:
whether it will be an integral part of the future networks, but
rather it is: when and how to trigger this integration. DL can
be seen as an end-to-end solution for replacing the sequential
blocks based processingmethods for estimation and decoding
of information at the receivers.

4) DEEP LEARNING FOR COGNITIVE COMMUNICATIONS
Cognitive radio techniques enables a radio system to sense,
learn, and adapt based on the context of the surrounding
environment [87]. The sensing, learning, and adaption may
allude to the sensing of radio spectrum, user demands and
spatial environment. In this regard, several survey papers
including [107], [108] exist, which discuss various aspects
of intelligent cognitive radio wireless networks. In [109],
supervised and unsupervised ML-based cooperative spec-
trum sensing algorithms for cognitive radio networks have
been proposed. A deep reinforcement learning based power
control method for spectrum sharing in cognitive radios has
been proposed in [110]. Such dynamic sharing of spectrum
aims at enhancing the spectrum utilization efficiency through
the provision of access of under-utilized spectrum to the
secondary network users [111]. Furthermore, the scope of
ML for anomaly and fault diagnosis, intrusion detection and
prevention, and network configuration and optimization has
been reviewed in [112]. Also, authors in [113] presented the
features and advantages of self-organizing networks along
with a thorough literature survey, where various methods
to improve the efficiency of such networks have been indi-
cated. Moreover, the characterization of learning problems
in cognitive radios and the importance of ML in achiev-
ing full cognitive networks has been discussed in [114].
In addition, the role of ML for cognitive network manage-
ment has been investigated in [115], where the realization of

ML for automating the management of Fault, Configuration,
Accounting, Performance, and Security (FCAPS) has been
thoroughly studied.

IV. QUANTUM TECHNOLOGY AND QML-ASSISTED
COMMUNICATIONS
QC and ML can create close synergies with each other
towards providing their joint benefits in communication
systems. The enormous amount of parallelism offered
by QC has motivated the start of new disciplines like
‘‘Quantum Information Science’’ and ‘‘Quantum Computer
Science’’ [116], [117]. This concept of parallelism comes
from quantum Physics concept of qubit, entanglement, and
superposition. A qubit can simultaneously hold both the
binary states ‘0’ and ‘1’; subsequently, any n interacting
qubits can simultaneously represent 2n unique binary pat-
terns, which is unlike a single binary pattern at-once in the
classical computers. These quantum mechanics concepts are
well recognized for generating counter-intuitive statistical
data patterns which classical computers are unable to pro-
duce effectively [41]. The capability of classical MLmethods
for recognizing statistical data characteristics in the given
data, and also for producing data with the same statistical
characteristics has also been well established (Classical ML
is discussed in Sec. III). The tasks of ML involve manip-
ulation and classification of a large amount of data in the
form of large-dimensional vectors, where the required time
polynomial is proportional to the data dimensions. The QC
has a recognized potential in conveniently manipulating such
large-dimensional data vectors in large tensor product spaces.
Also, it is envisioned that the combination of QC and ML
features together in the framework of QML can produce and
recognize the statistical data patterns which classical comput-
ers and classical ML are unable to perform effectively. At the
initial stage, QML is being defined to exploit QC to accelerate
the intelligent data analysis methods. However, in the long
run, it is foreseen to lead towards a completely redefined
model of ML for quantum computers. This section revolves
around the three fundamental questions: ‘‘Why quantum
communications?’’, ‘‘What is QML?’’ and ‘‘How QML can
contribute to 6G and Beyond communication networks?’’.

A. QUANTUM AND QC-ASSISTED COMMUNICATIONS
In this section, we first provide an introduction and the basic
principles of quantum communications and then discuss the
applications of quantum techniques in various sectors of com-
munication systems. Subsequently, we highlight the potential
enablers for quantum communications alongwith the relevant
discussion from the existing literature.

1) FUNDAMENTALS OF QUANTUM COMMUNICATIONS
Quantum mechanics is expected to play a significant role
in various sectors of our everyday life, ranging from
high-endurance materials and pharmaceuticals to communi-
cations and computing [118]. Any communication or com-
puting device built from the elementary particles is subject
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to follow the axioms of quantum mechanisms which are usu-
ally analogous to the postulates of the Euclidean geometry.
In the communications and computing domains, the existing
protocols can be enhanced with more efficient algorithms
by exploiting the physical phenomena available in the quan-
tum world with the utilization of quantum principles and
tools. Furthermore, quantum techniques can be significantly
useful in investigating computationally efficient solutions to
classical signal processing problems. In summary, quantum
principles provide significant benefits to the communication
networks including enhanced channel capacity, the ability
to transmit an unknown quantum state, i.e, quantum tele-
portation, and to deliver secure information, i.e., quantum
cryptography by utilizing a number of advanced communi-
cation protocols which will not be possible with the classical
techniques [119].

Quantum communication is an emerging branch of
telecommunications engineering, which has been moti-
vated from the principles of quantum mechanics and is
based on the exchange of quantum states [120]. This novel
field of research area aims to utilize the quantum theo-
ries/principles to enhance the capacity of future communi-
cations systems as well as to incorporate new functionalities.
The quantum-assisted communications can enhance various
aspects of the existing classical communication networks
including channel estimation, optimal Multi-User Detection
(MUD), the design of optimal precoding matrix and the
optimal routing by employing the quantum algorithms [30].
One important advantage of utilizing quantum domain in
communications is high degrees of freedom. By replacing
the conventional physical communications channel with the
nano-scale objects, i.e., photons, electrons, governed by the
quantum principle, in terms of logical values of 0 and 1,
it is possible to utilize the linear combinations of these
logical values. As an example, for a polarized photon of
P = aPv + bPh, with Pv and Ph denoting the vertical
and horizontal polarization, respectively, the values of a and
b can be adjusted towards optimizing the communication
protocols [118].

Regarding the quantum information sources, a single pho-
ton source can be considered as an ideal source for gen-
erating quantum information and this can generate pulses
having the mean number of pulses equal to one and zero
variance [120]. However, the realization of such an ideal pho-
ton source in practical quantum communications is very chal-
lenging since it occupies very large space and requires trained
technicians. In this regard, there are other sources of light
which can be used to approximate the ideal photon source,
for example, fainted lasers and four-wave mixing process
for the fiber-optic quantum communication systems. Out of
these, fainted lasers is mostly used in quantum cryptographic
key distribution systems while the four-wave mixing process
is useful for optical processing devices such as parametric
amplifiers and wavelength converters.

For enabling the quantum communications, the infor-
mation signal can be encoded in different ways such as

by modulating the photons’ polarization, which is usu-
ally detected by utilizing single-photon detectors, and
the photons’ phase, usually measured by the homodyne
detection [120]. For the first approach, the polarization is
not preserved while transmitting quantum signals via optical
fibers and it is necessary to have a non-intrusive polarization
control to preserve the information being transmitted in the
quantum domain. While the second approach based on the
photons’ phase does not require the polarization control but
an optical carrier (either propagated along with the quantum
signal or generated locally at the receiving side) is needed in
order to retrieve the phase information.

Qubit or quantum bit is the quantum version of the classical
binary bit and is a fundamental unit of quantum informa-
tion in QC and communications. It represents a two-level
quantum-mechanical system, for example, up and down spins
of an electron and vertical and horizontal polarizations of
a photon. The state of a Qubit can be represented utilizing
any selected orthogonal basis and the most commonly used
basis is the computational basis corresponding to the states
of |o〉 and |1〉 [30]. In this computational basis {|o〉, |1〉},
the quantum state |q〉 of a Qubit system can be expressed in
the following way

|q >= a|0〉 + b|1〉, (1)

where a, b ∈ C denote the amplitudes of the quantum state
in the considered computational basis and |a|2 + |b|2 = 1.
When a = 0, b = 1 and |q〉 corresponds to the classical bit
of 1 while when a = 0, b = 1 and |q〉 corresponds to the
classical bit of 0. On the other hand, if a = b = 1

√
2
, another

state of |q〉 = 1
√
2
|o〉 + 1

√
2
|1〉 is obtained which exhibits a

symmetry with regard to other states.
For representing the quantum states geometrically, 2-D

representation and 3-D representation (Bloch sphere) are uti-
lized for the real-valued and complex-valued amplitudes of
the quantum, respectively. Some of the quantum algorithms
using only the real-valued amplitudes include the Grover’s
Quantum Search Algorithm (QSA), Dürr-Høyer QSA and
Boyer-Brassard-Hoyer-Tapp QSA while some other algo-
rithms including quantum counting algorithm and Shor’s
algorithm utilize the complex-valued amplitudes of the quan-
tum states [30]. In this regard, authors in [30] provided the
fundamentals of QC by using linear algebra, and then pro-
vided a review of existing quantum algorithms along with the
applications of quantum principles in wireless communica-
tion systems.

Quantum communications aims to utilize the quantum
nature of information, thus providing novel challenges and
opportunities for designing the 6G and beyond communica-
tion protocols. In comparison to the classical binary based
communications systems, quantum communications has the
great potential to provide absolute randomness and security,
to carry much more information and to significantly enhance
the transmission quality. Furthermore, quantum-based tech-
niques are able to execute the tasks much faster and beyond

VOLUME 7, 2019 46329



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

the capability of the classical systems [121]. However, quan-
tum communications face mainly two challenges towards
designing new communication protocols. The first chal-
lenge is regarding the construction of network entities with
quantum Internet which requires quantum switches/routers
and repeaters, which becomes difficult due to no-cloning
theorem [122]. Another challenge is regarding the capacity
measures of quantum communication channels. Although
the capacity of classical channels has been well under-
stood within the framework of classical information the-
ory, the capacity of quantum channels is not completely
understood and various measures are available in the lit-
erature. This is due to the reason that quantum chan-
nels can have different possibilities in terms of delivering
information including quantum information, entanglement-
assisted classical information [123] and private classical
information [124].

Furthermore, quantum channel/error correction coding
is of significant importance for the practical design of
quantum-assisted communication protocols to approach
closer to the theoretical achievable capacity. Since the infor-
mation via the quantum channels is carried in quantum
states, the encoding and decoding processes are fundamen-
tally different from the classical encoding and decoding
schemes [121]. Another fundamental part of the quantum
theory is the measurement which depicts the amount of
information which can be gathered about a quantum sys-
tem. Although the classical meaning of measurement is
well understood, its quantum notion has been an impor-
tant discussion topic and has many variants in the exist-
ing literature [125]. One way of interpreting the quantum
notion of measurement is that it causes to suddenly col-
lapse or jump into one of the many possible states with
some probability. In this regard, authors in [125] have
shown that shared randomness is available if necessary,
quantum measurements can be asymptotically represented
by the amount of classical communication equivalent to
the quantum notion of the mutual information of the
measurement.

Some of the promising quantum communication protocols
to expand the possibility of classical data transmission in
quantum-based systems include quantum key distribution
(QKD) [126], [127], quantum teleportation [128] and dense
coding [129]. Also, like in classical communication net-
works, quantum networks can utilize frequency and wave-
length division multiple access techniques to the problem
of channel access in the presence of several users. In addi-
tion to these techniques, other multiple access techniques
by utilizing the orbital angular momentum of single photons
and by using coherent states can also be utilized in quan-
tum communications networks. Furthermore, spread spec-
trum based multiple access techniques, which can send
the photons of multiple users via the medium (optical or
free-space) by sharing the frequency band, time window
and the route, seem promising in the context of quantum
communications [130].

2) APPLICATIONS OF QUANTUM COMMUNICATIONS
Quantum principles can be applied in various sectors of
communications ranging from underwater communications
and terrestrial wireless networks to the satellite networks.
One of the widely-discussed application areas of quantum
communications is optical fiber communications in which the
conventional approach is based on the classical electromag-
netic fields and may suffer from the undesired fluctuations.
Also, noise having the quantum-mechanical origin may limit
the performance of photodetectors. To address these issues,
optical communication systems can be designed under the
quantum-mechanical framework [131].

Another promising application area is to enhance the
security using quantum communication protocols in aquatic
scenarios due to the increasing number of vehicles sailing
on the ocean surface. In this regard, authors in [132] car-
ried out the feasibility analysis of Quantum Key Distribu-
tion (QKD) protocols in the aquatic scenarios and showed the
significance of employing QKD protocols in the underwater
environment.

In addition, Satellite Communications (SatCom) is another
important area where quantum techniques can be employed
for various purposes. For example, authors in [126] dis-
cussed and analyzed the applicability of QKD proto-
cols in quantum-assisted SatCom systems in order to
perform secure communication between ground stations
and the satellite. Also, another promising application area
is the quantum Internet, which enables the transmission
of Qubits from one quantum computer to another [119].
In addition, another application area of quantum tech-
niques could be TeraHertz (THz) communication system
which is recently being investigated in the research commu-
nity. To this end, authors in [133] discussed the properties
of THz frequency bands and the essential conditions for the
application of quantum communications in this frequency
band.

Another important application of quantum communica-
tions is quantum teleportation, which utilizes the quantum
entanglement principle to transfer a particular quantum state
to another place with the quantum devices by using the
classical bits rather than the quantum bits [128]. The main
challenge in employing quantum teleportation in wireless
systems is that EPR (named after Einstein, Podolsky, and
Rosen) pairs, i.e., entangled pairs of qubits cannot be set
up and shared instantaneously in wireless quantum devices
since EPR pairs cannot be distributed to the quantum devices
via the air. This leads to the need of designing a new quan-
tum mechanism which is capable of performing teleportation
from one site to another without requiring to have a mutual
exchange of EPR pairs between the sites. To address this,
a novel approach of quantum routing mechanisms by execut-
ing quantum circuits in parallel at the intermediate nodes has
been recently proposed in [134] and it has been shown that
the proposed quantum routing approach is independent of the
number of routing hops and is closer to the optimum in terms
of time taken to teleport a quantum state.

46330 VOLUME 7, 2019



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

In terms of practical implementation, a quantum annealing
chipset is already commercially available from the company
D-Wave1 [135]. Also, due to the recent developments in
the quantum stabilizer codes towards mitigating the deco-
herence effects in quantum circuits, gate-based architecture
which comprises of computational blocks with the quan-
tum gates has attracted significant attention. Furthermore,
D-Wave 2000Q3 having a total of 2000 qubits and IBM Q
Experience4 with a total of 20 qubits are already available
and IBM has a recent plan of finalizing a gate-based quantum
computer with 50 qubits by 2020 [30].

3) POTENTIAL ENABLERS FOR QUANTUM
COMMUNICATIONS
This section discusses the potential enablers and related crit-
ical issued of quantum communications.

a: QUANTUM ENTANGLEMENT
One of the issues in quantum communication is the effec-
tive transmission of information over a noisy quantum
channel and there are several attempts in the literature
to characterize the achievable rate of transmitting classi-
cal and quantum information over a noisy quantum chan-
nel. For example, the achievable rate for the transmis-
sion of classical information over a noisy quantum chan-
nel is given by the Holevo-Schumacher-Westmorel (HSW)
coding theorem [136], which generalizes the Shannon’s
theorem in quantum settings. Also, regarding the transmis-
sion of quantum data over a quantum channel, the achiev-
able rate is given by the Lloyd-Shor-Devetak (LSD) coding
theorem [124], [137]. Subsequently, the article [138] investi-
gated the case where both the classical and quantum infor-
mation can be simultaneously transmitted over a quantum
channel by employing a time-sharing strategy.

Authors in [139] investigated the tradeoffs for channel
coding both quantum and classical information over a noise-
less entanglement-assisted quantum channel and proved that
the proposed entanglement-assisted classical and quantum
capacity theorem provides the achievable rates in the consid-
ered scenario. In addition to this quantum entangled based
communication [139], [140], there are recent attempts in
developing quantum entanglement-assisted quantum turbo
codes [141] and the squashed entanglement of a quantum
channel, which is an additive function of a tensor product of
any two quantum channels [142].

b: QUANTUM-DOT CELLULAR AUTOMATA (QCA)
One of the main issues with the ComplementaryMetal-Oxide
Semiconductor (CMOS) technology is the physical limita-
tion in terms of the feature sizing [143]. To address this
issue, Quantum-dot Cellular Automata (QCA) seems to
be a promising enabler, which is a nano-scale computing
mechanism and serves as a basis for binary computation
which has fundamental differences from the current transistor
technology [144], [145]. In other words, QCA utilizes cells
of quantum dots to store and transfer information, with each

cell comprising of four quantum dots structured at the cor-
ners of a square. In this direction, several theoretical and
modeling work related to QCA are already available in the
literature [143], [146]–[148].

The term ‘‘Quantum-dot’’ in QCA represents the portion
of matter, i.e., semiconductor, whose excitons are concen-
trated in three spatial dimensions and its electrical proper-
ties are in between those of the discrete molecules and of
bulk semiconductors. On the other hand, the term ‘‘Cellular
Automata (CA)’’ represents the dynamical systems having
discrete space and time, and also can be considered dynamical
systems with the infinite dimension [145]. The CAs define
the mathematical models for the systems in which several
simple components interact with each other to generate the
complicated behavior patterns.

c: QUANTUM HARDWARE CAPACITY
One of the crucial issues for the application of quantum
technology in communications related applications is the
presence of harmful quantum perturbations, whose harmful
effects can be mitigated by employing Quantum Error Cor-
rection Codes (QECCs) [141]. The performance of QECCs
can be enhanced by employing the entanglement assistance in
the context of a symmetric depolarizing channel [141]. In this
regard, authors in [32] have provided a detailed analysis on
the capacity of an entanglement-assisted quantum channel
while considering the realistic quantum devices, and also pro-
vided an EXtrinsic Information Transfer (EXIT) chart-based
design methodology for the QECCs to enhance their perfor-
mance in asymmetric quantum channels. With the help of
simulation results, it has been demonstrated that the proposed
EXIT chart based techniques are useful tools to analyze and
design quantum coding schemes.

In the above context, authors in [149] provided a
comprehensive survey on the recent development of
quantum-like models which can better represent various
factors involved in the human decision-making process,
namely, ambiguity, uncertainty, emotions and risks. Further-
more, the article [150] developed a QDT based approach for
quantitative predictions in the arbitrary scenarios including
the ones where the utility theory fails. In contrast to the
previous quantum-like models which mainly utilize several
fitting parameters for the construction of some models to
describe particular effects of a use-case, the QDT model
proposed in [150] is considered as a generic theory appli-
cable to any type of decision making, and its mathematical
structure is common to both the decision theory and quantum
measurements. The proposed QDT model is based on the
generalization of the von Neumann theory [151] of quantum
measurements to the non-conclusive measurements and the
composite events comprised of noncommutative operators.

d: QUANTUM KEY DISTRIBUTION
The crucial problem in the traditional Vernam one-time pad
cryptosystem is to deliver a secret key to two legitimate
parties. This issue can be addressed by the QKD, also
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called the quantum cryptography, which provides a secret
key to two legitimate parties in a Vernam one-time pad
cryptosystem [127]. In this QKD approach, quantum mech-
anism provides the unconditional guarantee of the security
of the key. There are several QKD protocols available in the
literature, namely, BB84, E91, B92 and BBM92, of which
BB84 is the most popular and widely used QKD scheme.

The QKD can be used to enhance security in various
networks including optical networks, terrestrial wireless net-
works and satellite networks. Recently, authors in [126]
investigated the application of QKD in the satellite commu-
nication system to perform secure quantum communication
between ground stations and the satellite. The performance
of QKD in satellite networks gets degraded in the presence
of high attenuation caused due to noise and atmospheric
effects. To address this issue, suitable quantum error correc-
tion methods can be employed. Furthermore, the article [152]
analyzed the feasibility of trust-free long-haul QKD in future
quantum communication networks by combining the mea-
surement device-independent QKD and a quantum repeater,
which is considered as one of the key ingredients of trust-free
networks.

e: QUANTUM DECISION THEORY (QDT)
The classical decision-making process is mostly based
on the expected utility theory and its performance sig-
nificantly degrades in the scenarios having the risk and
uncertainty [150]. In most of the classical decision-making
process, the possibility of making correct predictions can be
strongly affected by the nature of the surrounding environ-
ment such as the unknown stochastic or varying environ-
ment. Furthermore, in the scenarios having incomplete or
partially reliable information or incomplete preference rela-
tions, any prediction is likely to be just partial and qualitative.
To address this, Quantum Decision Theory (QDT) seems to
be a promising approach and has been already investigated
in some existing literature [149], [150]. Also, the process of
representing all steps of a decision process mathematically in
order to allow quantitative prediction is significantly impor-
tant nor only for the decision theory but also for developing
artificial quantum intelligence, which can work only for the
operations defined in mathematical terms [153].

f: QUANTUM GAME THEORY (QGT)
With the recent advances in quantum information and quan-
tum computation, there has been a trend of formulating
classical game theory using quantum probability ampli-
tudes towards analyzing the impact of quantum superpo-
sition, entanglement and interference on the agents’ opti-
mal strategies [154]. The Quantum Game Theory (QGT) in
general replaces the classical probabilities of game theory
by quantum amplitudes by creating the possibility of new
effects coming from entanglement or superposition. Themain
difference between the classical game and the quantum game
is that classical games perform calculations in the probability
space whereas quantum games operate in the Hilbert space.

Quantum game theoretic techniques can be utilized in
investigating suitable solutions in quantum communica-
tion [155] and quantum information processing [156]. In this
regard, the article [154] provided an introduction to the quan-
tum theory along with some related works and discussed
some well-known quantum games including quantum penny
flip, Eisert’s quantum prisoners’ dilemma and quantum Par-
rondo’s games. Furthermore, the recent article [157] ana-
lyzed the existing works on quantum games from three
perspectives, namely, co-authorship, co-occurrence and co-
citation, and also reviewed main quantum game models and
applications.

g: QUANTUM-PROOF RANDOMNESS EXTRACTORS
For several applications in computation, information theory
and cryptography, randomness is a fundamental aspect and
the objective of randomness extraction is to transform the
sources of correlated and biased bits into nearly uniform
bits [158]. The extractors which can work in the presence
of quantum side information are quantum-proof, and also
the extractors are with one bit output are regarded as the
quantum-proof [159].

Quantum-proof randomness extractors can be considered
as an important building block for implementing classical and
quantum cryptography in security applications [160].Mainly,
the randomness extractors setting of this block provides a
nice framework to study the capability and limitations of
a quantum memory over the classical one. The study on
the behavior of randomness extractors in the scenarios with
quantum adversaries can be based on the theory of operator
spaces, which is also known as quantized functional analy-
sis. The extractors in general approximately map a weakly
random system into uniform random bits by utilizing the
perfectly random bits, called the seed. There exists one inter-
esting generalization of extractors, called condensers, which
is considered as an intermediate step towards building the
extractors [161].

4) NOTABLE APPLICATIONS OF QC-ASSISTED
COMMUNICATIONS
This section surveys a few notable recent application exam-
ples of QC-assisted communications.

a: QUANTUM-ASSISTED MULTI-USER DETECTION (QMUD)
The practical implementation of classical optimal classi-
cal detectors such as Maximum Likelihood (ML) MUD is
often limited by their very high implementation complex-
ity. To address this, one of the promising approaches could
be Quantum-assisted MUD (QMUD) [162]. With the recent
advances in quantum cryptography and quantum error cor-
rection, there have been substantial research efforts towards
investigating the feasibility of QMUDs. In this regard,
the article [162] presented a comprehensive review and tuto-
rial on quantum search algorithms and their applications.
Furthermore, an ML QMUD was proposed by considering
the legitimate combinations of the users’ transmitted symbols
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at the receiver and it was shown that the performance of the
proposedMLQMUDmatches to that of the classical QMUD.

b: QUANTUM-AIDED MULTI-USER TRANSMISSION
In addition, the QSA can be utilized in reducing the com-
plexity of vector perturbation precoding and enhancing the
performance of multi-user transmission in wireless networks.
In this regard, authors in [38] proposed quantum-assisted
Particle Swarm Optimization (PSO) algorithms in both the
discrete and continuous modes with the objective of perform-
ing vector perturbation precoding and reducing transmission
power at the BS if a rank-deficient multi-user system while
minimizing the average BER at the mobile users. Via numer-
ical results, it was shown that quantum-assisted precoding
provides better BER performance as compared to the con-
ventional PSO algorithm, while keeping the same computa-
tional complexity. Also, the superiority of Quantum-assisted
precoder over the classical precoder has been illustrated
in the scenarios having limited feedback of CSI from the
users to the BS. In this regard, low-complexity soft-output
quantum-assisted MUD has been investigated in various
settings by considering different multiple access schemes
including Space Division Multiple Access (SDMA), Orthog-
onal Frequency Division Multiple Access (OFDMA), Code
Division Multiple Access (CDMA) and Interleave Division
Multiple Access (IDMA) [163]–[165].

In a rank deficient multiple-access system in which the
number of users is higher than the number of receive antenna
elements at the BS, low-complexity heuristic MUD does not
provide the desired performance. Furthermore, the complex-
ity of optimal Maximum A posteriori Probability (MAP)
MUD increases exponentially with the number of users and
the number of bits per transmit symbol. To address this,
authors in [165] employed quantum search assisted MUD to
reduce the search space and with this soft-input soft-output
MUD approach, only a fixed subset of the best multi-level
symbols having a near optimal cost function needs to be
evaluated to achieve the near-optimal bit error rate perfor-
mance. Subsequently, the EXIT chart was utilized to design
the proposed QMUD assuming the Gaussian distribution
of the MUD’s output and the performance was evaluated
for multi-carrier interleave-division multiple-access systems.
Furthermore, another article [166] exploited the advantages
of QMUD in the uplink of a multi-user system by considering
the transmission of a vide stream from a reference user to
the BS. The employed QMUD detects the signals transmitted
by all the users instead of considering other users’ signals as
interference.

c: QUANTUM-ASSISTED INDOOR LOCALIZATION
FOR mmWave AND VLC
There is a recent trend of employing mmWave and Vis-
ible Light Communications (VLC) technologies in indoor
localization applications. One of the main issues with these
technologies in practical applications is to achieve the desired

localization accuracy. Also, it may not be possible to utilize
the triangulation approach due to the limitations in the infras-
tructure and scenarios [35]. Although fingerprinting based
localization method could be employed in both the Radio
Frequency (RF)-based and VLC-based applications, the com-
plexity of searching the fingerprinting database can be expen-
sive for the scenarios requiring high accuracy. One of the
promising approaches to address this complexity reduction
issue is to employ a QSA, which aims to find the mini-
mum entry in the unsorted database with N elements by
utilizing only the O(

√
N ) Cost Function Evaluations (CFE).

In this regard, authors in [35] showed the possibilities of
utilizing QSA for reducing the computational complexity
of mm-Wave based and VLC-based localization algorithms
while achieving the same performance as that of a full search.

d: QUANTUM-ASSISTED JOINT ROUTING
AND LOAD BALANCING
One of the crucial challenges in wireless networks involving
mobile networking devices such as smartphones and tablets is
to optimize the routing of message flow in order to maximize
the utilization of bandwidth and power. One of the issues
in achieving this is nodes’ social selfishness, which makes
nodes to choose certain paths for optimizing specific utility
but without considering the impact on the degradation of
the overall network’s performance [167]. This may lead to
the creation of the bottlenecks in the network flow, and to
address this issue, the design of socially-aware load balancing
may be significantly useful, and it is important to consider
nodes’ user-centric social behavior in addition to the con-
ventional conflicting objectives such as power consumption
and path delay. In this context, a multi-objective optimization
approach can be utilized based on the socially-aware Pareto
optimal routing, however, finding the set of Pareto-optimal
solutions has huge complexity since the problem is usu-
ally NP-hard. The recently emerging quantum technologies
including quantum computation [168] and quantum informa-
tion processing can significantly reduce the complexity of
finding Pareto-optimal solutions by utilizing the concept of
Quantum Parallelism (QP). As compared to the Hardware
parallelism (HP) for complexity reduction (which provides
complexity reduction in the order of O(K ), K being the num-
ber of independent parallel processes), the QP can achieve the
complexity reduction in the order of O(

√
N ), where N being

the database length. In this regard, authors in [36] employed
a multi-objective decomposition quantum optimization algo-
rithm for the joint optimization of routing and load balancing
in socially-aware networks.

e: QUANTUM-ASSISTED CHANNEL
ESTIMATION AND DETECTION
The performance enhancement of MIMO-OFDM system
with the joint channel estimation andMUD has been depicted
in several existing works [169], [170]. In this joint chan-
nel estimation and MUD process, QC can play a signifi-
cant role due to its inherent parallelism for reducing the
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complexity, and for enhancing the estimation as well as
detection performance [37]. In this regard, authors in [37]
proposed a quantum-aid repeated weighted boosting algo-
rithm for the channel estimation and employed in the uplink
of MIMO-OFDM systems along with a MAP MUD and
a near-optimal QMUD. The performance of the proposed
quantum-based scheme was shown to be superior to that of
the conventional repeated weighted boosting algorithm, and
also the impact of channel impulse response prediction filters,
Doppler frequency and power delay profile of the channels
were analyzed.

B. FUNDAMENTALS OF QUANTUM MACHINE LEARNING
This section revisits the ML methods discussed in Sec. III-A
in the context of quantum-assisted algorithms for ML and the
QML framework.

1) OVERVIEW OF QUANTUM LEARNING METHODS
Quantum principles based on emerging computing technolo-
gies will bring entirely newmodes of information processing.
An overview of supervised, unsupervised, and reinforcement
learning methods for QML is discussed in the sequel.

a: SUPERVISED AND UNSUPERVISED QML
As elaborated in Sec. III-A, supervised learning infers the
required functionality from the given labeled training data;
while unsupervised learning attempts to find hidden pat-
terns and structures in the given unlabeled data. In different
ML tasks, the scale of speed-ups achieved by QML over
the classical ML algorithms transpires in different fashions.
For various learning tasks, QML algorithms can provide
exponential speed-ups over classical ML algorithms [42],
involving large dimensional data, in both supervised and
unsupervised learning approaches. Alongside, QML can also
enhance security and privacy in communication networks.
In this regard, supervised and unsupervised learning for clus-
tering and classification tasks have been thoroughly explored
in [42] and quantum improvements in supervised and unsu-
pervised learning have been reported in [43]. Also, in [171],
fundamental learning concepts and the applications of QML
have been comprehensively discussed, where some discussed
notable QML tasks are quantum pattern recognition, quantum
classification, quantum process tomography and regression,
boosting QC, and adiabatic QC. Furthermore, training, model
selection, and error estimation aspects of QC powered super-
vised ML have been thoroughly discussed in [172].

Unsupervised QML algorithms have been discussed
in [173], where the process of (partially or totally) converting
a classical algorithm to its quantum counterpart has been
explained. A distributed setting based k-medians clustering
method for cost-efficient communication protocols has also
been described [173], which estimates the sum of distances
instead of simple sequential additions. Moreover, quantum
algorithms for neighborhood graph, outlier detection, and
smart initialization of cluster center have been proposed.

b: QUANTUM REINFORCEMENT LEARNING
Reinforcement learning is an interactive and generalized form
of learning. As discussed in Sec. III-A3, an agent learns
the required optimal behavior through reinforced rewards
and penalties from the environment. Quantum-speedup for
reinforced learning is an emerging framework with a strong
potential in the agent-environment paradigm. The interactive
setting of two-parties (agent and environment) can conve-
niently be extended for a quantum information treatment. The
superposition and parallelism concepts of quantum mechan-
ics can be used to represent and identify the eigenstates
in quantum-powered reinforcement learning, by observing a
random quantum state simulated through the collapse pos-
tulate of quantum measurement. The reward from the envi-
ronment can be used to update the probability of Eigen
actions in a parallel fashion. The probability of the Eigen
action is determined by the probability amplitude, which is
parallelly updated according to rewards. In [174], a quantum
value updating algorithm for quantum-powered reinforce-
ment learning has been proposed.

Some fundamental characterization (based on conver-
gence, balancing, and optimality) to study performance trade-
offs between exploration and exploitation of quantum paral-
lelism for speeding up reinforcement learning is conducted.
Advances in quantum-powered reinforcement learning have
been discussed in [175]; where a solution to the bottleneck
of required oracularized variants of task environments, has
also been proposed. In the context of communication systems,
quantum inspired reinforcement learning method for optimal
spectrum assignment has been discussed in [176].

2) GENERATIVE AND DISCRIMINATIVE QML MODELS
In generative models, the actual distribution of each class
is learned, while the conditional probability distributions
are predicted through different transformational theorems.
In the discriminative model, the focus is to learn the deci-
sion boundaries between the classes by modeling the con-
ditional probability distributions. A tensor network inspired
QC approach to both discriminative and generative learning
models has been proposed in [177], where the near-future
quantum devices with a limited number of physical qubits
and high error-rate are targeted. A significant amount of
today’s learning ideology is based on generative models.
In [178], a quantum generative model based QML algo-
rithm has been proposed. It has been demonstrated that
the representation of probability distributions in the pro-
posed quantum generative model compared to the classical
generative model has exponential speedup in learning and
inference. A quantum restricted Boltzmann machine network
algorithm for unsupervised generative models has been pro-
posed in [179]; where generative models are shown to outper-
form discriminative models in terms of classification perfor-
mance. Moreover, the construction aspects of the algorithm
for quantum circuits and computers are discussed. Writing
a good quantum algorithm may be a challenging task at the
initial stage with a limited hold on the basic knowledge,
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ML can offer the trick of the trade by learning the quantum
algorithms.

3) QUANTUM SVMS AND ANNS
The origin of the motivation of proceeding towards Quantum
Neural Networks (QNNs) is in the essential quantum manip-
ulations happening in a living brain, and in the exploitation of
advancements in both QC and ANNs. Outspreading the fun-
damental concepts of quantum information processing and
ANNs, a QNN concept has been introduced in [180]–[182].
Among various difficulties in realizing the QNN, the main-
tenance of coherence during quantum parallel distributed
processing and implementation of interconnections (massive)
between neurons in the form of entanglement of qubits, are
the most notable. There also exist literature on the realization
of physical systems for QNNs, see e.g., [183], which include
nuclear magnetic resonance and quantum dots.

Based on the known unprecedented potential of QC in
solving problems beyond the conceivable reach of classical
computing methods, QNNs can be seen as outperforming
the classical ANNs at-least at a similar rate. A QC based
perceptron learning model has been proposed in [184], which
overcomes one of themajor obstacles in advancing the growth
of QNNs, i.e, ANNs being a nonlinear function. Percep-
tron is a fundamental building block of ANNs (and SVMs),
with known tight performance bounds on computational
and statistical complexity of perceptron training. This rigor-
ously enables the clear demonstration of any improvements
achieved through any advancements. In this context, in [184],
the QC perceptron has been shown to achieve non-trivial
improvements in the computational and statistical complexity
of the learning model.

The implementation of Quantum SVMs (QSVMs) has
been presented in [185], where an exponential speed-up of
QSVMs over classical SVMs has been reported. The core
concept in offering this improvement of the QSVM frame-
work is the use of an efficient matrix inversion operation
required for computing training data inner-product (kernel)
matrix, which exploits a non-sparse matrix exponentiation
technique. Furthermore, a Quantum Sparse SVM (QSSVM)
for minimizing `1-norm of feature weights vectors has been
proposed in [186]. Moreover, sparse structured vectors are
encountered in various applications of wireless communi-
cation systems, e.g., the mmWave propagation channels are
usually sparse in angular domain [22] and underwater acous-
tic communication (UWAC) channels are usually sparse in
delay domain [84]. In this regard, a sparse representation
approach for wireless communication systems has been dis-
cussed in [187]. In this context, the sparse representation of
features in wireless communication systems can be a poten-
tial application of QSSVMs.

The advantages of QNNs andQSVMs over classical ANNs
and SVMs in terms of processing speed, faster learning,
smaller scale, scalability, and reliability motivates the explo-
ration of these methods in resolving many diverse prob-
lems in wireless communication networks (e.g., resources

optimization, nodes coordination, estimation of parameters,
etc). Towards this direction, the advancements in QC and
ML methods in the last decade has now opened new hori-
zons of realizing Deep QML methods, e.g., Deep QNNs
(DQNNs) [180].

4) QUANTUM DEEP LEARNING
Quantum-assisted DL is receiving significant attention
towards enhancing various performance metrics of commu-
nication networks. The classical DL faces various challenges;
where a substantial challenge is to figure out the training
method for complex topologies of ANNs (which are of sim-
ilar complexity to that of the natural structure of the human
brain). Automatically conceiving the optimal size and topol-
ogy of anANN for the problem under consideration is another
research challenge of classical DL. The derivation of DL
models for simulating complex neural topologies and data
flow mechanisms is not naturally supported by the classical
computing architectures. In this regard, QC based algorithms
for DL are envisioned to have a profound impact on the
evolution of ML methods. Quantum DL algorithms can not
only outperform conventional learning algorithms in terms of
processing time but also in terms of enrichment in modeling
quality.

An example of very ambitious deep, wide, and complex
ANN, holding a balance between underfitting and overfit-
ting, operating at evolved parallel processing framework,
is illustrated in Fig. 3. Supervised ML is generally prone to
overfitting, which is defined as a situation when the model
produces a good- and bad-fitting for training and unseen
data, respectively. Optimum setting of ANNs ( i.e., structure,
size, memorizing capacity, etc) to hold a balance between
overfitting and underfitting is a critical requirement.

The emerging concepts of QNN and DNN can be postu-
lated together to formulate DQNNs. There is a remarkable
scope for conducting research work on this modern concept
of deep QML for devising methods for clustering, classifi-
cation, recognition, optimization, estimation, and other AI
operations by exploiting its magnificent capability of quickly
modeling several layers of abstraction in the given raw data.
Recognizing this scope, the research community has already
started advancing the classical training algorithm for deep
QML. In this regard, authors in [188] proposed a quantum
algorithm for training a DQNN. Another quantum algorithm
for training a deep restricted Boltzmann machine has been
presented in [189]. More importantly, the crossover between
QC, DNN, and information processing is an exciting inter-
disciplinary area stimulating progress in all the three disci-
plines. This observation quickly suggests that DQNNs have
a tremendous scope of meeting the requirements of bringing
full intelligence to individual nodes, a swarm of nodes, and a
network of nodes in 6G and beyond communications.

5) PARALLELIZATION, SCALABILITY, AND GENERALIZATION
In the emerging era of a data-centric world, the massive
amount of available data will require the innovative robust
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FIGURE 3. An example of a complex artificial neural network structure. Evolution from sequential to parallel data processing and optimum balance
between overfitting and underfitting is illustrated.

provisions of storing, processing, and analyzing the data.
A crucial concern for the QML framework will be the impro-
visation of storing and processing capabilities for enabling
advanced data analytics through effective handling of the
available unstructured data. The provision of data security in
such a framework will be another crucial issue [190]. A sim-
ple solution to these problems can be the provision of data
storing and processing capabilities in parallel, distributed, and
batch fashions. To this end, a few promising platforms can
be named as Hadoop, Spark, Flink, Beam etc [191]. QML
algorithms can play a crucial role because of their abilities to
process information through quantum superposition, which
can significantly speed-up the storage and computations with
the assurance of high data security. In the context of ana-
lyzing the huge amount of data through QML, it is crucial
to characterize the data structuring methods for effective
representation of data in quantum superposition framework.
Despite having the privileges of available arrangements for
interfacing the classical memory units, it is highly desirable
to devise advanced QMLmechanism to process/store the data
in parallel, distributed, and batch fashions as quantum-data.

To implement a fully scaleable computational device,
the existing technology needs the ability to maintain quantum
coherence among the qubits in a scalable fashion with very
high certainty. Superconducting qubits and ion traps are the
popular forms of the current architecture for quantum compu-
tation, which are arrays of interacting qubits that are continu-
ously controlled via external pulses to implement the desired
operations [192]. However, this approach will face scalabil-
ity issues even if they are highly capable of maintaining
quantum coherence for a longer duration. More sophisticated

classical control units are required to develop the unmod-
ulated quantum devices, which are capable of implement-
ing the desired algorithm. More specifically, fault-tolerant
quantum computers are required to solve harder problems.
Better hardware devices andmethods will be developed in the
near future to implement quantum error correction using rela-
tively small-scale experiments with quantum error-correcting
codes [193]. An error-corrected qubit with more enhanced
control is believed to be sooner or later available. With
the higher number of physical qubits, the fault-tolerant QC
system will be able to efficiently solve the classical hard
problems. However, this may take some time to develop such
fault-tolerant quantum devices. These fault-tolerant quantum
devices will go far in the context of computations through
the execution of large circuits having more accurate quantum
gates. In summary, significant advancements are required for
hypothesizing the new insights and innovations to have fully
parallelized, scalable, and generalized quantum algorithms
and devices.

C. CHALLENGES IN ENABLING QUANTUM AND
QML-ASSISTED COMMUNICATIONS
This section briefly discusses the open research problems in
the development of quantum communications, quantum com-
puters, and QML. A few challenges, which require attentions
of the research community in enabling the timely provision
of QC facilities at the edge and cloud of 6G and beyond
communication networks, are highlighted. The development
of highly consistent and controllable qubits and quantum
logical operations is a fundamental need in the realization of
reliable large-scale quantum computers, where quantum error
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correction methods can be used in bringing improvements in
system reliability. Provision of a high degree of precision and
sensitivity in quantum devices (sensors, measurement, etc)
that enables the full exploitation of quantum entanglement
concepts is of vital importance.

An important milestone in realizing quantum commu-
nications and quantum internet is the development of
long-distance quantum communication channels. Long-
distance quantum communication can be suitably realized
through the physical platform of photons, where an open
research problem is the loss of photons in quantum channels.
Use of repeaters, in principle, can overcome this drawback,
through subdividing the large distances into small sections
which are suitable for entanglement to be teleported. More-
over, to implement such quantum repeaters, the decoherence
effects imposed by the quantum channels need to be dealt
with. Development of transducers to photonic states can help
in traveling long distances with minimal decoherence. These
transducers also have another research potential application
in interconnecting different leading physical platforms, viz:
superconducting circuits, ultra cold atoms, spins in semicon-
ductors, and trapped-ions. A single-photon quantum device
has already been realized, however it currently operates at
low temperatures. The advancements may be happening very
quickly; however, to make the quantum devices operational
at normal (practical) temperatures, a lot of dedicated effort is
needed.

Looking back at the evolution of different generations of
communication networks, it can be observed that the devel-
opment cycle of each generation typically takes a decade.
Preceded by this time frame, for the development of 6G,
the resolution of challenges and limitations in the provision
of large-scale reliable quantum devices need dedicated efforts
from the research community. The capability of various phys-
ical quantum platforms (e.g., superconducting and trapped-
ions) in realizing multiple qubits together for performing
quantum logic operations with high reliability is well estab-
lished now. In 2016, it was envisioned in [194] that the short-
and long-term goals for next 5 and 10 years are to realize
quantum computers with up to 100 and 1000 qubits, respec-
tively. Recently, Google has announced a 72 qubit supercon-
ducting quantum computer [195].

The quantum computers simulators available today can
only simulate a small number of circuits, i.e., very limited
offered capacity [196]. This is because the simulation of a
quantum computer on a classical computer is a computation-
ally hard problem. Such simulators require an exponential
amount of operations to model the exponential behavior of
quantum systems on classical computers. Parallelization can
partially facilitate the resolution by allowing the simulation
of more qubits in less time. To this end, the concept of
grid computing may further assist in realizing the ambitions
by conceding the coordinated resource sharing and access
to dynamic multi-institutional virtual organizations [197].
In order to make the QML for wireless communications
a reality, an expedition in research work on QML base

communications can be achieved through the provision of
such classical grid computing facilities assisted commercially
available simulators of quantum devices to the research com-
munity. This will facilitate the development of novel QML
algorithms in parallel to the development of quantum com-
puters.

There are numerous other challenges and open research
problems in the fields of quantum communications, quantum
computers, and QML; which requires a separate dedicated
article to thoroughly survey and review all of them.

V. PROPOSED FRAMEWORK FOR 6G NETWORKS
AND FUTURE RESEARCH DIRECTIONS
The 5G networks have now entered into the commercial-
ization phase, which makes it rational to launch a strong
effort to draw future vision of the next generation of wire-
less networks. The increasing size, complexity, services,
and performance demands of the communication networks
necessitate a deliberation for envisioning new technologies
for enabling and harmonizing the future heterogeneous net-
works. An overwhelming interest in AI methods is seen in
recent years, which has motivated the provision of essen-
tial intelligence to 5G networks. However, this provision is
only limited to perform different isolated tasks of optimiza-
tion, control, and management nature. The recent success of
quantum-assisted and data-driven learning methods in com-
munication networks (discussed in previous sections) has a
clearmotivation to consider these as enablers of future hetero-
geneous networks. This section proposes a novel framework
for 6G networks, where quantum-assisted ML and QML are
proposed as the core enablers along with some promising
communication technology innovations. An illustration of the
proposed framework is presented in Fig. 4, which indicates
various emerging technologies, complex and heterogeneous
network structure, multi-space massive connectivity, and a
wide range of available big data across different layers, sides,
and applications are indicated. The discussion on key thrust
areas of future research in the context of the proposed frame-
work is categorized into ‘‘Network-Infrastructure and -Edge’’
and ‘‘Air Interface and User-End’’ sections as detailed in the
following.

A. NETWORK-INFRASTRUCTURE AND -EDGE
An extension of the conventional land-mobile radio cellular
communication networks to the multi-space highly-mobile
radio-to-optic services-oriented cell-free communication net-
works is suggested. To meet the increasingly stringent
performance demands, extending network connectivity to
everyone and everywhere is envisioned. Such integration
includes a wide range of communication applications across
multi-dimensional physical space, e.g., underwater (sensors,
submarines, etc), ocean (sensors, ships, etc), land (indoor
and outdoor users, Massive-IoT (M-IoT) devices, inter- and
intra-vehicle, etc), air (UAVs, drones, aeroplanes, High Alti-
tude Platforms (HAPs), etc), space (satellites, space shuttles,
space mission robots, etc), human body (in-body sensors,
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FIGURE 4. Illustration of different types, layers, sides, and levels of B5G communication networks indicating the potential applications of QML.

brain interface, etc). An example of the left horizons for
the provision of high-performance all-time network con-
nectivity is airborne internet access. In a traveling friendly
smart World of the future, the passengers traveling across
remote (oceanic) regions in ships and aeroplanes will also
demand the same provisions of network services which
are available to the land/home users. For enabling har-
mony across suchmassively connected complex 6G networks
operating in the co-existence of its predecessor, a tremen-
dous learning and processing capability will be required.

Various important research directions for enabling intelligent
operations at network-infrastructure and network-edge in
6G networks are discussed in the following subsections.

1) INTELLIGENT PROACTIVE CACHING
AND MOBILE EDGE COMPUTING
Intelligent proactive caching refers to the concept of buffering
the data at the nodes (IoT devices, BSs, etc) intelligently on
the basis of their popularity/demand-rate. This concept helps
in reducing the delay and power consumption in data routing
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and delivery, and it offers a significant performance improve-
ment for all type of users; e.g., the smartphones designed for
previous generations also equally benefit from this. Provid-
ing intelligence to the nodes to smartly grade the popular-
ity of contents has received an overwhelming response, see
e.g., ML advised enhanced caching in [198]. Also, the DL
for processing, classifying, and manipulating contents to
compute their importance for enabling proactive caching at
nodes/edge has also been actively studied in the literature,
see e.g., DL based caching method in [199], [200]. However,
enabling this concept of proactive caching requires the pro-
cessing of a very large amount of data to evaluate/estimate
the media/content popularity. In the context of big data pro-
cessing, QC to accelerate the content/media processing has
a potential research application in proactive caching [30].
Independently and jointly investigating the scope of QC and
ML for proactive caching in the emerging big-data era are the
potential future research directions.

The demands of mobile users tend to exhibit a predictable
pattern in media/data interests and data patterns. Intelligently
caching the data at serving stations (e.g., BSs) in the prox-
imity of mobile users can enable offloading heavy traffic
from the network backhaul and reducing the network latency
for popular contents, through an instantaneous service from
the network edge. This promising and emerging paradigm of
MEC has also received a joint interest with multiple-access
methods, referred to asMulti-Access Edge Computing, lever-
aging real-time access to the radio network. This enables
new possibilities to jointly optimize the radio resources and
data network performance features. Enabling these interest-
ing concepts to demand the provision of intelligence and
strong computational capability at the network edge, which
can be foreseen in the shape of QC, ML, and QML in the
future.

2) MULTI-OBJECTIVE OPTIMIZATION
AND ROUTING OPTIMIZATION
Various diverse type of data analysis tasks involves opti-
mization of objectives given tweaking parameters and their
constraints. The optimization problems can be classified
into various types based on the nature of the objective
and/or penalty functions, amount of objectives, and equal-
ity/inequality constraints. QML is observed to exponen-
tially speed-up the optimization problems involving quadratic
objective functions subject to equality constraints and involv-
ing penalty functions subject to inequality constraints [41].
In this regard, a quantum approximate optimization algorithm
based on alternating qubit rotations for penalty function prob-
lems has been proposed in [201]. Furthermore, optimization
through QML is not only a subfield of QC and ML but it is
increasingly emerging to redefine QC in the context of soft-
ware design, hardware development, and their applications.

The multi-objective approach for efficient routing of data
packets in communication networks (e.g, M-IoT), wireless
sensor networks (WSN), mesh-networks in airborne internet
access etc) is another emerging paradigm. This refers to the

optimization of multiple objectives/performance-metrics in
a routing problem (e.g, optimization of average delay and
expected transmission count etc). Both ML and QC has been
independently considered for this computationally-tedious
and intelligence-needy task of searching in multiple spaces
with multiple tight constraints (battery resources etc) to draw
a global optimal packet-route in order to optimize the overall
network performance, see e.g. in [202] and [33], respectively.
To this end, a QC-assisted routing optimization algorithm,
named as nondominated quantum optimization algorithm, for
self-organizing networks has been proposed in [168]. More-
over, the framework of DL has a recognized potential in
multi-objective optimization, see e.g., [203]. This research
topic is directly related to various other interesting research
topics; e.g., intelligent proactive caching.

In the application scenarios of mobile mesh networks like
airborne and oceanic broadband etc, the remote (oceanic
regions) flying aircrafts (or sailing ships) cannot always
be served from the optical fiber supported ground stations,
while the satellite links are expensive and have high latency,
the solution lies in the mixture of proactive caching, transfer
caching, multi-objective routing, and deep (transfer) learn-
ing. Quantum-assisted ML and QML can be seen as the
enablers for solving massive-objectives optimization tasks
of the massively-complex communication networks of the
future, e.g., massive-objective routing in M-IoT for enabling
smart world.

3) MASSIVE-IOT AND BIG DATA ANALYTICS:
REALIZING SMART GREEN WORLD
The concept of future smart, intelligent, and green cities,
aims at offering manifold new people-centered services for
enhancing the quality of people’s life. Realization of this
concept is only possible through the use of the latest tech-
nologies. In this regard, IoT and AI (e.g., ML) are being con-
sidered as the core smart-cities enabling technologies. The
IoT concept involves the extension of network connectivity to
a plethora of devices provided with sensing, detecting, actu-
ating, data mining, and analyzing capabilities. Such devices
may include sensor nodes, cameras, sensors installed vehicles
(private/public), road traffic monitoring systems (visual and
sensor-based), UAVs, fire/earthquake/other sensors (disasters
alerting and monitoring), user smartphones, etc.

Leveraging intelligence to the IoT devices originates the
new frontier of ‘‘IoT meets AI’’ [27]. This new frontier has
also already cast a significant impact in defining and charac-
terizing the concept of future smart cities (covering all aspects
from planning to overhauling the city services). Among
many, extending the provisions for enabling smart cities,
is an important object of emerging 5G networks. In many
different shapes, various provisions of people-centered ser-
vices have already emerged, e.g, health care, home utility
management, city transportation network management, city
alert, and rescue services management (fire, flood situations
etc). This has been possible through various separate plat-
forms, e.g., increased number of cameras in a city has enabled
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safe-city concept, sensing capability in the smartphones has
enabled services like healthcare, etc. However, a composite
concept of a green smart city with every-thing-a-service, at a
low-cost, to improve the quality of life of everyone-in-the-city
may be fully achieved in 6G and beyond communications.

In the concept of fully integrated smart cities in 6G and
beyond communications, the voluminous amount of data
instantaneously produced from the massive amount of IoT
devices (almost everything connected to the network) can
only be effectively utilized to provide instantaneous (runtime)
services if a very high computational capability is leveraged
to the system. Moreover, this high computational load at IoT
devices will make them more power hungry. QC, energy
harvesting, energy efficient routing (ML optimized), and
wireless power transfer concepts come to the rescue by offer-
ing a massive capacity of accelerating the processing speed
and power requirements of future IoT devices. The types of
learning methods suitable for different tasks along with the
available data at different layers of communication systems
is presented in Table 2. The quantum speed-ups for different
tasks (e.g., classification, learning, etc) can help in realizing
various diverse types of applications of big data analytics, see
e.g., [204]. This motivates the exploitation of QC and ML for
effective big data analytics for enabling M-IoT based green
smart cities of the future.

The future vision of this concept of smart cities will even-
tually shape the smart world/planet [205]–[207]; where the
combined role of M-IoT, QC, ML, and big data analytics is
of vital importance. There are various exciting applications of
IoT, which includes, but not limited to, IoT for the industry,
IoT for agriculture, IoT for smart offices and homes, IoT
for healthcare, IoT for elderly care, IoT for farming, IoT for
education, IoT for customer experience, etc. To realize these
concepts, the open research challenges ofM-IoT big data ana-
lytics needs attention of data scientists and communication
engineers, the problems include: privacy and security of data,
management of exhaustive data read/write operations, inte-
gration of heterogeneous types of devices, energy efficient
routing, proactive caching, accelerating processing capabil-
ity, and network support for massive number of devices,
etc. QC and QML teem with excitement to stand a central
role in enabling smart world through assistance in M-IoT
and runtime big streaming data analytics in 6G and beyond
communications.

4) SECURITY AND PRIVACY
Providing privacy and security is a big challenge in the
emerging world of everything connected to the network
(e.g, the privacy of big data in M-IoT). In this context,
the development of novel and complete security/privacy
solutions is a demand of future communication networks.
There are various attention-seeking open research problems
from providing ultimate privacy in data mining and data
processing to providing highly secure communication links.
For example, in the paradigm of integrating ML in almost
everything has recognized exposure of new types of privacy

and security vulnerabilities, while the current understanding
of these aspects is very limited [208]. Another example is,
the enabling of secure multihop data routing in heteroge-
neous communication networks (say e.g., in M-IoT) itself
opens various multi-dimensional research topics related to
security/privacy, e.g., authentication of diverse types of IoT
devices, the runtime encryption of streaming big data in
ad-hoc networks, etc.

Furthermore, several unique security and privacy enabling
solutions have emerged in the recent years, e.g., quantum
cryptography and physical layer security etc. The fusion
of ML (despite ML being itself vulnerable) for enabling
physical layer security has also been used in the literature,
see e.g., an ML-based method for antenna design to enable
physical layer security in ambient backscatter communica-
tions in [209]. The ambient backscatter communications is
a sustainable and independent communication solution for
enabling M-IoT, through the exploitation of the already exist-
ing radio signals in the environment. The role of quantum
cryptography, through its features of generating secret keys
to multiple legitimate parties in a Vernam one-time pad
cryptosystems, is highly recognized as a strong potential
for the future of security/privacy [127]. The fusion of these
QC features with intelligent systems can materialize into a
holistic approach for enabling ultimate security and privacy
in big data and massive connectivity era of 6G and beyond
communications.

5) HARMONIZATION AND INTEROPERABILITY
OF NETWORKS
The 6G wireless networks are envisioned to be driven by
on-demand self reconfigurability and interoperability with
complete harmonization in the co-existence of all of its
predecessors. In enabling this ambition, the evaluation of
real-time state information of everything in the hybrid 1∼6G
network including network-infrastructure, network-edge, air
interface, and user-side. For the realization of such conscious-
ness and responsiveness in massively connected heteroge-
neous networks of future, very robust processing and learning
capabilities will be required. In this context, QC-assisted ML
and QML being capable of manipulating multi-state, multi-
dimensional, and large-sized data, can be seen as the potential
enablers.

B. AIR INTERFACE AND USER-END
The emerging paradigms of software-defined metamaterials
based configurable leaky wave antennas and Large Intel-
ligent Surfaces (LISs) combined with large-scale multiple
antenna systems operating at a very broad range of fre-
quency spectrum (microWave, multiTerraHz, visible light,
etc) in distributed and undistributed fashions will com-
pletely redefine the physical framework of the air inter-
face. Subsequently, such a physical framework combined
with promising multiple-access and modulation paradigms
like NOMA-MEC and Orbital Angular Momentum-Shift
Keying (OAM-SK) can extend enormous provisions for
simultaneously boosting all KPIs (e.g, capacity, energy
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efficiency, etc). In enabling these ambitions, quantum learn-
ing methods can play a vital role through instantaneous learn-
ing and manipulations of the available very large number
of tweaking parameters (from: M-MIMO, antenna states,
MEC, NOMA, OAM-SK, UAVs, etc) for searching global
optimum solutions in a harmonized fashion across hybrid
1∼6G heterogeneous network infrastructure. In this context,
this section highlights various future research directions for
realizing the air interface and user-side of 6G communication
networks.

1) CONFIGURABLE MULTI-ANTENNA SYSTEMS
The large-scalemultiple antenna systems have a strong poten-
tial in enhancing capacity and energy efficiency. The nature
of wireless fading channels caused by different operating
environments imposes different types of challenges on the
accuracy of communication. Considering the operating envi-
ronment and network setting, the selection of antennas subset
to serve a certain user with an optimal tradeoff between
different performance quantifiers (e.g., data rate and power
consumption etc) is an interesting research area. In this
direction, the deployment of ML methods for this task has
recently gained a vast response, see e.g., [210] and [211]
for ML-based antenna subset and beam selection methods,
respectively.

Furthermore, the use of reconfigurable antennas in
multi-antenna systems is believed to provide a significant
additional performance gain. Reconfigurable antennas are
defined as capable of dynamically adapting their beam pat-
terns by optimally selecting an antenna-state based on the
available/estimated knowledge of CSI for each antenna-state;
an example of such antennas can be named as: directional
metamaterial reconfigurable leaky wave antenna. Evolution
and revolutions in metamaterials and antennas are happen-
ing; e.g., a new form of antenna is the fluid antenna, that
can be shaped to any required form. Future metamateri-
als and antennas can be seen as controllable through soft-
ware. Using learning algorithms for smart selection among
antenna-states software-defined antenna shape to optimize
the overall system performance is another potential research
direction, e.g., [212]. These promises provide a strong hope
for enabling deployment of multi-antenna systems also at the
user-side.

The processing and learning capability required for manip-
ulating multi-dimensional, large-sized, and highly-dynamic
(V2V) streaming data in such large-scale software-defined
multi-antenna systems; is far beyond the reach of clas-
sical computational and learning methods. For example,
the accurate run-time prediction and manipulation of req-
uisite phase-shifts between adjacent antenna elements in
a vehicular communications context employing a massive
number of antenna elements, multiple states of each antenna,
large sets of recorded data samples, the provision of very
robust computational and learning capability are necessary.
In this context, leveraging QC-assisted ML can help in
converging to unique global optimal solutions at run-time.

2) OPTICAL, MMWAVE, AND TERAHZ COMMUNICATIONS
The plenty of available unused radio spectrum in the
mmWave and TeraHz (THz) bands can be potentially uti-
lized to meet the ever-increasing capacity demands. How-
ever, to enable its utilization, a dedicated effort is required
for studying, modeling, characterizing, licensing, and regu-
larizing these bands. The radio propagation characteristics
associated with these bands are vastly different from those in
the conventional microwave band. For example, the dominant
specular reflections (in contrast to the dominant scattering
in the microwave) and high isotropic pathloss in mmWave
bands make it limited to only short-distance and LoS com-
munications (tiny cells with low elevated BSs). This makes
the highly directional transmissions essential for enabling
communications (e.g., mmWave). The establishment of ini-
tial access link in mmWave communications relies on search-
ing in a high-resolution angular domain, which makes it a
key challenge in enabling mmWave communications. The
scanning of the angular domain for determining the initial
transmission directions can be carried randomly or sequen-
tially with the targets to optimize the access delay and overall
system performance. For achieving a very high beamforming
gain, the searching over a very large beam space can signif-
icantly reduce the initial access performance. In this regard,
anML-based initial access method using RNNs in standalone
mmWave communications has been proposed in [213].

Furthermore, quantum-assisted ML can be considered for
the rescue for searching, tracking, learning, and predict-
ing the candidate 3-D directions with quantum speed-ups.
Moreover, in vehicular communication context, the carrier
frequency being a linear scaling factor causes very high
Doppler shift/spread even in very low mobility conditions
(e.g., even vehicle engine vibrations can cause high Doppler
shift [22]). This further reduces the coherence time, resulting
in very fast time-variability in the channel characteristics.
ML and quantum-assisted ML in modeling, characterizing,
estimating, and tracking these dynamic channels can make a
natural application. Moreover, in the context of required sen-
sitivity for 3-D spatial directionality for communication over
these bands, an instantaneous and accurate nodes localiza-
tion and tracking for beamforming can be achieved through
quantum-assisted learning methods.

Moreover, VLC is considered a new strong opportunity
for enabling B5G communications, as there is no support
for VLC is emerging 5G communication networks. This new
technology offers various rich advantages, including but not
limited to, large available bandwidth, power efficiency (lights
are not just lights), no-interference with radio frequency
bands, spatial reuse mechanism is easily devisable, human
health friendly, and suitable in scenarios where radio frequen-
cies are not suitable (e.g., underwater communications, etc),
etc. An important research direction in enabling VLC appli-
cations is achieving a tight localization accuracy. Various ML
methods for indoor localization problems exist in the litera-
ture, see e.g., [214]. Moreover, ML for indoor localization in
the context of VLC has also been studied in the literature,
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see e.g., [215]. Among many localization methods, the fin-
gerprinting method can achieve considerable accuracy at the
cost of high fingerprinting searching complexity. QC-assisted
indoor localization method exploiting the offered quantum
speed-ups for searching fingerprinting has also been inves-
tigated in the literature, see e.g., QSA in [35]. In summary,
amalgamating these QC- andML-assisted indoor localization
methods in QML can open new research direction for precise
and fast localization.

In addition to indoor applications, various outdoor
applications of VLC are also suggested in the litera-
ture, e.g., underwater and V2V etc. In optical commu-
nications, the orthogonality offered by different states of
OAM has strongly emerged into the research topics of
OAM-multiplexing and OAM-SK. OAM systems are not
limited to optical communications, the electromagnetic(EM)
OAM systems have also demonstrated a tremendous potential
in achieving extraordinary spectral efficiency [216]. In this
context, ML for operating and managing such multiplex-
ing and modulation methods for optimization of optical/EM
communication systems performance is a potential research
direction. An ML-based method for adaptive m-ary demodu-
lation of light beams carrying OAMs over free-space turbu-
lence channels has been proposed in [217]. Also, an analysis
of the use of ML for recognizing the intensity patterns in
OAM-SK signals for underwater optical communications has
been conducted in [218]. In the V2V context, the head- and
back-lights of vehicles have been suggested as Tx/Rx units
for establishing communication links, in [7]. In conclusion,
precise and instantaneous localization and tracking of fast
moving vehicular nodes is a crucial challenge in the outdoor
applications of VLC, where QML can be explored as an
enabler.

3) TINY-CELLS AND CELL-FREE COMMUNICATIONS
The wireless communication networks are conventionally
divided into cells for efficient spatial re-utilization of radio
resources (e.g., macro-, micro-, pico-, femto-, small-, tiny-
cells, etc). The enormous increase in the number of network
devices and limited radio resources have led the evolution
of cellular networks to tiny-sized-cells (bringing users very
close to the BSs) for more rigorous use of the resources. In the
recent years, the concept of cell-free M-MIMO networks has
emerged, which is defined by a massive amount of spatially
distributed BSs (typically single antenna) serving a relatively
small number of single antenna user devices through Time
Division Duplex (TDD) operations, by exploiting the esti-
mated CSI at the BSs. The user-centric transmission not
only overcomes the inter-cell interference encountered in the
conventional cellular networks but also provides macro-scale
diversity [219].

Another cell-free communication concept revolves around
introducing mobility in the BSs, e.g., mobile HAP serving
the users on the ground. The footprint of such HAP forms
a cell on the ground, which evolves along time due to the
mobility and trajectory of HAPs. These HAPs can extend

the network coverage to the remote users which are beyond
the reach of land BSs, or to the users involved in situations
like remote scientific exploration campaigns, coping with
disastrous situations, etc. Various other interesting recent
concepts are directly linked with this futuristic concept of
flying BSs, which can be named as proactive caching, opti-
mal resource allocation, trajectory prediction, multi-objective
routing, user association, network topology reconfiguration,
etc. In this context, Quantum-assisted ML and QML can play
a central role for the best exploitation of available resources
and large-dimensional data for enabling cell-free intelligent
communications in 6G and beyond communication networks,
through assistance in all the tasks spanning from proactive
caching at flying BS to the estimation of a massive amount of
channels in cell-free M-MIMO.

4) AUTO-ENCODER
End-to-End learning aims at representing the entire com-
munication system from a transmitter to the receiver with
a single learning block. This fascinating concept allows the
learning of transmitter and receiver behavior for jointly opti-
mizing all the operations based on an end-to-end error in
recovery accuracy. The main operations of a typical com-
munication receiver (like demodulation, channel estimation,
channel equalization, symbol decoding, etc,) are classically
performed in sequence to decode the information from the
received corrupted symbols. Whereas, in an ML-based end-
to-end system, an equivalent of all the operations can be
combined within a single block, say e.g., a DNN block, where
all the operations are realized in the form its layers. The scope
of DL as an end-to-end solution to channel estimation and
symbol detection tasks in OFDM systems has been inves-
tigated in [20]. Another conditional GAN based end-to-end
communication system has been proposed in [18].

Furthermore, a DL based end-to-end system design,
referred to as auto-encoder, to jointly optimize both transmit-
ter and receiver components in a point-to-point communica-
tion scenario has been proposed in [19]. The proposed end-
to-end systemmodel uses cascaded DNNs implementing data
transmission, propagation channel, and receiving operations;
where the layers representing the known propagation channel
are fixed (not trainable). The information symbols (base-
band) are feed as input to the DNN based end-to-end system
and the symbol estimate is processed at the output. Also,
in [220], the end-to-end system concept has been extended
for performing equalization and synchronization tasks for
frequency-selective channels in OFDM systems. In addition,
authors in [221] proposed an unsupervised learning based
approach to autoencoder concept for minimizing reconstruc-
tion loss through artificial impairment layers to model the
channel. In addition, the autoencoder based end-to-end sys-
tem concept has been extended to MIMO systems in [222];
where both open- and closed-loop systems assumed with
and without CSI feedback have been studied, respectively.
Moreover, end-To-End learning based over-the-air transmis-
sion method exploiting transfer learning concepts has been
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proposed in [223], where various challenges in training of
such systems under realistic channel conditions are indicated
(e.g., missing channel gradient etc). These studies involve the
assumption of prior available channel statistics (i.e., available
differentiable channel model).

The training of DNNs is usually performed through
back-propagating the gradient of the loss function, however,
the unavailability of prior knowledge of channel statistics,
in end-to-end DNN systems, prevents the back-propagation
of gradients. In this regard, a channel model less novel learn-
ing method combining supervised and reinforced learning
for end-to-end systems has been recently proposed in [224].
In this method, the end-to-end accuracy loss for each decoded
symbol at the receiver is fed back as a reward from the envi-
ronment for loss optimization without requiring the gradients
from channels.

This popularity of auto-encoding of a single end-to-end
communication link in a DNN, is a strong motivation to
extend this idea of auto-encoding an entire heterogeneous
wireless access network in a QC-assisted very deep ANN
to enable an instantaneous unique encoding response for
service provisions through hybrid 1∼6G network infrastruc-
tures. This QML based notion of auto-encoding the entire
(very-complex and -dynamic) wireless access networks of
the future can provide a strong potential in finding entirely
unique solutions for best utilization of network resources and
delivery of services.

5) LEARNING AT USER-SIDE
Considering the lack of computational and energy resources
available at the user nodes, various tasks which are naturally
of the user’s side are today preferred to be performed at
the serving station or cloud-side of the network. For exam-
ple, in TDD M-MIMO systems, the data for downlink is
precoded at the BS in order to relieve the user nodes from
the burden of CSI estimation and data decoding. The num-
ber of channels to be estimated in a Frequency Division
Duplex (FDD) M-MIMO system at user-side is directly pro-
portional to the number of antennas at the BS. For such an
FDD M-MIMO system, a dictionary learning-based channel
estimation method has been proposed in [225]. The TDD
scheme is usually preferred over FDD in such large-scale
multi-antenna systems for the reasons to avoid the tedious
task of estimation of the massive amount of downlink chan-
nels at the user-end, however, this causes the pilot contami-
nation problem imposing limitations over the capacity, which
can get severe in high mobility scenarios.

The software-defined (fluid) antennas are expected to
provide rich diversity at the user nodes, of similar level
which M-MIMO systems can provide at the BS side. The
antenna tweaking parameter for configuring antennas at the
user-side opens the possibility of intelligently manipulat-
ing them through ML for overall performance optimization.
Moreover, with the advent in computing methods (e.g., QC)
and evolution in computationally efficientMLmethods, it can
be foreseen that the constraints on computational capability

and related problems (e.g., battery life etc) at the user nodes
may completely vanish in the future. These aspects will
open new horizons of possibilities for better exploitation
of network resources. Quantum-assisted DL combined with
deep transfer learning methods can potentially come up with
intelligent and dynamic solutions for optimal utilization of
the network resources with consideration of the provision
of intelligence at not only the network-side but also at the
user-side of the communication links.

6) MULTIPLE-ACCESS
The need for privileging the access of wireless medium to a
massive amount of users in an ultra-efficient fashion has led
to the evolution of multiple-access mechanisms. Convention-
ally, the orthogonalization has been achieved through a clear
distinct allocation of resources to the users through slicing
of available resources in time, frequency, code, or space
domains. With an increase in users, the mechanism for spatial
re-utilization of the resources emerged, which further evolved
into the idea of cognitive radio. As of today, a further massive
increase in the number of network users/devices is causing
the transition from conventional orthogonal multiple access
methods to (random) NOMA methods. The NOMA scheme
utilizes an additional domain of power, while it mostly
revolves around the hybrid of different conventional orthogo-
nal multiple schemes, i.e., division in joint multi-dimensional
space of power, angle, and code etc. In NOMA, advanced
signal processing methods are exploited to suppress the
interference in order to accurately decode the data symbols,
e.g., SIC. The hardware support for such SIC at user nodes is
also released as NOMA-chipset [226].

The NOMA principle is also believed to be a convenient
method in realizingmassive connectivity in the context of IoT
in emerging 5G networks [227]–[229]. However, there are
a number of recognized fundamental performance limiting
factors of NOMA, which include: high computation com-
plexity for SIC in massive number of users context, ineffi-
cient transmission-time consumption, and estimation/feeding
of CSI for a large number of users (specially for very fast
time-varying channels, e.g., mmWave V2V channels). Com-
bining the operations of channel estimation, channel equal-
ization, and symbols decoding in a single block can help
in resolving these limitations [30]. Moreover, the advanced
ML concepts of DL, online-learning, transfer learning, and
auto-encoder can together help to overcome these limita-
tions. Online adaptive ML approach for detection in NOMA
in the context of 5G networks has been proposed in [230].
Also, ML for optimal user clustering and power allocation in
mmWave NOMA has been proposed in [231]. Furthermore,
a DL-aided NOMA scheme has been proposed in [232],
where DL has been used for learning channel conditions in an
end-to-end learning fashion. In addition, NOMA-based MEC
network has also received considerable attention in the recent
years, see e.g., [233], [234]. Both NOMA and MEC being
intelligence and computing power demanding technologies,
QML can be seen as a strong potential enabler.
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In the context of achieving the speed-ups of multi-user
transmission/detection optimization, various quantum-aided
schemes have been proposed in the recent years. As dis-
cussed in Sec. IV-A4.b, quantum-assisted multi-user detec-
tion/transmission has been studied in various scenairos
including direct-sequence spreading SDMA-OFDM, CDMA
and SDMA, Multi-Carrier IDMA, and NOMA systems
in [163]–[165], and [38], respectively. In the perspective of
both ML and QC being rationally considered for improv-
ing operations of various multi-access schemes (including
NOMA), it can be speculated that QML can take a vital role
in reinventing the multi-access methods in 6G and beyond
communications.

7) INTELLIGENT COGNITIVE RADIO AND SELF-SUSTAINING
WIRELESS NETWORKS
Leveraging intelligence to fully automate future communica-
tion networks for enabling operations like self-management,
self-optimization, self-healing, and self-protection, is a clear
need for future networks. The software-defined cognitive
radios are designed to achieve reliable communication with
minimal use of natural resources through intelligent oper-
ations (e.g., intelligent spatial reuse etc) learned from the
environment (e.g., radio scene analysis). All the tasks for
operating cognitive radios, e.g., sensing spectrum gaps, net-
work (spatial) interference analysis, CSI estimation, power
control, and dynamic resources management, etc, have nat-
ural connections with the deals offered by ML methods.
Therefore, ML methods have thoroughly been reviewed for
cognitive radios, see e.g., [235]. The role of AI in enabling
cognitive radio networks has been strongly endorsed in [236].
Alos, the scope of DL and evolutionary game theory for
dynamic spectrum access in a cognitive radio network has
been discussed in [237]. With the growing size and complex-
ity of communication networks, the future of cognitive radios
seems to be in the sensing and optimization through advanced
ML methods assisted with quantum speed-ups.

The concepts of everything-connected-to-the-network and
everything-as-a-service are rapidly evolving. The emerging
5G communication networks are expected to enable a variety
of new services which may have various diverse require-
ments. When confronted with increasing services demands
and network complexity, leveraging intelligence to the net-
work can play a vital role. The 5G era is expected to lay
the foundation of intelligent communication networks [54]
by introducing some basic AI based operations, such as
intelligent resource management, intelligent management of
services provision, intelligent control, etc. A complete AI
solution for intelligent cognitive and self-sustaining net-
works may emerge in B5G communications. The amount
of available configurable parameters at a communication
node is rapidly increasing, which is projected to be 2000+
parameters in a typical 5G node [54]. To this end, 5G cel-
lular networks are expected to establish a framework of
employing preliminary intelligence to the network by real-
izing self-organizing features. In the emerging architecture

of 5G networks, the network design is centralized with lack-
ing capability of complete robustness in design, dynamicity
in the services types and flexibility in end-to-end NS, for
recognition, management, and provision of new types of
services.

The aforementioned indications assert that the truly intel-
ligent self-sustainability in communication networks will
be materialized in 6G and beyond communication with
QC-assisted ML and QML as the potential enablers.

VI. CONCLUSIONS
In this paper, we have provided a comprehensive review of
the emerging technologies including ML, QC and QML, and
put forward our vision for QC- and QML-assisted frame-
work towards enabling beyond 5G wireless networks. First,
the target services offered by emerging 5G communica-
tion networks and the open research challenges for B5G
communication networks have been detailed. Subsequently,
the state-of-the-art of quantum, QC-assisted, ML-assisted,
QC-assisted ML, and QML-assisted communications have
been thoroughly reviewed. Furthermore, a QC-assisted ML
and QML based framework for 6G communication networks
has been proposed. In the context of the proposed framework,
detailed discussions on various promising new technologies,
open research problems, and future research directions have
been provided.

More importantly, various potential enabling technolo-
gies for network-infrastructure, network-edge, air interface,
and user-side of the proposed 6G framework have been
identified and discussed. At the network-infrastructure and
-edge levels: the role of the proposed framework for intel-
ligent proactive caching, intelligent MEC, multi-objective
routing optimization, resource allocation, massive-IoT man-
agement, big data analytics, interoperability harmonization,
secure links assurance, and data privacy assurance aspects
have been thoroughly discussed and recommended. More-
over, at air interface and user-end levels: various enablers
for the proposed framework including mmWave commu-
nications, teraHz communications, optical communications,
VLC, small- and tiny-cells based communications, cell-free
communications (UAV BSs and distributed M-MIMO), end-
to-end autoencoding, learning at user-side, multiple access
for massive connectivity, cognitive and self-sustainable radio
networks, large scale multi-antenna systems, LISs, and
fluid-antennas have been discussed in detail along with the
associated challenges and potential future research directions.

REFERENCES
[1] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,Machine Learning:

An Artificial Intelligence Approach. Berlin, Germany: Springer, 2013.
[2] A. Gupta and E. R. K. Jha, ‘‘A survey of 5G network: Architecture and

emerging technologies,’’ IEEE Access, vol. 3, pp. 1206–1232, Jul. 2015.
[3] C. Bockelmann et al., ‘‘Towards massive connectivity support for scal-

able mMTC communications in 5G networks,’’ IEEE Access, vol. 6,
pp. 28969–28992, May 2018.

[4] S. K. Sharma and X. Wang. (Aug. 2018). ‘‘Towards massive machine
type communications in ultra-dense cellular IoT networks: Current
issues and machine learning-assisted solutions.’’ [Online]. Available:
https://arxiv.org/abs/1808.02924

46344 VOLUME 7, 2019



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

[5] M. Chiani, E. Paolini, and F. Callegati, ‘‘Open issues and beyond 5G,’’
in 5G Italy White eBook: From Research to Market. Rome, Italy, 2018.
[Online]. Available: https://www.5gitaly.eu/en/white-ebook-2/

[6] K. David and H. Berndt, ‘‘6G vision and requirements: Is there any need
for beyond 5G?’’ IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80,
Sep. 2018.

[7] F. Tariq, M. Khandaker, K.-K. Wong, M. Imran, M. Bennis, and
M. Debbah. (Feb. 2019). ‘‘A speculative study on 6G.’’ [Online]. Avail-
able: https://arxiv.org/abs/1902.06700

[8] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Kténas,
N. Cassiau, and C. Dehos. (2019). ‘‘6G: The next frontier.’’ [Online].
Available: https://arxiv.org/abs/1901.03239

[9] W. Saad, M. Bennis, and M. Chen. (Mar. 2019). ‘‘A vision of 6G
wireless systems: Applications, trends, technologies, and open research
problems.’’ [Online]. Available: https://arxiv.org/abs/1902.10265

[10] IMT Traffic Estimates for the Years 2020 to 2030, document ITU-R
M.2370-0, 2015.

[11] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo.
(2019). ‘‘Thirty years of machine learning: The road to Pareto-
optimal next-generation wireless networks.’’ [Online]. Available:
https://arxiv.org/abs/1902.01946

[12] M.G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima,
‘‘Big data analytics, machine learning, and artificial intelligence in next-
generation wireless networks,’’ IEEE Access, vol. 6, pp. 32328–32338,
May 2018.

[13] Y. Liu, S. Bi, Z. Shi, and L. Hanzo. (2019). ‘‘When machine learning
meets big data: A wireless communication perspective.’’ [Online]. Avail-
able: https://arxiv.org/abs/1901.08329

[14] S. K. Sharma and X. Wang, ‘‘Collaborative distributed Q-learning for
RACH congestion minimization in cellular IoT networks,’’ IEEE Com-
mun. Lett., to be published.

[15] O. Simeone, ‘‘A very brief introduction to machine learning with appli-
cations to communication systems,’’ IEEE Trans. Cogn. Commun. Netw.,
vol. 4, no. 4, pp. 648–664, Dec. 2018.

[16] C. Zhang, P. Patras, and H. Haddadi. (2018). ‘‘Deep learning in
mobile and wireless networking: A survey.’’ [Online]. Available:
https://arxiv.org/abs/1803.04311

[17] A. Zappone, M. Di Renzo, and M. Debbah. (2019). ‘‘Wireless networks
design in the era of deep learning: Model-based, AI-based, or both?’’
[Online]. Available: https://arxiv.org/abs/1902.02647

[18] H. Ye, G. Y. Li, B.-H. F. Juang, and K. Sivanesan. (2018). ‘‘Channel
agnostic end-to-end learning based communication systems with condi-
tional GAN.’’ [Online]. Available: https://arxiv.org/abs/1807.00447

[19] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physi-
cal layer,’’ IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[20] H. Ye, G. Y. Li, and B.-H. Juang, ‘‘Power of deep learning for channel
estimation and signal detection in OFDM systems,’’ IEEE Wireless Com-
mun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[21] H. Ye and G. Y. Li, ‘‘Deep reinforcement learning for resource allocation
in V2V communications,’’ in Proc. IEEE Int. Conf. Commun., May 2018,
pp. 1–6.

[22] F. Jameel, S. Wyne, S. J. Nawaz, and Z. Chang, ‘‘Propagation
channels for mmWave vehicular communications: State-of-the-art and
future research directions,’’ IEEE Wireless Commun., vol. 26, no. 1,
pp. 144–150, Feb. 2019.

[23] H. He, C.-K. Wen, S. Jin, and G. Y. Li. (2018). ‘‘Deep learning-based
channel estimation for beamspace mmWave massive MIMO systems.’’
[Online]. Available: https://arxiv.org/pdf/1802.01290.pdf

[24] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, ‘‘Machine learning
for vehicular networks: Recent advances and application examples,’’
IEEE Veh. Technol. Mag., vol. 13, no. 2, pp. 94–101, Jun. 2018.

[25] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, ‘‘Deep learning
convolutional neural networks for radio identification,’’ IEEE Commun.
Mag., vol. 56, no. 9, pp. 146–152, Sep. 2018.

[26] F. Tang, B. Mao, Z. M. Fadlullah, and N. Kato, ‘‘On a novel deep-
learning-based intelligent partially overlapping channel assignment in
SDN-IoT,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 80–86, Sep. 2018.

[27] M. Mohammadi and A. Al-Fuqaha, ‘‘Enabling cognitive smart cities
using big data and machine learning: Approaches and challenges,’’ IEEE
Commun. Mag., vol. 56, no. 2, pp. 94–101, Feb. 2018.

[28] C. Day, ‘‘Quantum computing is exciting and important-really!’’Comput.
Sci. Eng., vol. 9, no. 2, p. 104, Mar. 2007.

[29] L. Gyongyosi and S. Imre, ‘‘A survey on quantum computing technol-
ogy,’’ Comput. Sci. Rev., vol. 31, pp. 51–71, Feb. 2019.

[30] P. Botsinis et al., ‘‘Quantum algorithms for wireless communications,’’
IEEE Commun. Surveys Tuts., to be published.

[31] M. M. Wilde and M.-H. Hsieh, ‘‘The quantum dynamic capacity for-
mula of a quantum channel,’’ Quantum Inf. Process., vol. 11, no. 6,
pp. 1431–1463, 2012.

[32] H. V. Nguyen et al., ‘‘EXIT-chart aided quantum code design improves
the normalised throughput of realistic quantum devices,’’ IEEE Access,
vol. 4, pp. 10194–10209, Jul. 2016.

[33] D. Alanis et al., ‘‘Quantum-aided multi-objective routing optimization
using back-tracing-aided dynamic programming,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 8, pp. 7856–7860, Aug. 2018.

[34] M. A. M. Izhar et al., ‘‘Quantum turbo decoding for quantum channels
exhibiting memory,’’ IEEE Access, vol. 6, pp. 12369–12381, Feb. 2018.

[35] P. Botsinis et al., ‘‘Quantum-assisted indoor localization for uplink mm-
Wave and downlink visible light communication systems,’’ IEEE Access,
vol. 5, pp. 23327–23351, Jul. 2017.

[36] D. Alanis, J. Hu, P. Botsinis, Z. Babar, S. X. Ng, and L. Hanzo,
‘‘Quantum-assisted joint multi-objective routing and load balancing for
socially-aware networks,’’ IEEE Access, vol. 4, pp. 9993–10028, 2016.

[37] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Joint quantum-
assisted channel estimation and data detection,’’ IEEE Access, vol. 4,
pp. 7658–7681, Jul. 2016.

[38] P. Botsinis et al., ‘‘Quantum-aided multi-user transmission in
non-orthogonal multiple access systems,’’ IEEE Access, vol. 4,
pp. 7402–7424, Jul. 2016.

[39] E. P. DeBenedictis, ‘‘A future with quantum machine learning,’’ Com-
puter, vol. 51, no. 2, pp. 68–71, Feb. 2018.

[40] H. Chen, L. Wossnig, S. Severini, H. Neven, and M. Mohseni. (2018).
‘‘Universal discriminative quantum neural networks.’’ [Online]. Avail-
able: https://arxiv.org/abs/1805.08654

[41] J. Biamonte, P.Wittek, N. Pancotti, P. Rebentrost, N.Wiebe, and S. Lloyd,
‘‘Quantum machine learning,’’ Nature, vol. 549, pp. 195–202, Sep. 2017.

[42] S. Lloyd, M. Mohseni, and P. Rebentrost. (2013). ‘‘Quantum algorithms
for supervised and unsupervised machine learning.’’ [Online]. Available:
https://arxiv.org/abs/1307.0411

[43] V. Dunjko, J. M. Taylor, and H. J. Briegel, ‘‘Quantum-enhanced machine
learning,’’ Phys. Rev. Lett., vol. 117, no. 13, pp. 130501–130506, 2016.

[44] System Architecture for the 5G System; Stage 2, Releases 15, document
3GPP TS 23.501, V15.2.0, Technical Specification Group Services and
Systems Aspects, Jun. 2018.

[45] M. Shafi et al., ‘‘5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1201–1221, Jun. 2017.

[46] J. G. Andrews et al., ‘‘What will 5G be?’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[47] N. Gonzalez-Prelcic, A. Ali, V. Va, and R. W. Heath, Jr., ‘‘Millimeter-
wave communication with out-of-band information,’’ IEEE Commun.
Mag., vol. 55, no. 12, pp. 140–146, Dec. 2017.

[48] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Energy and spectral effi-
ciency of very large multiuser MIMO systems,’’ IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[49] C. Liu and L.Wang, ‘‘Optimal cell load and throughput in green small cell
networks with generalized cell association,’’ IEEE J. Sel. Areas Commun.,
vol. 34, no. 5, pp. 1058–1072, May 2016.

[50] IMT Vision—Framework and Overall Objectives of the Future Devel-
opment of IMT for 2020 and Beyond, IMT, document TU-RM.2083-0,
Sep. 2015.

[51] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, ‘‘Network function virtualization: State-of-the-art and
research challenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[52] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,
‘‘Network slicing and softwarization: A survey on principles, enabling
technologies, and solutions,’’ IEEECommun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[53] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge com-
puting: A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[54] R. Li et al., ‘‘Intelligent 5G: When cellular networks meet artificial
intelligence,’’ IEEE Wireless Commun., vol. 24, no. 5, pp. 175–183,
Oct. 2017.

VOLUME 7, 2019 46345



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

[55] S. K. Sharma and X. Wang, ‘‘Live data analytics with collaborative edge
and cloud processing in wireless IoT networks,’’ IEEE Access, vol. 5,
pp. 4621–4635, Mar. 2017.

[56] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, ‘‘5G-enabled
tactile Internet,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473,
Mar. 2016.

[57] H. Haas, C. Chen, and D. O’Brien, ‘‘A guide to wireless networking by
light,’’ Prog. Quantum Electron., vol. 55, pp. 88–111, Sep. 2017.

[58] S. K. Sharma, T. E. Bogale, L. B. Le, S. Chatzinotas, X. Wang, and
B. Ottersten, ‘‘Dynamic spectrum sharing in 5G wireless networks with
full-duplex technology: Recent advances and research challenges,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 674–707, 1st Quart., 2018.

[59] F. Cheng et al., ‘‘UAV trajectory optimization for data offloading at
the edge of multiple cells,’’ IEEE Trans. Veh. Technol., vol. 67, no. 7,
pp. 6732–6736, Jul. 2018.

[60] C. Zhang, C. Jiang, L. Kuang, J. Jin, Y. He, and Z. Han, ‘‘Spatial
spectrum sharing for satellite and terrestrial communication networks,’’
IEEE Trans. Aerosp. Electron. Syst., to be published.

[61] F. Azmat, Y. Chen, andN. Stocks, ‘‘Analysis of spectrum occupancy using
machine learning algorithms,’’ IEEE Trans. Veh. Technol., vol. 65, no. 9,
pp. 6853–6860, Sep. 2016.

[62] S. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone,
‘‘A survey of energy-efficient techniques for 5G networks and challenges
ahead,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709,
Apr. 2016.

[63] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and
I. Akyildiz, ‘‘A new wireless communication paradigm through software-
controlled metasurfaces,’’ IEEE Commun. Mag., vol. 56, no. 9,
pp. 162–169, Sep. 2018.

[64] Y. Chen, Energy Harvesting Communications: Principles and Theories.
Hoboken, NJ, USA: Wiley, 2019.

[65] T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and
J. Li, ‘‘Simultaneous wireless information and power transfer (SWIPT):
Recent advances and future challenges,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp. 264–302, 1st Quart.,2018.

[66] T. Hou, G. Feng, S. Qin, and W. Jiang, ‘‘Proactive content caching by
exploiting transfer learning for mobile edge computing,’’ in Proc. IEEE
GLOBECOM, Dec. 2017, pp. 1–6.

[67] L. T. Tan and R. Q. Hu, ‘‘Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[68] H. Kazemi, M. Safari, and H. Haas, ‘‘A wireless optical backhaul solution
for optical attocell networks,’’ IEEE Trans. Wireless Commun., vol. 18,
no. 2, pp. 807–823, Feb. 2019.

[69] X. Artiga et al., ‘‘Shared access satellite-terrestrial reconfigurable back-
haul network enabled by smart antennas at mmwave band,’’ IEEE Netw.,
vol. 32, no. 5, pp. 46–53, Sep./Oct. 2018.

[70] S. K. Sharma and X. Wang, ‘‘Distributed caching enabled peak traffic
reduction in ultra-dense IoT networks,’’ IEEE Commun. Lett., vol. 22,
no. 6, pp. 1252–1255, Jun. 2018.

[71] Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, and X. Gao, ‘‘A survey
of physical layer security techniques for 5G wireless networks and chal-
lenges ahead,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 4, pp. 679–695,
Apr. 2018.

[72] Y. Xin et al., ‘‘Machine learning and deep learning methods for cyberse-
curity,’’ IEEE Access, vol. 6, pp. 35365–35381, 2018.

[73] Y. Li, P. Zhang, and R. Huang, ‘‘Lightweight quantum encryption for
secure transmission of power data in smart grid,’’ IEEE Access, vol. 7,
pp. 36285–36293, 2019.

[74] S. J. Nawaz, S. Mohsin, and A. A. Ikaram, ‘‘Neural network based
MIMO-OFDM channel equalizer using comb-type pilot arrangement,’’ in
Proc. IEEE Int. Conf. Future Comput. Commun., Apr. 2009, pp. 36–41.

[75] X. Ma, H. Ye, and Y. Li, ‘‘Learning assisted estimation for time- vary-
ing channels,’’ in Proc. Int. Symp. Wireless Commun. Syst., Aug. 2018,
pp. 1–5.

[76] S. J. Nawaz, N. M. Khan, M. I. Tiwana, N. Hassan, and S. I. Shah,
‘‘Airborne Internet access through submarine optical fiber cables,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 51, no. 1, pp. 167–177, Jan. 2015.

[77] M. Chen, W. Saad, C. Yin, and M. Debbah, ‘‘Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,’’ IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3520–3535,
Jun. 2017.

[78] M. I. Tiwana, S. J. Nawaz, A. A. Ikram, and M. I. Tiwana,
‘‘Self-organizing networks: A packet scheduling approach for cover-
age/capacity optimization in 4G networks using reinforcement learning,’’
Elektronika ir Elektrotechnika, vol. 20, no. 9, pp. 59–64, 2014.

[79] Y. S. Nasir andD. Guo. (2018). ‘‘Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks.’’ [Online]. Available:
https://arxiv.org/abs/1808.00490

[80] J.-K. Lain, ‘‘Joint transmit/receive antenna selection for MIMO systems:
A real-valued genetic approach,’’ IEEE Commun. Lett., vol. 15, no. 1,
pp. 58–60, Jan. 2011.

[81] P. D. Karamalis, N. D. Skentos, and A. G. Kanatas, ‘‘Selecting array con-
figurations for MIMO systems: An evolutionary computation approach,’’
IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1994–1998, Nov. 2004.

[82] B.-K. Lee, H.-W. Chen, and B.-S. Chen, ‘‘Power control of cellular
radio systems via robust Smith prediction filter,’’ IEEE Trans. Wireless
Commun., vol. 3, no. 5, pp. 1822–1831, Sep. 2004.

[83] H. Y. Lu and W. H. Fang, ‘‘Joint receive antenna selection and symbol
detection for MIMO systems: A heterogeneous genetic approach,’’ IEEE
Commun. Lett., vol. 13, no. 2, pp. 97–99, Feb. 2009.

[84] B. Mansoor, S. J. Nawaz, M. I. Tiwana, J. Ahmed, and A. Haseeb, ‘‘GA
based estimation of sparse MIMO channels with superimposed training,’’
Elektronika ir Elektrotechnika, vol. 24, no. 6, pp. 75–81, 2018.

[85] S. K. Goudos, ‘‘Evolutionary algorithms for wireless communications—
A review of the state-of-the art,’’ in Contemporary Issues in Wireless
Communications. Rijeka, Croatia: InTech, 2014.

[86] S. J. Nawaz, M. I. Tiwana, M. N. Patwary, N. M. Khan, M. I. Tiwana,
and A. Haseeb, ‘‘GA based sensing of sparse multipath channels with
superimposed training sequence,’’ Elektronika ir Elektrotechnika, vol. 22,
no. 1, pp. 87–91, 2016.

[87] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, ‘‘Cognitive radios
with genetic algorithms: Intelligent control of software defined radios,’’
in proc. SDR Forum Tech. Conf., vol. 100, 2004, pp. 3–8.

[88] S. Navabi, C. Wang, O. Y. Bursalioglu, and H. Papadopoulos. (2018).
‘‘Predicting wireless channel features using neural networks.’’ [Online].
Available: https://arxiv.org/abs/1802.00107

[89] N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, and W. Guo, ‘‘A com-
prehensive survey of recent advancements in molecular communication,’’
IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1887–1919, 2016.

[90] X. Qian and M. Di Renzo, ‘‘Receiver design in molecular communica-
tions: An approach based on artificial neural networks,’’ in Proc. Int.
Symp. Wireless Commun. Syst., Aug. 2018, pp. 1–5.

[91] F. Saleem and S. Wyne, ‘‘WLAN–based indoor localization using neural
networks,’’ J. Elect. Eng., vol. 67, no. 4, pp. 299–306, 2016.

[92] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu.
(2019). ‘‘A deep learning framework for optimization of MISO downlink
beamforming.’’ [Online]. Available: https://arxiv.org/abs/1901.00354

[93] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, ‘‘Deep learning in physical
layer communications,’’ IEEE Wireless Commun., to be published.

[94] F. D. Calabrese, L. Wang, E. Ghadimi, G. Peters, L. Hanzo, and
P. Soldati, ‘‘Learning radio resource management in RANs: Framework,
opportunities, and challenges,’’ IEEE Commun. Mag., vol. 56, no. 9,
pp. 138–145, Sep. 2018.

[95] A. Zappone, L. Sanguinetti, and M. Debbah. (2018). ‘‘User association
and load balancing for massive MIMO through deep learning.’’ [Online].
Available: https://arxiv.org/abs/1812.06905

[96] N. C. Luong et al. (2018). ‘‘Applications of deep reinforcement learn-
ing in communications and networking: A survey.’’ [Online]. Available:
https://arxiv.org/abs/1810.07862

[97] M. Kim, W. Lee, and D.-H. Cho, ‘‘A novel PAPR reduction scheme for
OFDM system based on deep learning,’’ IEEE Commun. Lett., vol. 22,
no. 3, pp. 510–513, Mar. 2018.

[98] N. Samuel, T. Diskin, and A. Wiesel. (2018). ‘‘Learning to detect.’’
[Online]. Available: https://arxiv.org/abs/1805.07631

[99] J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, ‘‘Deep
convolutional neural networks for massiveMIMOfingerprint-based posi-
tioning,’’ in Proc. 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio
Commun., Oct. 2017, pp. 1–6.

[100] T.Wang, C.-K.Wen, H.Wang, F. Gao, T. Jiang, and S. Jin, ‘‘Deep learning
for wireless physical layer: Opportunities and challenges,’’ China Com-
mun., vol. 14, no. 11, pp. 92–111, 2017.

[101] H. Sun, X. Chen, Q. Shi,M. Hong, X. Fu, andN. D. Sidiropoulos, ‘‘Learn-
ing to optimize: Training deep neural networks for wireless resource
management,’’ in Proc. IEEE 18th Int. Workshop Signal Process. Adv.
Wireless Commun., Jul. 2017, pp. 1–6.

[102] A. Zappone, M. Debbah, and Z. Altman, ‘‘Online energy-efficient power
control in wireless networks by deep neural networks,’’ in Proc. IEEE
19th Int. Workshop Signal Process. Adv. Wireless Commun., Jun. 2018,
pp. 1–5.

46346 VOLUME 7, 2019



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

[103] S. J. Pan and Q. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[104] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, ‘‘A survey on
deep transfer learning,’’ in Proc. Artif. Neural Netw. Mach. Learn. Cham,
Switzerland: Springer, 2018, pp. 270–279.

[105] J. R. Hershey, J. Le Roux, and F. Weninger. (2014). ‘‘Deep unfolding:
Model-based inspiration of novel deep architectures.’’ [Online]. Avail-
able: https://arxiv.org/abs/1409.2574

[106] X. Jin and H.-N. Kim. (2018). ‘‘Deep learning detection net-
works in MIMO decode-forward relay channels.’’ [Online]. Available:
https://arxiv.org/abs/1807.09571

[107] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, ‘‘NeXt
generation/dynamic spectrum access/cognitive radio wireless networks:
A survey,’’ Comput. Netw., vol. 50, pp. 2127–2159,
Sep. 2006.

[108] S. K. Sharma, T. E. Bogale, S. Chatzinotas, B. Ottersten, L. B. Le, and
X. Wang, ‘‘Cognitive radio techniques under practical imperfections:
A survey,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1858–1884,
4th Quart., 2015.

[109] K. Thilina, K. W. Choi, N. Saquib, and E. Hossain, ‘‘Machine learn-
ing techniques for cooperative spectrum sensing in cognitive radio net-
works,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2209–2221,
Nov. 2013.

[110] X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, ‘‘Intelligent
power control for spectrum sharing in cognitive radios: A deep rein-
forcement learning approach,’’ IEEE Access, vol. 6, pp. 25463–25473,
Apr. 2018.

[111] M. Asaduzzaman, R. Abozariba, and M. N. Patwary, ‘‘Spectrum sharing
optimization in cellular networks under target performance and budget
restriction,’’ in Proc. IEEE Veh. Technol. Conf. (Spring), Jun. 2017,
pp. 1–7.

[112] T. G. Dietterich and P. Langley, ‘‘Machine learning for cognitive net-
works: Technology assessment and research challenges,’’ in Cognitive
Networks: Towards Self-Aware Networks. West Sussex, U.K.: Wiley,
2007.

[113] A. Kumar, ‘‘A survey of self-organizing networks,’’ in Proc. Eur. Res.
Project Paper, 2016, pp. 1–16.

[114] M. Bkassiny, Y. Li, and S. K. Jayaweera, ‘‘A survey on machine-learning
techniques in cognitive radios,’’ IEEE Commun. Surveys Tuts., vol. 15,
no. 3, pp. 1136–1159, 3rd Quart., 2013.

[115] S. Ayoubi et al., ‘‘Machine learning for cognitive network management,’’
IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165, Jan. 2018.

[116] N. D.Mermin,QuantumComputer Science: An Introduction. Cambridge,
U.K.: Cambridge Univ. Press, 2007.

[117] M. A. Nielsen and I. L. Chuang, ‘‘Quantum computation and quantum
information,’’ Amer. J. Phys., vol. 70, no. 5, pp. 558–559, 2002.

[118] S. Imre, ‘‘Quantum communications: Explained for communication engi-
neers,’’ IEEE Commun. Mag., vol. 51, no. 8, pp. 28–35, Aug. 2013.

[119] J. D. Franson, ‘‘Quantum communications,’’ in Proc. Quantum Electron.
Laser Sci. Conf., May, 2001, p. 7.

[120] A. N. Pinto, N. A. Silva, N. J. Muga, A. J. Almeida, and D. F. Pereira,
‘‘Quantum communications: An engineering approach,’’ in Proc. Int.
Conf. Transparent Opt. Netw., Jul. 2017, pp. 1–4.

[121] L. Gyongyosi, S. Imre, and H. V. Nguyen, ‘‘A survey on quantum channel
capacities,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1149–1205,
2nd Quart., 2018.

[122] W. K. Wootters and W. H. Zurek, ‘‘A single quantum cannot be cloned,’’
Nature, vol. 299, pp. 802–803, Oct. 1982.

[123] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal,
‘‘Entanglement-assisted capacity of a quantum channel and the reverse
Shannon theorem,’’ IEEE Trans. Inf. Theory, vol. 48, no. 10,
pp. 2637–2655, Oct. 2002.

[124] I. Devetak, ‘‘The private classical capacity and quantum capacity of a
quantum channel,’’ IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55,
Jan. 2005.

[125] M. Berta, J. M. Renes, and M. M. Wilde, ‘‘Identifying the information
gain of a quantummeasurement,’’ IEEETrans. Inf. Theory, vol. 60, no. 12,
pp. 7987–8006, Dec. 2014.

[126] V. Sharma and S. Banerjee, ‘‘Analysis of quantum key distribution based
satellite communication,’’ in Proc. Int. Conf. Comput., Commun. Netw.
Technol., Jul. 2018, pp. 1–5.

[127] K. Inoue, ‘‘Quantum key distribution technologies,’’ IEEE J. Sel. Topics
Quantum Electron., vol. 12, no. 4, pp. 888–896, Jul. 2006.

[128] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, ‘‘Teleporting an unknown quantum state via dual clas-
sical and einstein-podolsky-rosen channels,’’ Phys. Rev. Lett., vol. 70,
no. 13, pp. 1895–1899, Mar. 1993.

[129] C. H. Bennett and S. J. Wiesner, ‘‘Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states,’’ Phys. Rev. Lett.,
vol. 69, no. 20, p. 2881, Nov. 1992.

[130] J. C. Garcia-Escartin and P. Chamorro-Posada, ‘‘Quantum spread spec-
trum multiple access,’’ IEEE J. Sel. Topics Quantum Electron., vol. 21,
no. 3, pp. 30–36, May 2015.

[131] J. H. Shapiro, ‘‘The quantum theory of optical communications,’’ IEEE J.
Sel. Topics Quantum Electron., vol. 15, no. 6, pp. 1547–1569, Nov. 2009.

[132] S. Tarantino, D. Cozzolino, K. Rottwitt, and D. Bacco, ‘‘Feasibility of
quantum communications in aquatic scenario,’’ in Proc. IEEE Photon.
Conf., Sep./Oct. 2018, pp. 1–2.

[133] J. Du, ‘‘Terahertz essential devices technique research based on quantum
communication,’’ in Proc. IEEE Adv. Inf. Technol., Electron. Autom.
Control Conf., Oct. 2018, pp. 1927–1930.

[134] S.-T. Cheng, C.-Y. Wang, and M.-H. Tao, ‘‘Quantum communication for
wireless wide-area networks,’’ IEEE J. Sel. Areas Commun., vol. 23, no. 7,
pp. 1424–1432, Jul. 2005.

[135] S. Boixo et al., ‘‘Evidence for quantum annealing with more than one
hundred qubits,’’ Nature Phys., vol. 10, no. 3, pp. 218–224, Feb. 2014.

[136] A. S. Holevo, ‘‘The capacity of the quantum channel with general signal
states,’’ IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, Jan. 1998.

[137] S. Lloyd, ‘‘Capacity of the noisy quantum channel,’’ Phys. Rev. A, Gen.
Phys., vol. 55, no. 3, pp. 1613–1622, 1997.

[138] I. Devetak and P. W. Shor, ‘‘The capacity of a quantum channel for simul-
taneous transmission of classical and quantum information,’’ Commun.
Math. Phys., vol. 256, no. 2, pp. 287–303, 2005.

[139] M.-H. Hsieh and M. M. Wilde, ‘‘Entanglement-assisted communication
of classical and quantum information,’’ IEEE Trans. Inf. Theory, vol. 56,
no. 9, pp. 4682–4704, Sep. 2010.

[140] M.-H. Hsieh and M. M. Wilde, ‘‘Trading classical communication, quan-
tum communication, and entanglement in quantum Shannon theory,’’
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4705–4730, Sep. 2010.

[141] M. M. Wilde, M.-H. Hsieh, and Z. Babar, ‘‘Entanglement-assisted
quantum turbo codes,’’ IEEE Trans. Inf. Theory, vol. 60, no. 2,
pp. 1203–1222, Feb. 2014.

[142] M. Takeoka, S. Guha, and M. M. Wilde, ‘‘The squashed entangle-
ment of a quantum channel,’’ IEEE Trans. Inf. Theory, vol. 60, no. 8,
pp. 4987–4998, Aug. 2014.

[143] M. Taucer, F. Karim, K. Walus, and R. A. Wolkow, ‘‘Consequences of
many-cell correlations in clocked quantum-dot cellular automata,’’ IEEE
Trans. Nanotechnol., vol. 14, no. 4, pp. 638–647, Jul. 2015.

[144] C. S. Lent and P. D. Tougaw, ‘‘A device architecture for computing with
quantum dots,’’ Proc. IEEE, vol. 85, no. 4, pp. 541–557, Apr. 1997.

[145] F. Qadir, P. Z. Ahmad, S. J. Wani, and M. A. Peer, ‘‘Quantum-dot cellular
automata: Theory and application,’’ in Proc. Int. Conf. Mach. Intell. Res.
Adv. (ICMIRA), Dec. 2013, pp. 540–544.

[146] V. A. Mardiris, G. C. Sirakoulis, and I. G. Karafyllidis, ‘‘Automated
design architecture for 1-D cellular automata using quantum cellular
automata,’’ IEEE Trans. Comput., vol. 64, no. 9, pp. 2476–2489, Sep.
2015.

[147] A. F. Almatrood and H. Singh, ‘‘Design of generalized pipeline cellular
array in quantum-dot cellular automata,’’ IEEE Comput. Archit. Lett.,
vol. 17, no. 1, pp. 29–32, Jan./Jun. 2018.

[148] H. Hast, S. Khorbotly, and D. Tougaw, ‘‘A signal distribution network
for sequential quantum-dot cellular automata systems,’’ IEEE Trans.
Nanotechnol., vol. 14, no. 4, pp. 648–656, Jul. 2015.

[149] M. Ashtiani and M. A. Azgomi, ‘‘A survey of quantum-like approaches
to decision making and cognition,’’Math. Social Sci., vol. 75, pp. 49–80,
May 2015.

[150] V. I. Yukalov and D. Sornette, ‘‘Quantitative predictions in quantum
decision theory,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 3,
pp. 366–381, Mar. 2018.

[151] J. von Neumann and R. T. Beyer,Mathematical Foundations of Quantum
Mechanics, 1st ed. Princeton, NJ, USA: Princeton Univ. Press, 1955.

[152] N. L. Piparo and M. Razavi, ‘‘Long-distance trust-free quantum key
distribution,’’ IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 3,
pp. 123–130, May 2015.

[153] V. I. Yukalov and D. Sornette, ‘‘Scheme of thinking quantum systems,’’
Laser Phys. Lett., vol. 6, no. 11, pp. 833–839, 2009.

VOLUME 7, 2019 46347



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

[154] W. Liu, J. liu, M. Cui, and M. He, ‘‘An introductory review on quantum
game theory,’’ in Proc. Int. Conf. Genetic Evol. Comput., Dec. 2010,
pp. 386–389.

[155] H. E. Brandt, ‘‘Qubit devices and the issue of quantum decoherence,’’
Prog. Quantum Electron., vol. 22, nos. 5–6, pp. 257–370, 1999.

[156] C. F. Lee and N. F. Johnson, ‘‘Exploiting randomness in quantum infor-
mation processing,’’ Phys. Lett. A, vol. 301, nos. 5–6, pp. 343–349,
2002.

[157] D. Huang and S. Li, ‘‘A survey of the current status of research on
quantum games,’’ in Proc. 4th Int. Conf. Inf. Manage., May 2018,
pp. 46–52.

[158] M. Berta, O. Fawzi, V. Scholz, and O. Szehr, ‘‘Variations on classical and
quantum extractors,’’ in Proc. IEEE Int. Symp. Inf. Theory, Jun./Jul. 2014,
pp. 1474–1478.

[159] R. T. Konig and B. M. Terhal, ‘‘The bounded-storage model in the
presence of a quantum adversary,’’ IEEE Trans. Inf. Theory, vol. 54, no. 2,
pp. 749–762, Feb. 2008.

[160] M. Berta, O. Fawzi, and V. B. Scholz, ‘‘Quantum-proof randomness
extractors via operator space theory,’’ IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2480–2503, Apr. 2017.

[161] R. S. O. Reingold and A. Wigderson, ‘‘Extracting randomness via
repeated condensing,’’ SIAM J. Comput., vol. 35, no. 5, pp. 1185–1209,
Jul. 2006.

[162] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum search algorithms,
quantum wireless, and a low-complexity maximum likelihood iterative
quantum multi-user detector design,’’ IEEE Access, vol. 1, pp. 94–122,
2013.

[163] P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, ‘‘Low-complexity soft-
output quantum-assisted multiuser detection for direct-sequence spread-
ing and slow subcarrier-hopping aided SDMA-OFDM systems,’’ IEEE
Access, vol. 2, pp. 451–472, May 2014.

[164] P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Fixed-complexity quantum-assisted
multi-user detection for CDMA and SDMA,’’ IEEE Trans. Commun.,
vol. 62, no. 3, pp. 990–1000, Mar. 2014.

[165] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Iterative
quantum-assisted multi-user detection for multi-carrier interleave divi-
sion multiple access systems,’’ IEEE Trans. Commun., vol. 63, no. 10,
pp. 3713–3727, Oct. 2015.

[166] P. Botsinis, Y. Huo, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, ‘‘Quan-
tum search-aided multi-user detection of IDMA-assisted multi-layered
video streaming,’’ IEEE Access, vol. 5, pp. 23233–23255, Jul. 2017.

[167] Y. Li, G. Su, D. O. Wu, D. Jin, L. Su, and L. Zeng, ‘‘The impact of node
selfishness on multicasting in delay tolerant networks,’’ IEEE Trans. Veh.
Technol., vol. 60, no. 5, pp. 2224–2238, Jun. 2011.

[168] D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, ‘‘Quantum-assisted
routing optimization for self-organizing networks,’’ IEEE Access, vol. 2,
pp. 614–632, 2014.

[169] R. Prasad, C. R. Murthy, and B. D. Rao, ‘‘Joint channel estimation and
data detection in MIMO-OFDM systems: A sparse Bayesian learning
approach,’’ IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5369–5382,
Oct. 2015.

[170] J. Zhang, S. Chen, X. Mu, and L. Hanzo, ‘‘Joint channel estima-
tion and multiuser detection for SDMA/OFDM based on dual repeated
weighted boosting search,’’ IEEE Trans. Veh. Technol., vol. 60, no. 7,
pp. 3265–3275, Sep. 2011.

[171] P. Wittek, Quantum Machine Learning: What Quantum Computing
Means to Data Mining. New York, NY, USA: Academic, 2014.

[172] L. Oneto, S. Ridella, and D. Anguita, ‘‘Quantum computing and super-
vised machine learning: Training, model selection, and error estima-
tion,’’ in Quantum Inspired Computational Intelligence. Amsterdam,
The Netherlands: Elsevier, 2017, pp. 33–83.

[173] E. Aïmeur, G. Brassard, and S. Gambs, ‘‘Quantum speed-up for unsuper-
vised learning,’’Mach. Learn., vol. 90, no. 2, pp. 261–287, 2013.

[174] D. Dong, C. Chen, H. Li, and T. J. Tarn, ‘‘Quantum reinforce-
ment learning,’’ IEEE Trans. Syst., Man, B, Cybern., vol. 38, no. 5,
pp. 1207–1220, Oct. 2008.

[175] V. Dunjko, J. M. Taylor, and H. J. Briegel, ‘‘Advances in quantum
reinforcement learning,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 2017, pp. 282–287.

[176] S. Nuuman, D. Grace, and T. Clarke, ‘‘A quantum inspired reinforce-
ment learning technique for beyond next generation wireless networks,’’
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, Mar. 2015,
pp. 271–275.

[177] W. Huggins, P. Patel, K. B. Whaley, and E. M. Stoudenmire. (2018).
‘‘Towards quantum machine learning with tensor networks.’’ [Online].
Available: https://arxiv.org/abs/1803.11537

[178] X. Gao, Z.-Y. Zhang, and L.-M. Duan, ‘‘A quantum machine learn-
ing algorithm based on generative models,’’ Sci. Adv., vol. 4, no. 12,
p. eaat9004, 2018.

[179] P. Zhang, S. Li, and Y. Zhou, ‘‘An algorithm of quantum restricted
boltzmannmachine network based on quantum gates and its application,’’
Shock Vib., vol. 2015, Dec. 2014, Art. no. 756969.

[180] A. Kamruzzaman, Y. Alhwaiti, A. Leider, and C. C. Tappert ‘‘Quantum
deep learning neural networks,’’ in Advances in Information and Com-
munication (Lecture Notes in Networks and Systems), vol. 70. Cham,
Switzerland: Springer, 2019, pp. 299–311.

[181] G. Purushothaman and N. B. Karayiannis, ‘‘Quantum neural networks
(QNNs): Inherently fuzzy feedforward neural networks,’’ IEEE Trans.
Neural Netw., vol. 8, no. 3, pp. 679–693, May 1997.

[182] M. V. Altaisky. (2001). ‘‘Quantum neural network.’’ [Online]. Available:
https://arxiv.org/abs/quant-ph/0107012

[183] A. A. Ezhov and D. Ventura, ‘‘Quantum neural networks,’’ in
Future Directions for Intelligent Systems and Information Sciences.
Berlin, Germany: Springer, 2000, pp. 213–235.

[184] A. Kapoor, N. Wiebe, and K. M. Svore, ‘‘Quantum perceptron models,’’
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 3999–4007.

[185] P. Rebentrost, M. Mohseni, and S. Lloyd, ‘‘Quantum support vector
machine for big data classification,’’ Phys. Rev. Lett., vol. 113, no. 13,
2014, Art. no. 130503.

[186] T. Arodz and S. Saeedi. (2019). ‘‘Quantum sparse support vector
machines.’’ [Online]. Available: https://arxiv.org/abs/1902.01879

[187] Z. Qin, J. Fan, Y. Liu, Y. Gao, and G. Y. Li, ‘‘Sparse representation
for wireless communications: A compressive sensing approach,’’ IEEE
Signal Process. Mag., vol. 35, no. 3, pp. 40–58, May 2018.

[188] S. H. Adachi and M. P. Henderson. (2015). ‘‘Application of quantum
annealing to training of deep neural networks.’’ [Online]. Available:
https://arxiv.org/abs/1510.06356

[189] N. Wiebe, A. Kapoor, and K. M. Svore. (2014). ‘‘Quantum deep learn-
ing.’’ [Online]. Available: https://arxiv.org/abs/1412.3489

[190] Y.-B. Sheng and L. Zhou, ‘‘Distributed secure quantum machine learn-
ing,’’ Sci. Bull., vol. 62, no. 14, pp. 1025–1029, 2017.

[191] M. K. Saggi and S. Jain, ‘‘A survey towards an integration of big data ana-
lytics to big insights for value-creation,’’ Inf. Process. Manage., vol. 54,
no. 5, pp. 758–790, 2018.

[192] L. Banchi, N. Pancotti, and S. Bose, ‘‘Quantum gate learning in qubit
networks: Toffoli gate without time-dependent control,’’ NPJ Quantum
Inf., vol. 2, Jul. 2016, Art. no. 16019.

[193] J. Preskill, ‘‘Quantum computing in the NISQ era and beyond,’’Quantum,
vol. 2, p. 79, Aug. 2018.

[194] K.Klemic and J. Zeigler, Eds., ‘‘Future directions of quantum information
processing: A workshop on the emerging science and technology of
quantum computation, communication, and measurement,’’ in Basic Res.
Innov. Collaboration Center, Virginia Tech Appl. Res. Corp. (VT-ARC),
Arlington, VA, USA, Aug. 2016.

[195] E. Connover, ‘‘Google moves toward quantum supremacy with 72-qubit
computer,’’ Sci. News, vol. 193, no. 6, p. 13, 2018.

[196] M. P. Frank, L. Oniciuc, U. H. Meyer-Baese, and I. Chiorescu, ‘‘A space-
efficient quantum computer simulator suitable for high-speed FPGA
implementation,’’ Proc. SPIE vol. 7342, Apr. 2009, Art. no. 734203.

[197] S. Caraiman, A. Archip, and V. Manta, ‘‘A grid enabled quantum com-
puter simulator,’’ in Proc. Int. Symp. Symbolic Numeric Algorithms Sci.
Comput., Sep. 2009, pp. 189–196.

[198] T. Lykouris and S. Vassilvitskii. (2018). ‘‘Competitive caching
with machine learned advice.’’ [Online]. Available: https://arxiv.
org/abs/1802.05399

[199] C. Zhong, M. C. Gursoy, and S. Velipasalar, ‘‘A deep reinforcement
learning-based framework for content caching,’’ in Proc. Annu. Conf. Inf.
Sci. Syst., Mar. 2018, pp. 1–6.

[200] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, ‘‘Learn to cache:
Machine learning for network edge caching in the big data era,’’ IEEE
Wireless Commun., vol. 25, no. 3, pp. 28–35, Jun. 2018.

[201] E. Farhi, J. Goldstone, and S. Gutmann. (2014). ‘‘A quantum
approximate optimization algorithm.’’ [Online]. Available: https://arxiv.
org/abs/1411.4028

[202] H. Yetgin, K. T. K. Cheung, and L. Hanzo, ‘‘Multi-objective routing
optimization using evolutionary algorithms,’’ in Proc. IEEE Wireless
Commun. Netw. Conf., Apr. 2012, pp. 3030–3034.

46348 VOLUME 7, 2019



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

[203] O. Sener and V. Koltun, ‘‘Multi-task learning as multi-objective optimiza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 525–536.

[204] T. A. Shaikh and R. Ali, ‘‘Quantum computing in big data analytics:
A survey,’’ in Proc. IEEE Int. Conf. Comput. Inf. Technol., Dec. 2016,
pp. 112–115.

[205] A. Gapchup, A. Wani, A. Wadghule, and S. Jadhav, ‘‘Emerging trends of
green IoT for smart world,’’ Int. J. Innov. Res. Comput. Commun. Eng.,
vol. 5, no. 2, pp. 2139–2148, 2017.

[206] N. S. Sehnaz, L. Hemalatha, M. C. S. Geetha, and I. E. Shanthi, ‘‘Going
green with IoT for smart world-an overview,’’ World Sci. News, vol. 41,
p. 167, Feb. 2016.

[207] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
‘‘A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,’’ IEEECommun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

[208] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. (2016). ‘‘Towards
the science of security and privacy in machine learning.’’ [Online]. Avail-
able: https://arxiv.org/abs/1611.03814

[209] T. Hong, C. Liu, and M. Kadoch, ‘‘Machine learning based antenna
design for physical layer security in ambient backscatter communi-
cations,’’ Wireless Commun. Mobile Comput., vol. 2019, Jan. 2019,
Art. no. 4870656.

[210] S. Padmanabhan, R. G. Stephen, C. R. Murthy, and M. Coupechoux,
‘‘Training-based antenna selection for PER minimization: A POMDP
approach,’’ IEEE Trans. Commun., vol. 63, no. 9, pp. 3247–3260,
Sep. 2015.

[211] C. Antón-Haro and X. Mestre, ‘‘Learning and data-driven beam selection
for mmWave communications: An angle of arrival-based approach,’’
IEEE Access, vol. 7, pp. 20404–20415, 2019.

[212] N. Gulati and K. R. Dandekar, ‘‘Learning state selection for reconfig-
urable antennas: A multi-armed bandit approach,’’ IEEE Trans. Antennas
Propag., vol. 62, no. 3, pp. 1027–1038, Mar. 2014.

[213] A. Mazin, M. Elkourdi, and R. D. Gitlin. (2018). ‘‘Accelerating beam
sweeping in mmWave standalone 5G new radios using recurrent neural
networks.’’ [Online]. Available: https://arxiv.org/abs/1809.01096

[214] O. A. Abdullah and I. Abdel-Qader, ‘‘Machine learning algorithm for
wireless indoor localization,’’ inMachine Learning-Advanced Techniques
and Emerging Applications. London, U.K.: IntechOpen, 2018.

[215] X. Guo, S. Shao, N. Ansari, and A. Khreishah, ‘‘Indoor localization using
visible light via fusion of multiple classifiers,’’ IEEE Photon. J., vol. 9,
no. 6, pp. 1–16, Dec. 2017.

[216] J. Wang et al., ‘‘Terabit free-space data transmission employing orbital
angular momentum multiplexing,’’ Nature Photon., vol. 6, no. 7,
pp. 488–496, 2012.

[217] J. Li, M. Zhang, and D. Wang, ‘‘Adaptive demodulator using machine
learning for orbital angular momentum shift keying,’’ IEEE Photon.
Technol. Lett., vol. 29, no. 17, pp. 1455–1458, Sep. 1, 2017.

[218] X.-Z. Cui et al., ‘‘Analysis of an adaptive orbital angular momentum
shift keying decoder based on machine learning under oceanic turbulence
channels,’’ Opt. Commun., vol. 429, pp. 138–143, Dec. 2018.

[219] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and
E. G. Larsson. (2018). ‘‘Ubiquitous cell-free massive MIMO
communications.’’ [Online]. Available: https://arxiv.org/abs/1804.03421

[220] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink. (2018).
‘‘OFDM-Autoencoder for end-to-end learning of communications sys-
tems.’’ [Online]. Available: https://arxiv.org/abs/1803.05815

[221] T. J. O’Shea, K. Karra, and T. C. Clancy, ‘‘Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,’’
in Proc. IEEE Int. Symp. Signal Process. Inf. Technol., Dec. 2016,
pp. 223–228.

[222] T. J. O’Shea, T. Erpek, and T. C. Clancy. (2017). ‘‘Deep learn-
ing based MIMO communications.’’ [Online]. Available: https://arxiv.
org/abs/1707.07980

[223] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, ‘‘Deep learning
based communication over the air,’’ IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 132–143, Feb. 2018.

[224] F. A. Aoudia and J. Hoydis. (2018). ‘‘End-to-end learning of com-
munications systems without a channel model.’’ [Online]. Available:
https://arxiv.org/abs/1804.02276

[225] Y. Ding and B. D. Rao, ‘‘Dictionary learning-based sparse channel repre-
sentation and estimation for FDD massive MIMO systems,’’ IEEE Trans.
Wireless Commun., vol. 17, no. 8, pp. 5437–5451, Aug. 2018.

[226] World First Successful 5G Trial Using Smartphone-Sized NOMAChipset-
Embedded Device to Increase Spectral Efficiency, Press Release, NTT
Docomo, Tokyo, Japan, 2017.

[227] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, ‘‘On the performance of non-
orthogonalmultiple access in 5G systemswith randomly deployed users,’’
IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.

[228] Z.-G. Ding, M. Xu, Y. Chen, M.-G. Peng, and H. V. Poor, ‘‘Embracing
non-orthogonalmultiple access in future wireless networks,’’ Frontiers
Inf. Technol. Electron. Eng., vol. 19, no. 3, pp. 322–339, 2018.

[229] R. Abozariba, M. K. Naeem, M. Patwary, M. Seyedebrahimi, and P. Bull,
‘‘NOMAbased resource allocation andmobility enhancement framework
for IoT in next generation cellular networks,’’ IEEE Access, vol. 7,
pp. 29158–29172, 2019.

[230] D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak, ‘‘Detec-
tion for 5G-NOMA: An online adaptive machine learning approach,’’ in
Proc. IEEE Int. Conf. Commun., May 2018, pp. 1–6.

[231] J. Cui, Z. Ding, and P. Fan, ‘‘The application of machine learning
in mmWave-NOMA systems,’’ in Proc. Veh. Technol. Conf. (Spring),
Jun. 2018, pp. 1–6.

[232] G. Gui, H. Huang, Y. Song, and H. Sari, ‘‘Deep learning for an effec-
tive nonorthogonal multiple access scheme,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 8440–8450, Sep. 2018.

[233] Y. Ye, G. Lu, R. Q. Hu, and L. Shi. (2019). ‘‘On the performance
and optimization for MEC networks using uplink NOMA.’’ [Online].
Available: https://arxiv.org/abs/1901.04149

[234] Z. Ding, D. W. K. Ng, R. Schober, and H. V. Poor, ‘‘Delay minimization
for NOMA-MEC offloading,’’ IEEE Signal Process. Lett., vol. 25, no. 12,
pp. 1875–1879, Dec. 2018.

[235] C. Clancy, J. Hecker, E. Stuntebeck, and T. O’Shea, ‘‘Applications of
machine learning to cognitive radio networks,’’ IEEE Wireless Commun.,
vol. 14, no. 4, pp. 47–52, Aug. 2007.

[236] S. Singhal, S. Gupta, and A. Sinha, ‘‘Role of artificial intelligence in cog-
nitive radio networks,’’ in Sensing Techniques for Next Generation Cogni-
tive Radio Networks. Hershey, PA, USA: IGI Global, 2019, pp. 258–279.

[237] P. Yang et al., ‘‘Dynamic spectrum access in cognitive radio networks
using deep reinforcement learning and evolutionary game,’’ inProc. IEEE
Int. Conf. Commun. China, Aug. 2018, pp. 405–409.

SYED JUNAID NAWAZ (S’08–M’12–SM’16)
received the Ph.D. degree in electronic engineering
from Mohammad Ali Jinnah University, Islam-
abad, in 2012.

Since 2005, he held several research and
teaching positions with COMSATS University
Islamabad (CUI), Islamabad, Pakistan, Stafford-
shire University, U.K., Federal Urdu University,
Pakistan, The University of York, U.K., and the
Aristotle University of Thessaloniki, Greece. He is

currently working as anAssistant Professor with theDepartment of Electrical
Engineering, CUI, Islamabad campus. His current research interests include
physical channel modeling, channel estimation and characterization, massive
multiple-input multiple-output systems, adaptive signal processing, machine
learning, compressed sensing, mm-wave channels, the Airborne Internet,
underwater communications, the Internet of Things, and vehicle-to-vehicle
communications.

VOLUME 7, 2019 46349



S. J. Nawaz et al.: Quantum ML for 6G Communication Networks: State-of-the-Art and Vision for the Future

SHREE KRISHNA SHARMA (S’12–M’15–
SM’18) received the Ph.D. degree in wireless com-
munications from the University of Luxembourg,
in 2014.

He was a Postdoctoral Fellow with the Univer-
sity of Western Ontario, Canada, and a Research
Associate with SnT, where he was involved in
different European, national, and ESA projects.
He is currently a Research Scientist with SnT,
University of Luxembourg. He has recently pub-

lished an edited book: Satellite Communications in the 5G Era with the
IET as a Lead Editor. He has published more than 85 technical papers in
scholarly journals and international conferences and has over 1600 Google
scholar citations. His current research interests include 5G and beyond
wireless, the Internet of Things, machine learning, edge computing and
optimization of distributed communications, and computing and caching
resources. He was a recipient of several prestigious awards, including
the Best Paper Award at the CROWNCOM 2015 Conference, the FNR
Award for Outstanding PhD Thesis 2015 from FNR, Luxembourg, and
the 2018 EURASIP Best Journal Paper Award. He has been serving as
a Reviewer for several international journals and conferences, as a TPC
Member for a number of international conferences, including IEEE ICC,
IEEE GLOBECOM, IEEE PIMRC, IEEE VTC, and IEEE ISWCS, and an
Associate Editor for the IEEEACCESS. He was a Track Co-Chair for the IEEE
VTC-Fall 2018 Conference. He has organized a special session at the IEEE
PIMRC 2017 Conference.

SHURJEEL WYNE (S’02–M’08–SM’13) received
the Ph.D. degree from Lund University, Sweden,
in 2009. From 2009 to 2010, he was a Postdoctoral
Research Fellow, funded by the High-Speed
Wireless Center, Lund University. Since 2010,
he has been with the Department of Electri-
cal Engineering, COMSATS University Islam-
abad (CUI), Islamabad, Pakistan, where he is
currently an Associate Professor. His research
interests include wireless channel characteriza-

tion, multi-antenna systems, cooperative communications, physical layer
security, and vehicular communications. He was a co-recipient of the
Best Paper Award of the Antennas and Propagation Track at the IEEE
VTC2013-Spring.

MOHAMMAD N. PATWARY (SM’11) received
the B.Eng. degree (Hons.) in electrical and elec-
tronic engineering from the Chittagong Univer-
sity of Engineering and Technology, Bangladesh,
in 1998, and the Ph.D. degree in telecommuni-
cation engineering from The University of New
South Wales, Sydney, Australia, in 2005. He was
with General Electric Company, Bangladesh, from
1998 to 2000, and with Southern Poro Communi-
cations, Sydney, from 2001 to 2002, as Research

and Development Engineer. He was a Lecturer with The University of
New South Wales, from 2005 to 2006, and then a Senior Lecturer with
Staffordshire University, U.K., from 2006 to 2010. He was a Full Professor
of wireless systems and digital productivity and the Chair of the Centre of
Excellence on Digital Productivity with Connected Services, Staffordshire
University, until 2016. He is currently a Full Professor of telecommunication
networks and digital productivity and the Head of the Intelligent Systems
and Networks (ISN) Research Group, School of Computing and Digital
Technology, Birmingham City University, U.K. He is also the Principal
Data Architect for a large-scale 5G testbed in U.K. to accelerate digital
productivity and develop urban connected community. His current research
interests include sensing and processing for intelligent systems, wireless
communication systems design and optimization, signal processing and
energy-efficient systems, future generation of cellular network architecture,
and business modeling for data economy.

MD. ASADUZZAMAN (M’16) received the B.Sc.
and M.Sc. degrees in applied statistics from
the University of Dhaka, Dhaka, Bangladesh,
in 1999 and 2001, respectively, the M.Sc. degree
in bioinformatics from the Chalmers University
of Technology, Gothenburg, Sweden, in 2007, and
the Ph.D. degree in operational research from the
University ofWestminster, London, U.K., in 2010.

He was a Lecturer and an Assistant Professor
of applied statistics with the Institute of Statisti-

cal Research and Training, University of Dhaka. He is currently a Senior
Lecturer of statistics and operational research with Staffordshire University,
Stoke-on-Trent, U.K., where he has been a Faculty Member, since 2014.
His primary research interests include queueing, other stochastic models and
mathematical programming for performance measure, capacity and resource
planning and management in healthcare, and telecommunication and other
communication networks. He is also interested in statistical computing,
large-scale data mining, and analysis in earth, environmental sciences, and
healthcare.

Dr. Asaduzzaman received several awards, including the First Runner-Up
Prize of The Doctoral Award from the Operational Research Society, U.K.,
in 2011, and the Dean’s Honor Award from the University of Dhaka,
Bangladesh, in 2013.

46350 VOLUME 7, 2019


	INTRODUCTION
	WHY B5G NETWORKS?
	MACHINE LEARNING FOR B5G NETWORKS
	QUANTUM COMMUNICATIONS FOR B5G NETWORKS
	CONTRIBUTIONS OF THIS WORK

	5G AND BEYOND COMMUNICATION NETWORKS
	5G TARGET SERVICES
	ENHANCED MOBILE BROADBAND
	ULTRA RELIABLE LOW LATENCY COMMUNICATIONS (URLLC)
	MASSIVE MACHINE TYPE COMMUNICATION (mMTC)
	TACTILE INTERNET (TI)

	BEYOND 5G: OPEN CHALLENGES AND EMERGING TECHNOLOGIES
	THROUGHPUT
	NETWORK CAPACITY
	ENERGY EFFICIENCY
	BACKHAUL AND ACCESS NETWORK CONGESTION
	DATA SECURITY


	MACHINE LEARNING FOR COMMUNICATIONS
	FUNDAMENTALS AND TAXONOMY OF APPLICATIONS
	SUPERVISED LEARNING
	SEMI-SUPERVISED AND UNSUPERVISED LEARNING
	REINFORCEMENT LEARNING
	GENETIC PROGRAMMING
	LEARNING REQUIREMENTS AND CAPABILITY

	ARTIFICIAL NEURAL NETWORKS FOR COMMUNICATIONS
	DEEP LEARNING FOR COMMUNICATIONS
	DEEP NEURAL NETWORKS
	DEEP TRANSFER LEARNING
	DEEP UNFOLDING
	DEEP LEARNING FOR COGNITIVE COMMUNICATIONS


	QUANTUM TECHNOLOGY AND QML-ASSISTED COMMUNICATIONS
	QUANTUM AND QC-ASSISTED COMMUNICATIONS
	FUNDAMENTALS OF QUANTUM COMMUNICATIONS
	APPLICATIONS OF QUANTUM COMMUNICATIONS
	POTENTIAL ENABLERS FOR QUANTUM COMMUNICATIONS
	NOTABLE APPLICATIONS OF QC-ASSISTED COMMUNICATIONS

	FUNDAMENTALS OF QUANTUM MACHINE LEARNING
	OVERVIEW OF QUANTUM LEARNING METHODS
	GENERATIVE AND DISCRIMINATIVE QML MODELS
	QUANTUM SVMS AND ANNS
	QUANTUM DEEP LEARNING
	PARALLELIZATION, SCALABILITY, AND GENERALIZATION

	CHALLENGES IN ENABLING QUANTUM AND QML-ASSISTED COMMUNICATIONS

	PROPOSED FRAMEWORK FOR 6G NETWORKS AND FUTURE RESEARCH DIRECTIONS
	NETWORK-INFRASTRUCTURE AND -EDGE
	INTELLIGENT PROACTIVE CACHING AND MOBILE EDGE COMPUTING
	MULTI-OBJECTIVE OPTIMIZATION AND ROUTING OPTIMIZATION
	MASSIVE-IOT AND BIG DATA ANALYTICS: REALIZING SMART GREEN WORLD
	SECURITY AND PRIVACY
	HARMONIZATION AND INTEROPERABILITY OF NETWORKS

	AIR INTERFACE AND USER-END
	CONFIGURABLE MULTI-ANTENNA SYSTEMS
	OPTICAL, MMWAVE, AND TERAHZ COMMUNICATIONS
	TINY-CELLS AND CELL-FREE COMMUNICATIONS
	AUTO-ENCODER
	LEARNING AT USER-SIDE
	MULTIPLE-ACCESS
	INTELLIGENT COGNITIVE RADIO AND SELF-SUSTAINING WIRELESS NETWORKS


	CONCLUSIONS
	REFERENCES
	Biographies
	SYED JUNAID NAWAZ
	SHREE KRISHNA SHARMA
	SHURJEEL WYNE
	MOHAMMAD N. PATWARY
	MD. ASADUZZAMAN


